首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary All known types of Balbiani ring (BR) gene consist of multiple, tandemly arranged, ca. 180 to 300-bp repeat units that can be divided into a constant region and a subrepeat region. The latter region includes short tandem subrepeats (SRs). Comparison of all available BR sequences using computer methods has enabled us (a) to define more precisely the constant and subrepeat regions, (b) to infer the evolutionary relationships among the various types of BR repeats, (c) to derive a consensus approximation of an ancestral sequence from a small segment of which the highly diverse present-day SRs may have originated, and (d) to detect an underlying substructure in the constant region, evident in the consensus but not in the present-day sequences and possibly corresponding to an original 39-bp DNA segment from which the extant, giant BR sequences may have evolved. We discuss the processes of reduplication, diversification, and homogenization within the hierarchically repetitive BR sequences as examples of how a simple DNA element may evolve into a diverse family of large, protein-coding genes.  相似文献   

2.
Summary The large, repetitive Balbiani ring (BR) genes, BR 1, 2, and 6, inChironomus tentans originated from a short ancestral sequence and have all evolved according to analogous amplification schemes. We analyzed the structures of the BR-encoded secretory proteins and defined the parts that have been conserved during the evolutionary process. The BR products show striking similarities, with the BR 1 and BR 2 products being more similar to each other than to the BR 6 product. In the constant (C) region of the repeat units, 7 of the 30 amino acid residues are strictly conserved; 4 of these are the cysteine residues. The subrepeat (SR) regions of all the BR products are dominated by repeated tripeptide elements rich in proline and charged amino acid residues. Most of the amino acid replacements in both regions are conservative. Secondary structure predictions suggested that the C regions of the BR 1 and BR2 products have several elements of secondary structure: an -helix, a -strand, and one or two reverse turns, as in globular structures. The prediction for the C region of the BR 6 product is similar but lacks a -strand. The predictions for the intervening SR regions appear less conclusive, but are clearly different from those for the C regions, and suggest regular structures not differing in their conformational elements. The SR regions evolved from an ancestor sequence similar to the C region; thus, the BR products seem to represent an example of evolution from one structure to two differently folded products. It is proposed that the alignment and polymerization of the long BR proteins could be promoted by the repetitive structure of the molecules, due to the possibility of forming disulfide bridges between half-cystine residues and electrostatic interactions between the charged residues of the SR regions. The divergence among the BR products is discussed in relation to possible functional differences among the members of the BR gene family.  相似文献   

3.
Summary The four Balbiani ring (BR) genes, BR1, BR2.1, BR2.2, and BR6 in the midge Chironomus tentans constitute a gene family encoding secretory proteins with molecular weights of approximately 106 daltons. The major part of each gene is known to consist of tandemly organized composite repeat units resulting in a hierarchic repeat arrangement.Here, we present the sequence organization of the 5 part of the BR2.2 and BR6 genes and describe the entire transcribed part of the two genes. As the BR1 and BR2.1 genes were also fully characterized recently, this allows the comparison of all genes in the BR gene family.All four genes share the same exon-intron structure and have evolved by gene duplications starting from a common ancestor, having the same overall organization as the BR genes of today.The genes encode proteins that have an approximately 10,000-amino acid residue extended central domain, flanked by a highly charged, 200-residue amino-terminal domain and a globular 110-residue carboxy-terminal domain. Exons 1–3 and the beginning of exon 4 encode the amino-terminal domain, which throughout contains many regions built from short repeats. These repeats are often degenerate as to repeat unit and sequence and are present in different numbers between the genes. In several instances these repeat structures, however, are conserved at the protein level where they form positively or negatively charged regions.Each BR gene has a 26–38-kb-long exon 4, which consists of an array of 125–150 repeat units and encodes the central domain. The number of repeat units appears to be largely preserved by selection and all repeat units in the array are very efficiently homogenized. Occasionally variant repeats have been introduced, presumably from another BR gene by gene conversion, and spread within the array.Introns 1–3 at the 5 end of the genes have diverged extensively in sequence and length between the genes. In contrast, intron 4 at the 3 end is virtually identical between three of the four genes, suggesting that gene conversion homogenizes the 3 ends of the genes, but not the 5 ends. Offprint requests to: L. Wieslander  相似文献   

