首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
C. Engels 《Plant and Soil》1993,150(1):129-138
The effects of low root zone temperatures (RZT) on nutrient demand for growth and the capacity for nutrient acquisition were compared in maize and wheat growing in nutrient solution. To differentiate between direct temperature effects on nutrient uptake and indirect effects via an altered ratio of shoot to root growth, the plants were grown with their shoot base including apical shoot meristem either within the root zone (low SB), i.e. at RZT (12°, 16°, or 20°C) or, above the root zone (high SB), i.e. at uniformly high air temperature (20°/16° day/night).At low SB, suboptimal RZT reduced shoot growth more than root growth in wheat, whereas the opposite was true in maize. However, in both species the shoot growth rate per unit weight of roots, which was taken as parameter for the shoot demand for mineral nutrients per unit of roots, decreased at low RZT. Accordingly, the concentrations of potassium (K) and phosphorus (P) remained constant or even increased at low RZT despite reduced uptake rates.At high SB, shoot growth at low RZT in both species was higher than at low SB, whereas root growth was not increased. At high SB, the shoot demand per unit of roots was similar for all RZT in wheat, but increased with decreasing RZT in maize. Uptake rates of K at high SB and low RZT adapted to shoot demand within four days, and were even higher in maize than in wheat. Uptake rates of P adapted more slowly to shoot demand in both species, resulting in reduced concentrations of P in the shoot, particularly in maize.In conclusion, the two species did not markedly differ in their physiological capacity for uptake of K and P at low RZT. However, maize had a lower ability than wheat to adapt morphologically to suboptimal RZT by increasing biomass allocation towards the roots. This may cause a greater susceptibility of maize to nutrient deficiency, particularly if the temperatures around the shoot base are high and uptake is limited by nutrient transport processes in the soil towards the roots.  相似文献   

2.
Maize seedlings were grown for 10 to 20 days in either nutrient solution or in soils with or without fertilizer supply. Air temperature was kept uniform for all treatments, while root zone temperature (RZT) was varied between 12 and 24°C. In some treatments the basal part of the shoot (with apical shoot meristem and zone of leaf elongation) was lifted up to separate the indirect effects of root zone temperature on shoot growth from the direct effects of temperature on the shoot meristem.Shoot and root growth were decreased by low RZT to a similar extent irrespective of the growth medium (i.e. nutrient solution, fertilized or unfertilized soil). In all culture media Ca concentration was similar or even higher in plants grown at 12 as compared to 24°. At lower RZT concentrations of N, P and K in the shoot dry matter decreased in unfertilized soil, whereas in nutrient solution and fertilized soil only the K concentration decreased.When direct temperature effects on the shoot meristem were reduced by lifting the basal part of the shoot above the temperature-controlled root zone, shoot growth at low RZT was significantly increased in nutrient solution and fertilized soil, but not in unfertilized soil. In fertilized soil and nutrient solution at low RZT the uptake of K increased to a similar extent as plant growth, and thus shoot K concentration was not reduced by increasing shoot growth rates. In contrast, uptake of N and P was not increased, resulting in significantly decreased shoot concentrations.It is concluded that shoot growth at suboptimal RZT was limited both by a direct temperature effect on shoot activity and by a reduced nutrient supply through the roots. Nutrient concentrations in the shoot tissue at low RZT were not only influenced by availability in the substrate and dilution by growth, but also by the internal demand for growth.  相似文献   

3.
Summary In a first experiment, cucumber transplants (cucumis sativa L. cv. Toska) were grwon at five root-zone temperatures (RZT) ranging from 12° to 36°C. Maximum shoot growth and total leaf area were obtained at 24° and 30°C (RZT). In a second experiment, cucumber transplants were submitted to five RZT (12, 18, 24, 30 and 36°C) and five night air temperatures (NAT) that were maintained either constant at 9°, 13° and 17°C or splitted (in two halfs) at midnight (17°/12°C, 17°/9°C). Root-zone warming to 24° or 30°C increased cucumber plant growth and leaf development, but did not compensate completely the loss of productivity induced by low NAT. Split-night temperature had greater effects under the lowest NAT (17°/9°C) and at high RZT (24° or 30°C). In a third experiment, soil warming caused large increase in yields when cucumber plants were grown in the spring, but had very little effects in the fall.  相似文献   

