首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exohemagglutinins: new products of vibrios.   总被引:3,自引:1,他引:2       下载免费PDF全文
A number of vibrio strains isolated from marine water produced high units of phytohemagglutinin-like agglutinins. Sugar specificity of the hemagglutinins was different from that of the sugar-binding bacterial toxins and that of the sugar-binding pili on the bacterial cell surfaces.  相似文献   

2.
The crystal structure of a Thermoactinomyces vulgaris cyclo/maltodextrin-binding protein (TvuCMBP) complexed with gamma-cyclodextrin has been determined. Like Escherichia coli maltodextrin-binding protein (EcoMBP) and other bacterial sugar-binding proteins, TvuCMBP consists of two domains, an N- and a C-domain, both of which are composed of a central beta-sheet surrounded by alpha-helices; the domains are joined by a hinge region containing three segments. gamma-Cyclodextrin is located at a cleft formed by the two domains. A common functional conformational change has been reported in this protein family, which involves switching from an open form to a sugar-transporter bindable form, designated a closed form. The TvuCMBP-gamma-cyclodextrin complex structurally resembles the closed form of EcoMBP, indicating that TvuCMBP complexed with gamma-cyclodextrin adopts the closed form. The fluorescence measurements also showed that the affinities of TvuCMBP for cyclodextrins were almost equal to those for maltooligosaccharides. Despite having similar folds, the sugar-binding site of the N-domain part of TvuCMBP and other bacterial sugar-binding proteins are strikingly different. In TvuCMBP, the side-chain of Leu59 protrudes from the N-domain part into the sugar-binding cleft and orients toward the central cavity of gamma-cyclodextrin, thus Leu59 appears to play the key role in binding. The cleft of the sugar-binding site of TvuCMBP is also wider than that of EcoMBP. These findings suggest that the sugar-binding site of the N-domain part and the wide cleft are critical in determining the specificity of TvuCMBP for gamma-cyclodextrin.  相似文献   

3.
Infection by pathogens is generally initiated by the specific recognition of host epithelia surfaces and subsequent adhesion is essential for invasion. In their infection strategy, microorganisms often use sugar-binding proteins, that is lectins and adhesins, to recognize and bind to host glycoconjugates where sialylated and fucosylated oligosaccharides are the major targets. The lectin/glycoconjugate interactions are characterized by their high specificity and most of the time by multivalency to generate higher affinity of binding. Recent crystal structures of viral, bacterial, and parasite receptors in complex with human histo-blood group epitopes or sialylated derivatives reveal new folds and novel sugar-binding modes. They illustrate the tight specificity between tissue glycosylation and lectins.  相似文献   

4.
The structural diversity of bacterial and fungal lectins has been highlighted during the past few years. Some of the new structures reproduce folds previously observed in plants or mammals, but many constitute new folds that have never been observed before, either at all or not with a lectin function, testifying to the increasing diversity. The novelty of the new structures is greater at the level of the sugar-binding sites, with some bacterial lectins displaying unusually high affinity for oligosaccharides and even monosaccharides. Analysis of the thermodynamic contributions to the energy of binding gives clues to the strategies used by bacteria to recognise and attach to their host.  相似文献   

5.
Detection of sugar-binding proteins in membrane-depleted nuclei   总被引:1,自引:0,他引:1  
Nuclear sugar-binding proteins were detected in membrane-depleted nuclei isolated from hamster BHK cells and mouse L 1210 leukemia cells by means of fluorescein-labelled neoglycoproteins. In fluorescence microscopy, the fluorescence was seen throughout the nucleus but was generally brighter over the nucleoli than over the rest of the nucleus. Flow cytofluorometry analysis demonstrated the presence of nuclear sugar-binding proteins for synthetic glycoproteins associated with different sugar residues. Among the nine neoglycoproteins used, four neoglycoproteins (namely alpha-rhamnosylated, alpha-glucosylated, N-acetyl-beta-glucosaminylated and alpha-mannosylated-6P-serum albumin) strongly labelled nuclei. Various controls strongly argue for the specificity of the nuclear labelling. The possibility that some of the sugar-binding proteins might correspond to endogenous nuclear lectins is considered.  相似文献   

