首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

The long-wavelength circular dichroism (CD) changes induced by binding of fd gene 5 protein to the alternating DNA sequences poly[d(A-C)] and poly [d(C-T)] were similar to those induced by the protein complexed with the homopolymers poly[d(A)], poly[d(C)], and poly[d(T)]. The fd gene 5 protein showed different binding affinities for the various polymers. The affinity for the alternating sequences was not compositionally weighted with respect to the affinities for the homopolymers, indicating that both base composition and base sequence of the template are important for the binding of fd gene 5 protein.  相似文献   

2.
Circular dichroism measurements were used to study the binding of fd gene 5 protein to fd DNA, to six polydeoxynucleotides (poly[d(A)], poly[d(T)], poly[d(I)], poly[d(C)], poly[d(A-T)], and the random copolymer poly[d(A,T)]), and to three oligodeoxynucleotides (d(pA)20, d(pA)7, and d(pT)7). Titrations of these DNAs with fd gene 5 protein were generally done in a low ionic strength buffer (5 mM Tris-HCl, pH 7.0 or 7.8) to insure tight binding, needed to obtain stoichiometric endpoints. By monitoring the CD of the nucleic acids above 250 nm, where the protein has no significant intrinsic optical activity, we found that there were two modes of binding, with the number of nucleotides covered by a gene 5 protein monomer (n) being close to either 4 or 3. These stoichiometries depended upon which polymer was titrated as well as upon the protein concentration. Single endpoints at nucleotide/protein molar ratios close to 3 were found during titrations of poly[d(T)] and fd DNA (giving n = 3.1 and 2.8 +/- 0.2, respectively), while CD changes with two apparent endpoints at nucleotide/protein molar ratios close to 4 and approximately 3 were found during titrations of poly[d(A)], poly[d(I)], poly[d(A-T)], and poly[d(A,T)] (with the first endpoints giving n = 4.1 4.0, 4.0, and 4.1 +/- 0.3, respectively). Calculations showed that the CD changes we observed during these latter titrations were consistent with a switch between two non-interacting binding modes of n = 4 and n = 3. We found no evidence for an n = 5 binding mode. One implication of our results is that the Brayer and McPherson model for the helical gene 5 protein-DNA complex, which has 5 nucleotides bound per protein monomer (G. Brayer and A. McPherson, J. Biomol. Struct. and Dyn. 2, 495-510, 1984), cannot be correct for the detailed solution structure of the complex. We interpreted the CD changes above 250 nm upon binding of the gene 5 protein to single-stranded DNAs to be the result of a slight unstacking of the bases, along with a significant alteration of the CD contributions of the individual nucleotides in the case of A-and/or T-containing DNAs. Interestingly, CD contributions attributed to nearest-neighbor interactions in free poly[d(A-T)], poly[d(A,T)], poly[d(A)], and poly[d(T)] were partially maintained in the CD spectra of the protein-saturated polymers, so that neighboring nucleotides, when bound to the protein at 20 degrees C, appeared to interact with one another in much the same manner as in the free polymers at 50 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Mou TC  Gray CW  Gray DM 《Biophysical journal》1999,76(3):1537-1551
The Ff gene 5 protein (g5p) is considered to be a nonspecific single-stranded DNA binding protein, because it binds cooperatively to and saturates the Ff bacteriophage single-stranded DNA genome and other single-stranded polynucleotides. However, the binding affinity Komega (the intrinsic binding constant times a cooperativity factor) differs by over an order of magnitude for binding to single-stranded polynucleotides such as poly[d(A)] and poly[d(C)]. A polynucleotide that is more stacked, like poly[d(A)], binds more weakly than one that is less stacked, like poly[d(C)]. To test the hypothesis that DNA base stacking, a nearest-neighbor property, is involved in the binding affinity of the Ff g5p for different DNA sequences, Komega values were determined as a function of NaCl concentration for binding to six synthetic sequences 48 nucleotides in length: dA48, dC48, d(AAC)16, d(ACC)16, d(AACC)12, and d(AAACC)9A3. The binding affinities of the protein for these sequences were indeed found to be related to the nearest-neighbor compositions of the sequences, rather than to simple base compositions. That is, the g5p binding site, which is spanned by four nucleotides, discriminates among these sequences on the basis of the relative numbers of nearest neighbors (AA, CC, and AC plus CA) in the sequence. The results support the hypothesis that the extent of base stacking/unstacking of the free, nonbound ssDNA plays an important role in the binding affinity of the Ff gene 5 protein.  相似文献   