4.
The apex of a 3-leaf pea plant was chilled in cold chambers maintained at 5–7°C. The lateral shoots 1 through 5 grew, and shoot 5 eventually dominated other lateral shoots. The apex when returned to the ambient temperature did not reimpose apical dominance. The growing lateral shoots competed with the stem apex. The apices of 2- and 3-leaf plants were chilled and P-32 distribution in these plants was studied in the entire plant, at various intervals of time. Phosphorus-32 accumulation followed the growth pattern of the plant. The lateral shoots accumulated P-32 activity and very little activity was accumulated by the apex. The dominating shoots 2 and 5 accumulated the maximum amount of activity in 2- and 3-leaf plants, respectively. Labeled-IAA moved basipetally through the stem when applied to the cut stump simulating the apex. By cold treatment the translocation of IAA was influenced more than its absorption. The plant seems to metabolize this compound in the later periods of application. The plant now becomes “insensitive” to auxin and the lateral shoots grow.  相似文献   

5.
In laboratory and greenhouse experiments with potted plants, shoots and roots are exposed to temperature regimes throughout a 24 h (diel) cycle that can differ strongly from the regime under which these plants have evolved. In the field, roots are often exposed to lower temperatures than shoots. When the root‐zone temperature in Ricinus communis was decreased below a threshold value, leaf growth occurred preferentially at night and was strongly inhibited during the day. Overall, leaf expansion, shoot biomass growth, root elongation and ramification decreased rapidly, carbon fluxes from shoot to root were diminished and carbohydrate contents of both root and shoot increased. Further, transpiration rate was not affected, yet hydrostatic tensions in shoot xylem increased. When root temperature was increased again, xylem tension reduced, leaf growth recovered rapidly, carbon fluxes from shoot to root increased, and carbohydrate pools were depleted. We hypothesize that the decreased uptake of water in cool roots diminishes the growth potential of the entire plant – especially diurnally, when the growing leaf loses water via transpiration. As a consequence, leaf growth and metabolite concentrations can vary enormously, depending on root‐zone temperature and its heterogeneity inside pots.  相似文献   

6.
A wide range of cadmium concentrations (from 4 to 200 μM for seedlings and up to 2 mM for germinating kernels) was used to assess Cd toxic effects on maize (Zea mays L.) plants at the different developmental stages: germinating kernels, seedlings (4–9 days), and juvenile plants (34 days). Cd accumulation in plant organs was followed, and its lethal concentration was elucidated. In maize, cadmium was accumulated predominantly in roots; in shoots it was mainly accumulated in the lower leaves, and the higher was leaf position the lower was Cd content in it. At high concentrations (80 and 200 μM), kernels became the substantial cadmium depot. Germinating kernels manifested the lowest sensitivity to cadmium; seedlings were more sensitive; the inhibition of juvenile plant growth attained 90% and more. In the tested range of concentrations, cadmium suppressed shoot mass accumulation harder than that of roots. In 34-day-old plants, water content in shoots was stronger reduced than in roots. Plant death was also manifested earlier in shoots. It was concluded that maize plant sensitivity to cadmium increases with plant growing and that, under conditions of normal mineral nutrition, cadmium inhibits shoot growth more severe than root growth.  相似文献   

7.
Engels  C. 《Annals of botany》1994,73(2):211-219
Maize (Zea mays L.) and spring wheat (Triticum aestivum L.)were grown in nutrient solution at uniformly high air temperature(20 °C), but different root zone temperatures (RZT 20, 16,12 °C). To manipulate the ratio of shoot activity to rootactivity, the plants were grown with their shoot base includingthe apical meristem either above (i.e. at 20 °C) or withinthe nutrient solution (i.e. at 20, 16 or 12 °C). In wheat, the ratio of shoot:root dry matter partitioning decreasedat low RZT, whereas the opposite was true for maize. In bothspecies, dry matter partitioning to the shoot was one-sidedlyincreased when the shoot base temperature, and thus shoot activity,were increased at low RZT. The concentrations of non-structuralcarbohydrates (NSC) in the shoots and roots were higher at lowin comparison to high RZT in both species, irrespective of theshoot base temperature. The concentrations of nitrogen (N) inthe shoot and root fresh matter also increased at low RZT withthe exception of maize grown at 12 °C RZT and 20 °Cshoot base temperature. The ratio of NSC:N was increased inboth species at low RZT. However this ratio was negatively correlatedwith the ratio of shoot:root dry matter partitioning in wheat,but positively correlated in maize. It is suggested that dry matter partitioning between shoot androots at low RZT is not causally related to the internal nitrogenor carbohydrate status of the plants. Furthermore, balancedactivity between shoot and roots is maintained by adaptationsin specific shoot and root activity, rather than by an alteredratio of biomass allocation between shoot and roots.Copyright1994, 1999 Academic Press Wheat, Triticum aestivum, maize, Zea mays, root temperature, shoot meristem temperature, biomass allocation, shoot:root ratio, carbohydrate status, nitrogen status, functional equilibrium  相似文献   