4.
5.
Steven T. Case 《Chromosoma》1986,94(6):483-491
Balbiani rings (BRs) on polytenized chromosomes in Chironomid salivary glands contain members of a homologous multigene family that encodes a family (the sp-I family) of high M r secretory polypeptides. Each of these BR genes is comprised largely of tandemly duplicated core repeat sequences consisting of related constant (C) regions and intergenically divergent subrepeat (SR) regions. A set of oligodeoxyribonucleotide probes were synthesized that correspond to the transcribed strand of the SR region of BR1, BR2, BR2/, and BR6 core repeats. Under a defined set of conditions, it was possible to show that each oligonucleotide probe hybridized exclusively to its cognate repeat type without hybridization to other repeat types in cloned DNA templates. These BR probes were then used in dotblot hybridization experiments to simultaneously follow alterations in the steady-state level of BR mRNAs in response to prolonged exposure of larvae to galactose. The results indicated that the relative amounts of these four BR mRNAs may change in a noncoordinate manner. These BR probes were also used in experiments to compare simultaneously the salivary gland content of sp-I components and specific BR mRNAs in larvae that exhibited naturally occurring or induced alterations in BR gene expression. A correlation was found which suggested that sp-Ia is encoded in a gene comprised of BR1 repeats, sp-Ib is encoded by BR2 repeats, sp-Ic is encoded by BR6 repeats and sp-Id is encoded by BR2 repeats.  相似文献   

6.
Summary DNA sequencing has revealed an internal, tandemly repetitive structure in the family of giant polypeptides encoded by three types of Balbiani ring (BR) genes, in three different species ofChironomus. Each major BR repeat can be subdivided into two halves: a region consisting of short subrepeats and a more constant region that lacks obvious subrepeats. Comparative predictions of secondary structure indicate that an -helical segment is consistently present in the amino-terminal half of the constant region in all known BR proteins. Comparative predictions, coupled with consideration of the known phosphorylation of serine and threonine residues in BR proteins, suggest that the -helical structure may also extend into the carboxy-terminal half of the constant region, possibly interrupted by -turn(s). However, it is also possible that the structure is variable, and that a -strand is present in that half in some cases. All of the constant regions conserve one methionine and one phenylalanine residue, as well as all four cysteines; these residues presumably play roles in the packing or cross-linking of aligned constant regions. The structure of the subrepeat region is not clear, but the prevalence of a tripeptide pattern (basic-proline-acidic) suggests some type of structural regularity, possibly an extended helix. The possible significance of these conserved molecular features is discussed in the context of how they may serve the elasticity, insolubility, and hydrophilicity of the fibrils and threads formed by the BR polypeptides.  相似文献   

7.
8.
L Botella  C Grond  H Saiga    J E Edstrm 《The EMBO journal》1988,7(12):3881-3888
All known Balbiani ring (BR) genes in Chironomus tentans, coding for giant secretory proteins, the sp-I family, end with a short (110 codons) 3'-end exon which is highly conserved in evolution and is structurally unrelated to the sequences characterizing the core of these proteins. We find that the expressed product, the C-terminal domain, shows sequence-specific DNA binding and that it is likely to be absent in one of the sp-I components, sp-Ib, believed to be coded by the BR2.2 gene. Immunohistochemistry shows that material with reactivity towards antibody against the C-terminal domain is present in the nuclei, and specifically enriched in Balbiani ring 1 and 2. Western blotting of extracts from isolated nuclei demonstrates a component with the same antibody reactivity and of an apparent size somewhat larger than that of the domain. The possibility is discussed that the C-terminal part, which is part of the secretion when derived from some of the BR genes, might be cleaved off and function as a feedback signal to control BR gene activity when derived from the BR2.2 gene.  相似文献   

9.
10.
J Sümegi  L Wieslander  B Daneholt 《Cell》1982,30(2):579-587
One cloned cDNA sequence, pCt63, was used to characterize the repeated structure of the Balbiani ring 2 gene in Chironomus tentans. Although small in size (0.63 kb), the cDNA insert corresponds to a large portion (25 kb) of the BR2 gene (37 kb). Southern blotting experiments suggested that a large part of the BR2 gene consists of tandemly repeated units, each about 215 bp. Sequence analysis of the cDNA confirmed the repeated nature of the BR2 gene and revealed the internal structure of the repeat unit. Each such unit is composed of two regions of approximately equal length; one is highly ordered and built from about six 18 bp repeats, each consisting of a slightly diverged 9 bp duplication. The recorded hierarchic arrangement of the repetitive sequences in the BR2 gene and a specific pattern of base substitutions along the gene have enabled us to propose how a major part of the giant BR2 gene has evolved from a short primordial sequence, 110-120 bp in length.  相似文献   

11.
The Balbiani ring (BR) genes in the midge Chironomus, a genus belonging to Diptera, code for large secretory proteins, used to construct the larval tube. The 15-23-kb long core block in each gene consists of an array of tandemly arranged approximately 200-bp long repeat units, where a single repeat unit is composed of a constant and a subrepeat region. In order to investigate the evolutionary fate of highly repetitive coding DNA, the BR1γ core block in Chironomus pallidivittatus was characterized and compared to the orthologous core block in the sibling species Chironomus tentans. We find that the 75-100 repeat units in the BR1γ core block have evolved in an unusual fashion. In all repeat units the constant regions display an expected high degree of homology between the two species, 94% at the nucleotide level. In contrast, the subrepeat regions in all repeat units have diverged concertedly, both as to length, number and sequence of the subrepeats. The observed changes in all repeat units of the core block probably have occurred after speciation of C. pallidivittatus and C. tentans. These findings demonstrate that a tandemly reiterated coding sequence can rapidly and concertedly convert into a related sequence, much in the same way as has been described for satellite DNA.  相似文献   

12.
13.
14.