4.
Abstract

Circular dichroism measurements were used to study the binding of fd gene 5 protein to fd DNA, to six polydeoxynucleotides (poly(d(A)], poly[d(T)], poly[d(I)], poly[d(C)], poly[d(A-T)], and the random copolymer poly[d(A,T)]), and to three oligodeoxynucleotides (d(pA)20, d(pA)7, and d(pT)7). Titrations of these DNAs with fd gene 5 protein were generally done in a low ionic strength buffer (5 mM Tris-HCl, pH 7.0 or 7.8) to insure tight binding, needed to obtain stoichiometric endpoints. By monitoring the CD of the nucleic acids above 250 nm, where the protein has no significant intrinsic optical activity, we found that there were two modes of binding, with the number of nucleotides covered by a gene 5 protein monomer (n) being close to either 4 or 3. These stoichiometrics depended upon which polymer was titrated as well as upon the protein concentration. Single endpoints at nucleotide/protein molar ratios close to 3 were found during titrations of poly[d(T)] and fd DNA (giving n = 3.1 and 2.8 ± 0.2, respectively), while CD changes with two apparent endpoints at nucleotide/protein molar ratios close to 4 and approximately 3 were found during titrations of poly[d(A)], poly[d(I)], poly[d(A-T)], and poly[d(A,T)) (with the first endpoints giving n = 4.1, 4.0, 4.0, and 4.1 ± 0.3, respectively). Calculations showed that the CD changes we observed during these latter titrations were consistent with a switch between two non- interacting binding modes of n = 4 and n = 3. We found no evidence for an n = 5 binding mode. One implication of our results is that the Brayer and McPherson model for the helical gene 5 protein-DNA complex, which has 5 nucleotides bound per protein monomer (G. Brayer and A. McPherson, J. Biomol Struct, and Dyn. 2, 495-510, 1984), cannot be correct for the detailed solution structure of the complex.

We interpreted the CD changes above 250 nm upon binding of the gene 5 protein to single-stranded DNAs to be the result of a slight unstacking of the bases, along with a significant alteration of the CD contributions of the individual nucleotides in the case of A- and/or T-containing DNAs, Interestingly, CD contributions attributed to nearest-neighbor interactions in free poly[d(A-T)], poly[d(A,T)], poly[d(A)], and poly[d(T)] were partially maintained in the CD spectra of the protein-saturated polymers, so that neighboring nucleotides, when bound to the protein at 20°C, appeared to interact with one another in much the same manner as in the free polymers at 50°C. Finally, we found that the protein tyrosyl CD band at 228.5 nm decreased 39-42% when the protein bound to poly[d(A)] or poly[d(T)], but this band decreased no more than 9% when the gene 5 protein bound to short A- or T-containing oligomers. Thus, at least one tyrosyl residue has a significantly altered optical activity only when the DNA substrate is long enough either to cause a transition to a different protein conformation or to allow additional protein-protein contacts between adjacent helical turns of the DNA-protein complex.  相似文献   

5.
Fluorescence-determined preferential binding of quinacrine to DNA.   总被引:1,自引:0,他引:1       下载免费PDF全文
Quinacrine complexes with native DNA (Calf thymus, Micrococcus lysodeikticus, Escherichia coli, Bacillus subtilis, and Colstridium perfringens) and synthetic polynucleotides (poly(dA) . poly(dT), poly[d(A-T)] . poly[d(A-T)], poly(dG) . poly(dC) and poly[d(G-C)] . poly[d(G-C)]) has been investigated in solution at 0.1 M NaCl, 0.05 M Tris HCl, 0.001 M EDTA, pH 7.5, at 20 degrees C. Fluorescence excitation spectra of complexes with dye concentration D = 5-30 microM and DNA phosphate concentration P = 400 microM have been examined from 300 to 500 nm, while collecting the emission above 520 nm. The amounts of free and bound quinacrine in the dye-DNA complexes have been determined by means of equilibrium dialysis experiments. Different affinities have been found for the various DNAs and their values have been examined with a model that assumes that the binding constants associated with alternating purine and pyrimidine sequences are larger than those relative to nonalternating ones. Among the alternating nearest neighbor base sequences, the Pyr(3'-5')Pur sequences, i.e., C-G, T-G, C-A and T-A seem to bind quinacrine stronger than the remaining sequences. In particular the three sites, where a G . C base pair is involved, are found to display higher affinities. Good agreement is found with recent calculations on the energetics of intercalation sites in DNA. The analysis of the equilibrium shows also that the strength of the excitation spectrum of bound dye depends strongly upon the ratio of bound quinacrine to DNA. This effect can be attributed to dye-dye energy transfer along DNA.  相似文献   