8.
The 8 days old seedlings of pea (cv. Ilowiecki) and maize (cv. Alma F1) were subjected to differentiated aeration conditions (control — with pore water tension about 15 kPa and flooded treatment) for 12 days at three soil temperatures (7, 15 and 25 °C). The shoots were grown at 25 °C while the soil temperature was differentiated by keeping the cylinders with the soil in thermostated water bath of the appropriate temperature. Lowering the root temperature with respect to the shoot temperature caused under control (oxic) conditions a decrease of the root penetration depth, their mass and porosity as well as a decrease of shoot height, their mass and chlorophyll content; the changes being more pronounced in maize as compared to the pea plants. Flooding the soil diminished the effect of temperature on the investigated parameters; the temperature effect remaining significant only in the case of shoot biomass and root porosity of pea plants. Root porosity of pea plants ranged from 2 to 4 % and that of maize plants — from 4 to 6 % of the root volume. Flooding the soil caused an increase in the root porosity of the pea plants in the entire temperature range and in maize roots at lower temperatures by about 1 % of the root volume. Flooding the soil caused a decrease of root mass and penetration depth as well as a decrease of plant height, biomass and leaf chlorophyll content.  相似文献   

9.
We studied the influence of gradient temperature regimes on various parameters of the formation of shoots and roots of cucumber plants, such as rate of leaf appearance, rate of growth, duration of growth and length of leaves, and the rate of growth shoots organs and roots. The plants were grown under the controlled conditions: at different combinations of day and night temperature, illumination 100 W/m2, and 12 h photoperiod. The comparison of constant and fluctuating diurnal temperature regimes has shown that in the optimal area for all studied indices, the highest values were recorded at the constant daily temperature (25°C for all growth indices of shoots and 20°C for growth of roots), while all gradient regimes either did not affect, or exerted inhibitory effects on the plant. Outside the optimum area, the effects of gradient temperatures differed. The main acting fluctuating temperatures, that exerted stimulating effects, combined low hardening (15°C) and optimal temperatures (25°C), which was earlier described for animals. The 15/35 and 35/15°C combinations were unambiguously inhibitory, since both temperatures are hardening for the cucumber. A lesser stimulating effect of gradient temperatures on the developmental rate in a plant, as compared to poikilothermic animals, could be due to a greater autonomy of plant ontogenesis because of autotrophy and, correspondingly, a greater degree of homeostasis. The mechanisms accounting for the responses to temperature gradients are similar in different groups of ectotherms.  相似文献   

10.
We have examined shoot and root growth and the concentration of carbohydrates in seedlings of a northern (67°N) and a southern (61°N) ecotype of Betula pendula Roth. cultivated at root-zone temperatures of 2, 6, 12 and 17°C. Three hydroponic experiments were conducted in controlled environments. We used three different pretreatments before seedlings were subjected to the experimental temperature treatments. Actively growing seedlings that were acclimated to the hydroponic solution for 3 weeks at a root temperature of 17°C, continued to grow at all the experimental temperatures, with an expected increase in growth from 2 to 17°C. However, if we started with ecodormant cold stored plants or used seedlings grown actively in perlite, no growth was observed at 2°C and only minor growth was found at 6°C. The highest root temperature always produced the best growth. The concentration of nonstructural carbohydrates was higher in seedlings grown at 2°C than at 17°C, and this is probably due to extensive incorporation of carbohydrates into cell walls and other structural elements at 17°C. We found no evidence for differences between the two ecotypes in root growth, in timing of bud burst, but shoot growth terminated in the northern ecotype in the first experiment because the natural photoperiod was below the critical value. Our study highlights the importance of post-transplantation stress (planting check) related to root growth, and that root threshold temperatures may change according to the way plants are pretreated.  相似文献   