6.
Upon incubation with fluoresceinylated neoglycoproteins, isolated macronuclei from the ciliated protozoan Euplotes eurystomus display different labelling patterns depending on the nature of the sugar bound to the neoglycoproteins. Specific sugar-binding components (i.e., lectin-like molecules) are associated with presumed nucleoli and with the macronuclear replication bands. This is the first demonstration that DNA synthesis and sugar-binding components are co-localized in an eukaryotic cell.  相似文献   

7.
The intranucleolar distribution of sugar-binding sites (i.e., lectin-like molecules) was analyzed in segregated nucleoli of actinomycin D-treated HeLa cells. The detection of sugar-binding sites was performed by incubation either of permeabilized nuclei in the presence of fluorescein-labeled neoglycoproteins or of ultrathin sections cut through in situ-fixed nuclei in the presence of gold-labeled neoglycoproteins. In the former case, the fluorescent nucleolar components were identified by comparison with the nucleolar components of similarly treated cells observed in electron microscopy. For the first time, this study reveals the presence of sugar-binding sites in both the fibrillar and the granular components of the nucleolus. In view of the data already reported on the biochemical composition of the nucleolus, some of our results led us to conclude that the nucleolar sugar-binding sites are lectin-like proteins. These proteins could be associated with preribosomes since the nucleolus is the site of both synthesis and stockage of ribosomal precursors. Some results from this study, however, show that the possibility of a relationship between some lectins and a structural component cannot be excluded.  相似文献   

8.
An Agrobacterium tumefaciens suspension induces a strong agglutination of aldehyde-fixed pig erythrocytes at pH 5.0. The agglutination is inhibited by some polysaccharides, such as fucoidin, and also when the pH is raised to 7.0. Lectins (sugar-binding proteins) associated with the bacterial cell wall of A. tumefaciens strain 84.5 were directly evidenced by spectrofluorimetry using fluoresceinylated neoglycoproteins. The specific binding of the fluorescein-labelled neoglycoprotein bearing alpha-L-fucoside residues was also optimal at pH 5.0. A lectin was purified by affinity chromatography on agarose substituted with alpha-L-fucopyranoside. Furthermore, the haemagglutination activity of this lectin was inhibited by polysaccharides isolated from poplar leaves.  相似文献   

9.
Archaeal preflagellin peptidases and bacterial type IV prepilin peptidases belong to a family of aspartic acid proteases that cleave the leader peptides of precursor proteins with type IV prepilin signal sequences. The substrate repertoire of PibD from the crenarchaeon Sulfolobus solfataricus is unusually diverse. In addition to flagellin, PibD cleaves three sugar-binding proteins unique to this species and a number of proteins with unknown function. Here we demonstrate that PibD contains two aspartic acid residues that are essential for cleavage activity. An additional pair of aspartic acids in a large cytoplasmic loop is also important for function and is possibly involved in leader peptide recognition. Combining the results of transmembrane segment predictions and cysteine-labeling experiments, we suggest a membrane topology model for PibD with the active-site aspartic acid residues exposed to the cytosol.  相似文献   

10.
Human placentas of different stages of development were histochemically analyzed for expression of endogenous sugar-binding proteins using a panel of biotin-conjugated, chemically glycosylated probes with specificity for beta-galactosides, alpha-galactosides, alpha-mannosides, alpha-fucosides and alpha-glucosides. Temporal differences in the expression of sugar-binding proteins and different patterns of staining of the component cell types of human placenta were discerned, especially pronounced for alpha-fucoside-specific binding in the trophoblast and alpha-glucoside-specific binding in fetal and maternal macrophages. Fractionation of salt and detergent extracts from human placentas by affinity chromatography on columns with immobilized carbohydrates or glycoproteins substantiated the histochemically detectable temporal changes on the basis of alterations in the pattern of individual sugar-binding proteins, as determined by gel electrophoresis under denaturing conditions. Analysis of the trophoblastic layer primarily disclosed the presence of several additional sugar-binding proteins (lectins) in comparison to full-term placenta. The presence and developmental changes of such endogenous sugar receptors may lead to specific carbohydrate-protein interactions of physiological significance with similarly developmentally regulated carbohydrated portions of glyco-conjugates, already detected in human placenta by plant lectins.  相似文献   