6.
The effect of Hg2+ and Ag+ on the buoyant density (rho) of four synthetic DNA polymers, poly[d(A-T)]; poly(dA) - poly(dT); oikt[d(G-C)]; and poly(dG) - poly(dC), was investigated. The buoyant density of poly[d(A-T)] in Cs2SO4 increased dramatically after complexing with Hg2+, but little change in the buoyant density of other polymers resulted except at very high molar ratios of Hg2+/DNA-P (rf). Hg2+ raised the thermal transition temperature (Tm) of alternating polymers and lowered the Tm of homopolymers. Measurements in the preparative ultracentrifuge indicated that lowered Tm correlated with Hg2+-induced strand separation of one homopolymer [poly(dA) - poly(dT)], but strand separation was not observed with another homopolymer [poly(dG) - poly(dC)] complexed with Hg2+. When Ag+ was mixed with the polymers, the buoyant density of poly(dG) - poly(dC) increased most markedly. A substantial increase in the buoyant density of poly[d(A-T)] and a small increase in the buoyant density of poly[d(G-C)] were also observed. The Tm changes induced by Ag+ were not related in any obvious way to buoyant density changes. These findings indicate that nucleotide sequence as well as overall base composition is of importance in understanding the buoyant density changes induced by metal ions. Although these data do not allow construction of a detailed molecular model of polymer-metal ion interactions, they may be used to explain much of the behavior of naturally occurring DNA sequences, such as heterochromatic satellite sequences and 5 S and rRNA sequences, in Hg2+/Cs2SO4 and Ag+/Cs2SO4 gradients.  相似文献   

7.
The interaction of tilorone with DNA and five synthetic polydeoxyribonucleotides [(I): poly[d(A-T)]·poly[d(A-T)]; (II): poly[d(A-C)]·poly[d(G-T)]; (III): poly[d(G-C)]·poly[d(G-C)]; (IV): poly(dG)·poly(dC); and (V): poly(dA)·poly(dT)] has been investigated. Binding isotherms for the homopolymers were obtained by microdialysis equilibria using 14C-labeled tilorone and interpreted with different models: exclusion effect, associated or not associated with cooperativity, or variable exclusion. Affinity appears to be related more to local structure than to base composition and decreases in the following order: (I) > (II) > (III) > (IV) > (V). Intercalation in circular DNA was demonstrated by electrophoresis migration and electron microscopy, which yielded an average unwinding angle of 7° per bound dye. The behavior observed in CD and UV spectroscopy shows a sequence similar to the affinities. Tilorone seems to be less intercalated in (IV) and not at all in (V). The experimental binding isotherm of tilorone to DNA was well fitted on the basis of a model where DNA acts as a heterogeneous lattice built with the six different possible couples of adjacent base pairs, each potential site behaving as if it were in the corresponding homopolymer. The results are discussed in terms of specificity of alternating Pyr-Pur sequences and related to theoretical calculations on intercalation energies of DNA.  相似文献   

8.
We used a mutant gene 5 protein (g5p) to assign and interpret overlapping CD bands of protein · nucleic acid complexes. The analysis of overlapping protein and nucleic acid CD bands is a common challenge for CD spectroscopists, since both components of the complex may change upon binding. We have now been able to more confidently resolve the bands of nucleic acids complexed with the fd gene 5 protein by exploiting a mutant gene 5 protein that has an insignificant change in tyrosine optical activity at 229 nm upon binding to nucleic acids. We have studied the interactions of the mutant Y34F g5p (Tyr-34 substituted with phenylalanine) with poly[r(A)], poly[d(A)], and fd single-stranded DNA (ssDNA). Our results showed the following: (1) The 205–300 nm spectrum of poly[r(A)] saturated with the Y34F mutant (P/N = 0.25) was essentially the sum of the spectra of poly[r(A)] at a high temperature plus the spectrum of the free protein, except for a minor negative band at 257 nm. (2) The spectra of poly[d(A)] and fd ssDNA saturated with the mutant protein at a P/N = 0.25, minus the spectra of the free nucleic acids at a high temperature, also essentially equaled the spectrum of the free protein in the 205–245 nm region. (3) While the overall secondary structure of the Y34F protein did not change upon binding to any of these nucleic acids, there could be changes in the environment of individual aromatic residues. (4) Nucleic acids complexed with the g5p are unstacked (as if heated) and (in the cases of the DNAs) perturbed as if part of a dehydrated double-stranded DNA. (5) Difference spectra revealed regions of the spectrum specific for the particular nucleic acid, the protein, and whether g5p was bound to DNA or RNA. © 1997 John Wiley and Sons, Inc. Biopoly 42: 337–348, 1997  相似文献   