11.
An efficient and rapid plant regeneration system was established for zonal and scented geraniums using leaf discs as explants. Several explants, medium and culture conditions were studied to optimize shoot induction. Leaf discs taken from 4–5 weeks old in vitro grown plants, whatever the genotype, were more effective for shoot regeneration than those taken from greenhouse grown plants. Darkness proved to be a stimulating factor for shoot regeneration and the combination between NAA and two cytokinins gave the best results. Direct shoot regeneration (100%) was obtained from leaf discs of P. capitatum on half-strength MS medium supplemented with 0.5 mg l−1 NAA in combination with 1 mg l−1 of BAP and zeatin in darkness (11.4 shoots per explant). In the same medium and culture conditions, all P. graveolens leaf discs also exhibited direct shoot regeneration (7.3 shoots per explant). For P. x hortorum, 100% of leaf discs underwent shoot regeneration on a MS medium supplemented with 0.2 mg l−1 NAA in combination with 0.5 mg l−1 of BAP and zeatin in darkness (8.8 shoots per explant) or under low light conditions with 0.2 mg l−1 NAA and 1 mg l−1 of BAP and zeatin (7.5 shoots per explant). For this species, the best results for shoot elongation were obtained on half-strength MS medium gelled with Phytagel 0.3% (v/v). Whatever the genotype, all shoots rooted readily when transferred to diluted MS medium (MS/2) containing 1 mg l−1 IAA. Acclimatized plants grew normally and flowered in greenhouse conditions. Flow cytometry analysis made on leaves of acclimatized plants revealed that all the scented geranium plants are similar to mother plants while 71% of P. x hortorum plants which showed strong growth were tetraploid.  相似文献   

12.
Genetic analysis of cold-tolerance of photosynthesis in maize   总被引:10,自引:0,他引:10  
The genetic basis of cold-tolerance was investigated by analyzing the quantitative trait loci (QTL) of an F2:3 population derived from a cross between two lines bred for contrasting cold-tolerance using chlorophyll fluorescence as a selection tool. Chlorophyll fluorescence parameters, CO2 exchange rate, leaf greenness, shoot dry matter and shoot nitrogen content were determined in plants grown under controlled conditions at 25/22 °C or 15/13 °C (day/night). The analysis revealed the presence of 18 and 19 QTLs (LOD > 3.5) significantly involved in the variation of nine target traits in plants grown at 25/22 °C and 15/13 °C, respectively. Only four QTLs were clearly identified in both temperatures regimes for the same traits, demonstrating that the genetic control of the performance of the photosynthetic apparatus differed, depending on the temperature regime. A major QTL for the cold-tolerance of photosynthesis was identified on chromosome 6. This QTL alone explained 37.4 of the phenotypic variance in the chronic photoinhibition at low temperature and was significantly involved in the expression of six other traits, including the rate of carbon fixation and shoot dry matter accumulation, indicating that the tolerance to photoinhibition is a key factor in the tolerance of maize to low growth temperature. An additional QTL on chromosomes 2 corresponded to a QTL identified previously in another population, suggesting some common genetic basis of the cold-tolerance of photosynthesis in different maize germplasms.  相似文献   

13.
Maize plants, grown in aerated solution cultures, were exposed, at different growth stages, to ACC (1-aminocyclopropane-1-carboxylic acid) applied through the roots for up to 9 d. Total uptake of ACC increased with seedling size. During ACC treatment, ethylene evolution, by the shoots, proceeded at an almost constant rate per unit fresh weight that was up to 40-fold faster than that of untreated plants. This stimulation extended several days beyond the period of ACC uptake. The effects on growth and development were assessed when plants were 50–52-d old. ACC application shortened certain stem internodes, leaf-sheaths and laminae. The location of these effects depended on the time of application. The greatest shortening was induced by application, at the 4-leaf stage (10 d-old), prior to elongation of the cone of the shoot apex. This is ascribed to effects on meristematic tissue, in addition to those on elongating cells. An unexpected response to ACC treatment, at the 4-leaf stage, was an increase of up to four leaf-bearing stem nodes compared to untreated plants. This resulted in a parallel elevation of the uppermost ear-bearing axillary shoot to higher nodal positions. The length of leaves high in the canopy (nodes 11–16) was promoted by treating seedlings with ACC. The only clear effect of the ACC treatments on emergent axillary shoots per se was a retardation of silk elongation.  相似文献   