Background

The polytene nuclei of the dipteran Chironomus tentans (Ch. tentans) with their Balbiani ring (BR) genes constitute an exceptional model system for studies of the expression of endogenous eukaryotic genes. Here, we report the first draft genome of Ch. tentans and characterize its gene expression machineries and genomic architecture of the BR genes.

Results

The genome of Ch. tentans is approximately 200 Mb in size, and has a low GC content (31%) and a low repeat fraction (15%) compared to other Dipteran species. Phylogenetic inference revealed that Ch. tentans is a sister clade to mosquitoes, with a split 150–250 million years ago. To characterize the Ch. tentans gene expression machineries, we identified potential orthologus sequences to more than 600 Drosophila melanogaster (D. melanogaster) proteins involved in the expression of protein-coding genes. We report novel data on the organization of the BR gene loci, including a novel putative BR gene, and we present a model for the organization of chromatin bundles in the BR2 puff based on genic and intergenic in situ hybridizations.

Conclusions

We show that the molecular machineries operating in gene expression are largely conserved between Ch. tentans and D. melanogaster, and we provide enhanced insight into the organization and expression of the BR genes. Our data strengthen the generality of the BR genes as a unique model system and provide essential background for in-depth studies of the biogenesis of messenger ribonucleoprotein complexes.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-819) contains supplementary material, which is available to authorized users.  相似文献   

15.
Demonstration of Balbiani ring RNA sequences in polysomes   总被引:3,自引:1,他引:2       下载免费PDF全文
A polysome extract from salivary glands of C. tentans was sedimented in a 15-60% sucrose gradient. Fractions from the heavy polysome region (1,000-2,000S) and fractions from the light polysome region (200- 1,000S) were pooled separately, and the long-term labeled RNA was released by Sarkosyl/pronase and analysed by in situ hybridization. The results showed that BR 1 and BR 2 sequences were present in the heavy and the light polysome regions of the sucrose gradient. From control experiments with EDTA-treated extracts, it was concluded that most of the recorded BR 1 and BR 2 sequences were in fact located in polysomes. The finding that BR products enter polysomes suggests that they act as messenger RNA molecules. This study therefore strongly supports the concept that chromosome puffs represent active genes.  相似文献   

16.
17.
18.
S T Case  R L Summers  A G Jones 《Cell》1983,33(2):555-562
pCtBR2-2 is a genomic clone from Chironomus tentans that hybridized in situ to Balbiani ring 2 (BR2) on salivary gland polytene chromosome IV. DNA sequencing indicated that the insert contained nearly four copies of a 180 bp tandemly repeated nucleotide sequence that was distinctly different from a previously reported BR2 repeat. Sequence titration experiments detected about 70 copies of the 180 bp repeat per haploid genome, which would correspond to approximately 34% of a 37 kb BR2 gene. Each 180 bp repeat included a conserved 90 bp segment whose sequence was internally nonrepeating (INR), and a variable 90 bp repeated (R) segment comprised of three 30 bp repeats that may have evolved from a 9 bp consensus sequence. Results presented here raise the distinct possibility that other BR genes may contain significantly different repeated sequences that have not been identified.  相似文献   

19.
20.
Chironomus salivary glands contain a family of high Mr (approximately 1,000 X 10(3)) secretion polypeptides thought to consist of three components: sp-Ia, sp-Ib, and sp-Ic. The use of a new extraction protocol revealed a novel high Mr component, sp-Id. Results of a survey of individual salivary glands indicated that sp-Id was widespread in more than a dozen strains of C. tentans and C. pallidivittatus. Sp-Id was phosphorylated at Ser residues, and a comparison of cyanogen bromide and tryptic peptide maps of 32P-labeled polypeptides suggested that sp-Ia, sp-Ib, and sp-Id are comprised of similar but nonidentical tandemly repeated amino acid sequences. We concluded that sp-Id is encoded by an mRNA whose size and nucleotide sequence organization are similar to Balbiani ring (BR) mRNAs that code for the other sp-I components. Furthermore, parallel repression of sp-Ib and sp-Id synthesis by galactose led us to hypothesize that both of their genes exist within Balbiani ring 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号