9.
Vacuum UV circular dichroism (CD) spectra were measured down to 174 nm for five homopolymers, five duplexes, and four triplexes containing adenine, uracil, and thymine. Near 190 nm, the CD bands of poly[d(A)] and poly[r(A)] were larger than the CD bands of the polypyrimidines, poly[d(T)], poly[d(U)], and poly[r(U)]. Little change was observed in the 190 nm region upon formation of the duplexes (poly[d(A).d(T)], poly[d(A).d(U)], poly[r(A).d(T)], poly[r(A).d(U)], and poly[r(A).r(U)]) or upon formation of two of the triplexes (poly[d(T).d(A).d(T)] and poly[d(U).d(A).d(U)]). This showed that the purine strand had the same or a similar structure in these duplexes and triplexes as when free in solution. Both A.U and A.T base pairing induced positive bands at 177 and 202 nm. For three triplexes containing poly[d(A)], the formation of a triplex from a duplex and a free pyrimidine strand induced a negative band centered between 210 and 215 nm. The induction of a band between 210 and 215 nm indicated that these triplexes had aspects of the A conformation.  相似文献   

10.
Raman spectra of six synthetic polydeoxyribonucleotide duplexes with different base sequences have been examined in aqueous solutions with different salt or nucleotide concentrations. Detailed conformational differences have been indicated between B and Z forms of poly[d(G-C)] X poly[d(G-C)], between B forms of poly[d(G-C)] X poly[d(G-C)] and poly[d(G-m5C)] X poly[d(G-m5C)], between A and B forms of poly(dG) X poly(dC), between B and "CsF" forms of poly[d(A-T)] X poly[d(A-T)], between B forms of poly[d(A-U)] X poly[d(A-U)] and poly[d(A-T)] X poly[d(A-T)], and between low- and high-salt (CsF) forms of poly(dA) X poly(dT). The Raman spectrum of calf-thymus DNA in aqueous solution was also observed and was compared with the Raman spectra of its fibers in A, B, and C forms.  相似文献   

11.
The binding of nuclear proteins from Drosophila melanogaster embryos to simple homopolymeric DNA sequences was studied. Nuclear proteins were electrophoresed, transferred onto nitrocellulose and incubated with labelled synthetic homopolymers or natural fragment containing simple sequences. Several protein bands were found in the 65-72 KDa region, which specifically bind both poly [(dG-dT).(dA-dC)] and a natural fragment containing 40 bp of this sequence. These proteins do not bind to homopolymers poly [(dA).(dT)] and poly [(dG-dA).(dC-dT)], or other foreign DNAs.  相似文献   

12.
The gene 5 protein (g5p) from Ff filamentous virus is a model single-stranded DNA (ssDNA) binding protein that has an oligonucleotide/oligosaccharide binding (OB)-fold structure and binding properties in common with other ssDNA-binding proteins. In the present work, we use circular dichroism (CD) spectroscopy to analyze the effects of amino acid substitutions on the binding of g5p to double-stranded DNA (dsDNA) compared to its binding to ssDNA. CD titrations of poly[d(A). d(T)] with mutants of each of the five tyrosines of the g5p showed that the 229-nm CD band of Tyr34, a tyrosine at the interface of adjacent protein dimers, is reversed in sign upon binding to the dsDNA, poly[d(A). d(T)]. This effect is like that previously found for g5p binding to ssDNAs, suggesting there are similarities in the protein-protein interactions when g5p binds to dsDNA and ssDNA. However, there are differences, and the possible perturbation of a second tyrosine, Tyr41, in the complex with dsDNA. Three mutant proteins (Y26F, Y34F, and Y41H) reduced the melting temperature of poly[d(A). d(T)] by 67 degrees C, but the wild-type g5p only reduced it by 2 degrees C. This enhanced ability of the mutants to denature dsDNA suggests that their binding affinities to dsDNA are reduced more than are their binding affinities to ssDNA. Finally, we present evidence that when poly[d(A). d(T)] is melted in the presence of the wild-type, Y26F, or Y34F proteins, the poly[d(A)] and poly[d(T)] strands are separately sequestered such that renaturation of the duplex is facilitated in 2 mM Na(+).  相似文献   