14.
The utilization of recently assimilated carbon in graminaceous plants   总被引:1,自引:0,他引:1  
Isotopic carbon and infra-red gas analysis techniques were used to measure the following growth attributes in maize, sorghum, winter wheat and perennial ryegrass: the rate of entry of carbon into each main shoot leaf; the rate of translocation of leaf assimilate to meristems; the fraction of leaf and total shoot assimilate respired in one diurnal period; and the distribution of residual assimilate to new leaf, stem, axillary shoots and root. The two tropical plants possessed higher leaf assimilation rates and larger leaves than the temperate species, but their efficiency of translocation was only marginally superior in the experimental conditions. In all species, c. 25% of the assimilate generated in the 8·4h photoperiod was respired in in the same diurnal period. Maize and sorghum partitioned a greater proportion of their total shoot assimilate to new leaf tissue at the main shoot apex and to root than wheat and ryegrass. On the other hand, wheat and ryegrass exported up to 30% of their assimilate to axillary shoots; in sorghum, little assimilate was translocated to axillary shoots, while in maize this activity was completely absent. Plant habit, as exemplified by the contrast between the annual, single-axis maize plant and the perennial, multi-tillering ryegrass plant, appears to be a reflexion of the pattern of assimilate distribution to areas of potential growth. With the exception of superior leaf assimilation rates in maize and sorghum, the four species showed no marked differences in respect of the production, transport and respiratory utilization of assimilates.  相似文献   

15.
Although high soil temperatures can occur in apple orchards throughout the world, there is little information on their effect. This investigation was conducted to determine the influence of various durations of root exposure to 34 °C on the growth and physiology of the apple plant. Roots of Royal Gala and McIntosh cultivars were exposed to 34 °C for 0, 8, 16, and 24 hours/day for seven weeks. Royal Gala grown at the 24 hours/day treatment exhibited significant decreases in leaf, shoot, and root growth; chlorophyll concentration of the older leaves; transpiration; discrimination against13C in leaves; and an increase in leaf temperature. In McIntosh, root growth and chlorophyll concentration of leaves were not affected. For both cultivars compared to the control treatment, the continuous high temperature treatment resulted in lower levels of P, Mg, and Mn in leaves. Royal Gala at this treatment showed significantly higher values of foliar N and K and lower values of Ca, Fe, and Zn. For McIntosh the levels of Cu and B decreased significantly in this treatment as compared to the control treatment. We conclude that 34 °C in the root-zone does not stress these cultivars unless it persists throughout the day/night cycle.  相似文献   

16.
Tolvanen  Anne  Taulavuori  Kari 《Plant Ecology》1998,135(1):9-12
The ability of Vaccinium myrtillus L. to recover from simulated winter herbivory has been investigated on different plants which had been exposed to three elevated temperatures (5 °C, 10 °C or 20 °C) for four weeks in a greenhouse environment. After herbivory, number and length of new aerial shoots and number of leaves/shoot increased faster in plants kept at 5 °C and 10 °C than in those kept at 20 °C. In the following autumn, however, only the shoot number differed between treatments, being greatest in plants of treatments at 5 °C and 10 °C and lowest at 20 °C and the outdoor control. Apparently the plants kept at 20 °C had already used their resources for growth before herbivory simulation, which reduced their recovery ability thereafter. In addition, the growing season was too short for the control plants to produce as many new shoots as the treatments. The results show that the recovery of V. myrtillus from winter herbivory is rapid if it occurs before growth has started. Hence the earlier onset of spring as a consequence of climate warming may not be fatal for the plant, unless the temperature increase triggers growth to start many months earlier than normal.  相似文献   

17.
Factorial effects of photoperiod (6, 12 and 18 h) and root-zone temperatures (9, 15 and 21°C) on the growth and mineral nutrient concentration and partitioning in maize (Zea mays L.) were investigated. Strong interactions were observed between photoperiod and root-zone temperature on the growth and concentration of numerous mineral elements in the plant tops and roots. For example, a threefold increase in photoperiod (from 6 to 18 h) did not affect the growth of tops or roots if the root-zone temperature was 9°C but increased them each by eightfold if the root-zone temperature was 21°C. On the other hand, raising the root-zone temperature from 9 to 21°C increased the growth of tops and root each by ca. threefold when plants were grown with 6 h of light. At 18 h photoperiod, however, plant growth was increased 20- to 30-fold by the same rise in the root-zone temperature. The concentrations of different mineral elements in the roots and tops were affected quite differently by the interacting effects of photoperiod and root-zone temperature. In general, increasing the photoperiod at a given root-zone temperature decreased the concentrations of elements while increasing the root-zone temperature at a given photoperiod increased the concentrations of most elements in both roots and tops. The exceptions were K and B which reacted opposite to each other: K concentration in both tops and roots was relatively insensitive to photoperiod but very sensitive to root-zone temperature and the reverse was true for boron. The relative insensitivity of plant growth to increased day length as long as the roots are subjected to suboptimal (low) soil temperatures may have survival significance and point to the predominant role of root temperature over that of day length in the early growth of maize. A possible mechanism by which photoperiod and root-zone temperature might interactively alter the nutrient uptake by the roots is discussed.  相似文献   