11.
We expand the functionally uncharacterized DOMON domain superfamily to identify several novel families, including the first prokaryotic representatives. Using several computational tools we show that it is involved in ligand binding--either as heme- or sugar-binding domains. We present evidence that the DOMON domain along with the DM13 domain comprises a novel electron-transfer system potentially involved in oxidative modification of animal cell-surface proteins. Other novel versions might function as sugar sensors of histidine kinases of bacterial two component systems. Supplementary information: Supplementary data are available at Bioinformatics online and also at ftp://ftp.ncbi.nih.gov/pub/aravind/domon/.  相似文献   

12.
13.
The sugar-binding site of the L-arabinose-binding protein, an essential component of the high affinity L-arabinose uptake system in Escherchia coli, is located deep in a cleft formed by the asymmetric contributions from both of the two similar domains. The site was unambiguously identified with the electron-rich substrate analog 6-bromo-6-deoxy-D-galactose in a difference Fourier analysis. The observation that the original native structure might have been solved with bound L-arabinose necessitated the synthesis of a heavy atom analog, its structure consistent with the known sugar-binding specificity of the protein. Difference Fourier maps (3.5 A) of crystals soaked in 46 mM analog showed a peak 3.5 times background, which is attributed to the -CH2Br moiety of the analog. Superposition of a difference map onto a 2.8-A native electron density map indicated that the difference peak is 6 to 7 A from the reactive single cysteine (Cys-64) and partially coincident with an "extraneous" density found in the native map. This "extraneous" peak was previously attributed to a bound L-arabinose molecule, and its presence accounts for the early failures of difference Fourier analyses of crystals soaked in or co-crystallized with L-arabinose to locate the sugar-binding site.  相似文献   

14.
Glucose is the main sugar transport form in animals, whereas plants use sucrose to supply non-photosynthetic organs with carbon skeletons and energy. Many aspects of sucrose transport, metabolism, and signaling are not well understood, including the route of sucrose efflux from leaf mesophyll cells and transport across vacuolar membranes. Tools that can detect sucrose with high spatial and temporal resolution in intact organs may help elucidate the players involved. Here, FRET sensors were generated by fusing putative sucrose-binding proteins to green fluorescent protein variants. Plant-associated bacteria such as Rhizobium and Agrobacterium can use sucrose as a nutrient source; sugar-binding proteins were, thus, used as scaffolds for developing sucrose nanosensors. Among a set of putative sucrose-binding protein genes cloned in between eCFP and eYFP and tested for sugar-dependent FRET changes, an Agrobacterium sugar-binding protein bound sucrose with 4 mum affinity. This FLIPsuc-4mu protein also recognized other sugars including maltose, trehalose, and turanose and, with lower efficiency, glucose and palatinose. Homology modeling enabled the prediction of binding pocket mutations to modulate the relative affinity of FLIPsuc-4mu for sucrose, maltose, and glucose. Mutant nanosensors showed up to 50- and 11-fold increases in specificity for sucrose over maltose and glucose, respectively, and the sucrose binding affinity was simultaneously decreased to allow detection in the physiological range. In addition, the signal-to-noise ratio of the sucrose nanosensor was improved by linker engineering. This novel reagent complements FLIPs for glucose, maltose, ribose, glutamate, and phosphate and will be used for analysis of sucrose-derived carbon flux in bacterial, fungal, plant, and animal cells.  相似文献   

15.
ZG16p is a secretory protein that mediates condensation-sorting of pancreatic enzymes to the zymogen granule membrane in pancreatic acinar cells. ZG16p interacts with glycosaminoglycans and the binding is considered to be important for condensation-sorting of pancreatic enzymes. ZG16b/PAUF, a paralog of ZG16p, has recently been found to play a role in gene regulation and cancer metastasis. However, the detailed functions of ZG16p and ZG16b remain to be clarified. Here, in order to obtain insights into structure–function relationships, we conducted crystallographic studies of human ZG16p lectin as well as its paralog, ZG16b, and determined their crystal structures at 1.65 and 2.75 Å resolution, respectively. ZG16p has a Jacalin-related β-prism fold, the first to be reported among mammalian lectins. The putative sugar-binding site of ZG16p is occupied by a glycerol molecule, mimicking the mannose bound to Jacalin-related mannose-binding-type plant lectins such as Banlec. ZG16b also has a β-prism fold, but some amino acid residues of the putative sugar-binding site differ from those of the mannose-type binding site suggesting altered preference. A positively charged patch, which may bind sulfated groups of the glycosaminoglycans, is located around the putative sugar-binding site of ZG16p and ZG16b. Taken together, we suggest that the sugar-binding site and the adjacent basic patch of ZG16p and ZG16b cooperatively form a functional glycosaminoglycan-binding site.  相似文献   