13.
Long-range allosteric effects on the B to Z equilibrium by daunomycin   总被引:2,自引:0,他引:2  
J B Chaires 《Biochemistry》1985,24(25):7479-7486
Spectroscopic and fluorometric methods were used to study the binding of the anticancer drug daunomycin to poly[d(G-C)] and poly[d(G-m5C)] under a variety of solution conditions. Under high-salt conditions that favor the left-handed Z conformation, binding isotherms for the interaction of the drug with poly[d(G-C)] are sigmoidal, indicative of a cooperative binding process. Both the onset and extent of the cooperative binding are strongly dependent upon the ionic strength. The binding data may be explained by a model in which the drug preferentially binds to B-form DNA and acts as an allosteric effector on the B to Z equilibrium. At 2.4 M NaCl, binding of as little as one drug molecule per 20 base pairs (bp) results in the conversion of poly[d(G-C)] from the Z form entirely to the B form, as inferred from binding data and demonstrated directly by circular dichroism measurements. Similar results are obtained for poly[d(G-m5C)] in 50 mM NaCl and 1.25 mM MgCl2. Under these solution conditions, it is possible to demonstrate the Z to B structural transition in poly[d(G-m5C)] as a function of bound drug by the additional methods of sedimentation velocity and susceptibility to DNase I digestion. The transmission of allosteric effects over 20 bp is well beyond the range of the drug's binding site of 3 bp. Since daunomycin preferentially binds to alternating purine-pyrimidine sequences, which are the only sequences capable of the B to Z transition, the allosteric effects described here may be of importance toward understanding the mechanism by which the drug inhibits DNA replicative events.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Equilibrium binding experiments using fluorescence and absorption techniques have been performed throughout a wide concentration range (1 nM to 30 microM) of the dye Hoechst 33258 and several DNAs. The most stable complexes found with calf thymus DNA, poly[d(A-T)], d(CCGGAATTCCGG), and d(CGCGAATTCGCG) all have dissociation constants in the range (1-3) X 10(-9) M-1. Such complexes on calf thymus DNA occur with a frequency of about 1 binding site per 100 base pairs, and evidence is presented indicating a spectrum of sequence-dependent affinities with dissociation constants extending into the micromolar range. In addition to these sequence-specific binding sites on the DNA, the continuous-variation method of Job reveals distinct stoichiometries of dye-poly[d(A-T)] complexes corresponding to 1, 2, 3, 4, and 6 dyes per 5 A-T base pairs and even up to 1 and 2 (and possibly more) dyes per backbone phosphate. Models are suggested to account for these stoichiometries. With poly[d(G-C)] the stoichiometries are 1-2 dyes per 5 G-C pairs in addition to 1 and 2 dyes per backbone phosphate. Thermodynamic parameters for formation of the tightest binding complex between Hoechst 33258 and poly[d(A-T)] or d-(CCGGAATTCCGG) are determined. Hoechst 33258 binding to calf thymus DNA, chicken erythrocyte DNA, and poly[d(A-T)] exhibits an ionic strength dependence similar to that expected for a singly-charged positive ion. This ionic strength dependence remains unchanged in the presence of 25% ethanol, which decreases the affinity by 2 orders of magnitude. In addition, due to its strong binding, Hoechst 33258 easily displaces several intercalators from DNA.  相似文献   