18.
The uptake and partitioning of nitrogen (N) by maize infectedwith the parasitic angiosperm,Striga hermonthicawas investigatedin sand culture in a glasshouse. The purpose was to determinethe effect ofStrigaon N uptake and partitioning in maize. Maizewas grown at 22, 66 and 133 mg N per plant and sampled fivetimes. There was no significantStrigaxN interaction in any measuredresponse. Leaf dry matter ofStriga-infected maize, averagedover all N treatments, was 92% that of uninfected maize at thefour-leaf stage but by the 18-leaf stage it had decreased to58%. Similarly, stem dry matter of infected maize which was91% that of uninfected maize at the four-leaf stage was only42% at the 18-leaf stage. Root dry matter was similar for infectedand uninfected maize. N concentration in the leaf, stem androot declined asymptotically from the first to the last samplingdate for both infected and uninfected maize. The asymptoticvalue of N concentration inStriga-infected maize was 16% greaterin the leaf, 55% in the stem, and 21% in the root than in uninfectedmaize. The concentration of N inStrigawas higher than in maizeat the 16- and 18-leaf stages. Uptake of N was similar for infectedand uninfected plants at the four–eight leaf stage butat the eight–12 leaf stage, N uptake by infected maizewas 52% that of uninfected maize. However, the proportion oftotal plant nitrogen partitioned to the root was greater (P<0.001)forStriga-infected maize. These results showed that the extentto whichS. hermonthicareduced maize growth and N uptake, butincreased the proportion of N partitioned to the roots, didnot depend on the rate of N fertilizer applied.Copyright 1998Annals of Botany Company Maize; nitrogen; partitioning;Striga hermonthica; uptake.  相似文献   

19.
A comparison was made of effects of ‘low’ and ‘high’soil temperature (LST and HST, about 9 and 21·5 °Crespectively) on shoot growth of Norwegian and Portuguese populationsof Dactylis glomerata. In experiments lasting 8 short days (SD,8 h photoperiods) LST decreased leaf extension more markedlyin the Portuguese population. No differential effect of LSTon leaf growth was recorded in experiments lasting 20 or 21SD or in experiments of 8 d duration in long days (LD, 16 hphotoperiods). Since the meristem and region of cell extensionis close to the soil surface LST could directly influence bothroot and shoot growth. The application of gibberellic acid enhanced leaf extension,particularly in plants grown at HST. 6-Benzylaminopurine tendedto decrease leaf length. Extractable gibberellin levels wererelatively low after 8 SD in shoots of both races grown at LST.Cytokinin levels increased at LST, more so in shoots of Portugueseplants which sustained the greater reduction in leaf extension. The data suggest that LST may reduce the production of endogenousgibberellins important for leaf growth in Dactylis glomerata.Cytokinins are probably necessary for growth processes but theirlevel may reflect, rather than direct, the rate of leaf growth.  相似文献   

20.
Pepper (Capsicum annuum L.) plants were grown aeroponically in a Singapore greenhouse under natural diurnally fluctuating ambient shoot temperatures, but at two different root-zone temperatures (RZTs): a constant 20 +/- 2 degrees C RZT and a diurnally fluctuating ambient (A) (25-40 degrees C) RZT. Plants grown at 20-RZT had more leaves, greater leaf area and dry weight than A-RZT plants. Reciprocal transfer experiments were conducted between RZTs to investigate the effect on plant growth, stomatal conductance (gs) and water relations. Transfer of plants from A-RZT to 20-RZT increased plant dry weight, leaf area, number of leaves, shoot water potential (psi shoot), and gs; while transfer of plants from 20-RZT to A-RZT decreased these parameters. Root hydraulic conductivity was measured in the latter transfer and decreased by 80% after 23 d at A-RZT. Transfer of plants from 20-RZT to A-RZT had no effect on xylem ABA concentration or xylem nitrate concentration, but reduced xylem sap pH by 0.2 units. At both RZTs, gs measured in the youngest fully expanded leaves increased with plant development. In plants with the same number of leaves, A-RZT plants had a higher gs than 20-RZT plants, but only under high atmospheric vapour pressure deficit. The roles of chemical signals and hydraulic factors in controlling gs of aeroponically grown Capsicum plants at different RZTs are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号