16.
The lactose repressor protein from the mutant Escherichia coli BG185 contains valine at position 81 instead of alanine. Spectroscopic, chemical and direct binding measurements demonstrate that the BG185 protein exhibits properties similar to the wild-type repressor-inducer complex. Kinetic measurements of inducer binding to BG185 repressor yielded rate constants that were more than two orders of magnitude smaller than those observed for wild-type repressor; these results suggest that the structural transitions required for inducer binding are markedly impaired by the mutation. The fluorescence spectral shift in response to inducer binding was identical for mutant and wild-type proteins. This identity indicates direct effects of inducer binding on the tryptophan(s) near the sugar binding site rather than environmental changes consequent to conformational shifts. Analogy to the bacterial sugar binding proteins suggest that the Ala to Val change at position 81 in BG185 repressor yields a molecule that is fixed in a closed, sugar-binding conformation.  相似文献   

17.
The type XIII xylan-binding domain (XBD) of a family F/10 xylanase (FXYN) from Streptomyces olivaceoviridis E-86 was found to be structurally similar to the ricin B chain which recognizes the non-reducing end of galactose and specifically binds to galactose containing sugars. The crystal structure of XBD [Fujimoto, Z. et al. (2000) J. Mol. Biol. 300, 575-585] indicated that the whole structure of XBD is very similar to the ricin B chain and the amino acids which form the galactose-binding sites are highly conserved between the XBD and the ricin B chain. However, our investigation of the binding abilities of wt FXYN and its truncated mutants towards xylan demonstrated that the XBD bound xylose-based polysaccharides. Moreover, it was found that the sugar-binding unit of the XBD was a trimer, which was demonstrated in a releasing assay using sugar ranging in size from xylose to xyloheptaose. These results indicated that the binding specificity of the XBD was different from those of the same family lectins such as the ricin B chain. Somewhat surprisingly, it was found that lactose could release the XBD from insoluble xylan to a level half of that observed for xylobiose, indicating that the XBD also possessed the same galactose recognition site as the ricin B chain. It appears that the sugar-binding pocket of the XBD has evolved from the ancient ricin super family lectins to bind additional sugar targets, resulting in the differences observed in the sugar-binding specificities between the lectin group (containing the ricin B chain) and the enzyme group.  相似文献   

18.
Metabolic labelling by [14C]palmitic acid showed that growth of Streptococcus mutans LT11 in raffinose, an inducer of the msm operon, resulted in increased production of a 45-kDa lipoprotein corresponding to MsmE, which is believed to be a sugar-binding protein. MsmE was also labelled when an msmE clone was expressed in Escherichia coli. The presence of a lipid anchor on MsmE provides a likely explanation of how the sugar-binding protein component of the msm binding protein-dependent multiple sugar transport system is retained at the cell surface.  相似文献   

19.
Pea lectin (PSL) is a secretory sugar-binding protein, readily soluble in aqueous solutions of low osmolarity. However, PSL also appears to be associated with the plasma membrane at the tip of young pea root hairs. By using the Wilhelmy plate method, we found that PSL can insert into a lipid monolayer. This property appeared to be independent of the sugar-binding ability of the protein. This result suggests that PSL may be directly involved in membrane-mediated interactions with saccharide ligands, for example during root hair infection by symbiotic rhizobia.  相似文献   

20.
The sugar-binding specificities of C-type lectins isolated from marine invertebrates were investigated by frontal affinity chromatography (FAC) using 100 oligosaccharides. The lectins included BRA-2 and BRA-3, multiple lectins from the hemolymph of the acorn barnacle, Megabalanus rosa, and BRL from the acorn barnacle, Balanus rostatus. The diverse sugar-binding specificities of the C-type lectins were determined by FAC analysis. BRA-2 recognized alpha2-6 sialylation but not alpha2-3 sialylation on glycans. On the other hand, BRA-3 showed high affinity for oligosaccharides with alpha-linked non-reducing terminal galactose, but not for sialylated forms, and BRL showed enhanced recognition activity towards Lewis(x) and Lewis(a) epitopes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号