15.
G H Shimer  A R Wolfe  T Meehan 《Biochemistry》1988,27(20):7960-7966
We have investigated the equilibrium binding of racemic 7r,8t,9t,10c-tetrahydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene to the double-stranded, synthetic polynucleotides poly[d(A-T)], poly[d(G-C)], and poly[d(G-m5C)] at low binding ratios. Difference absorption spectroscopy shows a 10-nm red shift for binding to poly[d(A-T)] and an 11-nm red shift for binding to either poly[d(G-C)] or poly[d(G-m5C)]. The value of delta epsilon for binding is approximately the same for all three hydrocarbon-polynucleotide complexes. Binding of this neutral polycyclic aromatic hydrocarbon derivative to these polynucleotides is dependent upon ionic strength and temperature. Analysis of complex formation employing polyelectrolyte theory shows a greater release of counterions associated with binding to poly[d(A-T)] than with the other two polynucleotides (0.5 and ca. 0.36, respectively). Thus, sequence-selective binding of this hydrocarbon in DNA would be expected to change depending on salt concentration. The temperature dependence of binding was studied at 100 mM Na+ where the equilibrium binding constants for poly[d(A-T)] and poly[d(G-m5C)] are roughly equivalent and 6-fold greater than the binding affinity for poly[d(G-C)]. The binding to poly[d(A-T)] and poly[d(G-C)] is characterized by a delta H omicron = -7.0 kcal/mol, and the large difference in affinity constants arises from differences in negative entropic contributions. Formation of hydrocarbon-poly[d(G-m5C)] complexes is accompanied by a delta H = -9.1 kcal/mol. However, the affinity for poly[d-(G-m5C)] is the same as that for poly[d(A-T)] due to the much more negative entropy associated with binding to poly[d(G-m5C)].  相似文献   

16.
C C Hardin  G T Walker  I Tinoco 《Biochemistry》1988,27(11):4178-4184
The equilibrium binding of the ethidium cation (Etd+) to the right-handed A-form of poly-[r(C-G)], the B-form of poly[d(C-G)], and the left-handed Z-forms of Br-poly[r(C-G)] and Br-poly[d(C-G)] was investigated in 0.22 M NaCl by optical methods. Scatchard analysis indicates that Etd+ intercalates into right-handed forms of poly[r(C-G)] and poly[d(C-G)] in a noncooperative manner. Correlation of Etd+ absorbance binding isotherms and polynucleotide circular dichroism data indicates that drug binding to Br-poly[r(C-G) and Br-poly[d(C-G)] results in cooperative conversion from left-handed Z-forms to right-handed intercalated conformations. Approximate stoichiometries necessary to induce the left- to right-handed transitions are 1 Etd+/9 base pairs (bp) for Z-RNA and 1 Etd+/6 bp for Z-DNA. The apparent limiting binding stoichiometries are approximately 1 Etd+/3 bp for RNA and 1 Etd+/2 bp for DNA. The equilibrium binding constants for binding to the right-handed forms decrease in the order Br-poly[d(C-G)], Br-poly[r(C-G)], poly[d(C-G)], and poly[r(C-G)]. Thermodynamic parameters are obtained by van't Hoff analysis of Etd+ absorbance thermal dissociation data. Enthalpy values for all four polynucleotides are negative and of similar magnitude. Negative entropy values indicate that the binding processes are primarily enthalpically driven.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Jean Sturm 《Biopolymers》1982,21(6):1189-1206
A temperature-jump relaxation study of the interaction of tilorone with different polynucleotides and DNA has been performed. A single relaxation time, attributed to the intercalation step, has been observed in the case of poly[d(A-T)]·poly[d(A-T)], poly[d(A-C)]·poly[d(G-T)], poly[d(G-C)]·poly[d(G-C)], and poly(dG)·poly(dC). No intercalation into poly(dA)·poly(dT) occurs, and the interaction with poly(dG)·poly(dC) is different from what is observed with the other intercalating homopolymers. Refinement of the binding model is suggested from the analysis of the kinetic data. The relaxation curves obtained with DNA are well simulated based on a binding mechanism where DNA is considered a heterogeneous lattice and each type of site behaves as if it were located in the corresponding homopolymer. Poly(dA)·poly(dT) shows a unique behavior: studies of the effects of concentration and temperature indicate that tilorone acts as a probe of a process involving the polynucleotide alone. This process appears to be related to the dynamic structure of the nucleic acid and is detectable only when the bound dye is not intercalated.  相似文献   

18.
We have investigated some properties related to interaction with DNA and recognition of AT-rich sequences of netropsin-oxazolopyridocarbazole (Net-OPC) (Mrani et al., 1990), which is a hybrid groove-binder-intercalator. The hybrid molecule Net-OPC binds to poly[d(A-T)] at two different sites with Kapp values close to 7 x 10(6) and 6 x 10(8) M-1 (100 mM NaCl, pH 7.0). Data obtained from melting experiments are in agreement with these values and indicate that Net-OPC displays a higher binding constant to poly[d(A-T)] than does netropsin. On the basis of viscometric and energy transfer data, the binding of Net-OPC to poly[d(A-T)] is suggested to involve both intercalation and external binding of the OPC chromophore. In contrast, on poly[d(G-C)], Net-OPC binds to a single type of site composed of two base pairs in which the OPC chromophore appears to be mainly intercalated. The binding constant of Net-OPC to poly[d(G-C)] was found to be about 350-fold lower than that of the high-affinity binding site in poly[d(A-T)]. As evidenced by footprinting data, Net-OPC selectively recognizes TTAA and CTT sequences and strongly protects the 10-bp AT-rich DNA region 3'-TTAAGAACTT-5' containing the EcoRI site. The binding of Net-OPC to this sequence results in a strong and selective inhibition of the activity of the restriction endonuclease EcoRI on the plasmid pBR322 as substrate. The extent of inhibition of the rate constant of the first strand break catalyzed by the enzyme is about 100-fold higher than the one observed in the presence of netropsin under similar experimental conditions.  相似文献   

19.
B C Sang  D M Gray 《Biochemistry》1987,26(23):7210-7214
Circular dichroism (CD) data indicated that fd gene 5 protein (G5P) formed complexes with double-stranded poly(dA.dT) and poly[d(A-T).d(A-T)]. CD spectra of both polymers at wavelengths above 255 nm were altered upon protein binding. These spectral changes differed from those caused by strand separation. In addition, the tyrosyl 228-nm CD band of G5P decreased more than 65% upon binding of the protein to these double-stranded polymers. This reduction was significantly greater than that observed for binding to single-stranded poly(dA), poly(dT), and poly[d(A-T)] but was similar to that observed for binding of the protein to double-stranded RNA [Gray, C.W., Page, G.A., & Gray, D.M. (1984) J. Mol. Biol. 175, 553-559]. The decrease in melting temperature caused by the protein was twice as great for poly[d(A-T).d(A-T)] as for poly(dA.dT) in 5 mM tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCl), pH 7. Upon heat denaturation of the poly(dA.dT)-G5P complex, CD spectra showed that single-stranded poly(dA) and poly(dT) formed complexes with the protein. The binding of gene 5 protein lowered the melting temperature of poly(dA.dT) by 10 degrees C in 5 mM Tris-HCl, pH 7, but after reducing the binding to the double-stranded form of the polymer by the addition of 0.1 M Na+, the melting temperature was lowered by approximately 30 degrees C. Since increasing the salt concentration decreases the affinity of G5P for the poly(dA) and poly(dT) single strands and increases the stability of the double-stranded polymer, the ability of the gene 5 protein to destabilize poly(dA.dT) appeared to be significantly affected by its binding to the double-stranded form of the polymer.  相似文献   

20.
CD spectra were obtained for eight synthetic double-stranded DNA polymers down to at least 175 nm in the vacuum uv. Three sets of sequence isomers were studied: (a) poly[d(A-C).d(G-T)] and poly[d(A-G).d(C-T)], (b) poly[d(A-C-C).d(G-G-T)] and poly[d(A-C-G).d(C-G-T)], and (c) poly[d(A).d(T)], poly[d(A-T).d(A-T)], poly[d(A-A-T).d(A-T-T)], and poly[d(A-A-T-T).d(A-A-T-T)]. There were significant differences in the CD spectra at short wavelengths among each set of sequence isomers. The (G.C)-containing sequences had the largest vacuum uv bands, which were positive and in the wavelength range of 180-191 nm. There were no large negative bands at longer wavelengths, consistent with the polymers all being in right-handed conformations. Among the set of sequences containing only A.T base pairs, poly[d(A).d(T)] had the largest vacuum uv CD band, which was at 190 nm. This CD band was not present in the spectra of the other (A.T)-rich polymers and was absent from two first-neighbor estimations of the poly[d(A).d(T)] spectrum obtained from the other three sequences. We concluded that the sequence dependence of the vacuum uv spectra of the (A.T)-rich polymers was due in part to the fact that poly[d(A).d(T)] exists in a noncanonical B conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号