首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potential of hyaluronic acid (HA) in inducing systemic resistance to cucumber, tomato and pepper was tested in planta. In the study, HA was found to be a potent agent for suppressing disease caused by Cucumber Mosaic Virus (CMV) (in pepper), Pseudomonas syringae pv. tomato (tomato speck disease), Xanthomonas axonopodis pv. vesicatoria (tomato spot disease), Pseudomonas syringae pv. lachrymans (cucumber angular leaf spot), and Colletotrichum orbiculare (cucumber anthracnose). Disease control was obtained with spraying, injection and drenching of plants with HA. HA did not exhibit direct antimicrobial action against the pathogens tested. Studies carried out in transgenic tobacco indicated that defense genes PR 1a and PDF 1.2 were activated upon treatment with HA, demonstrating salicylic acid (SA) and jasmonic acid (JA) pathways getting activated during defense. Further work is warranted to evaluate the use of HA-mediated disease suppression in crop plants.  相似文献   

2.
In order to understand the mode of action of taxonomically related Pseudomonas syringae pathovar strains that infect pea, tomato, and soya bean, we examined their extracellular polysaccharides (EPS). Maximum production of polysaccharide in shake culture of these pathogens was observed between 24 and 60 h. P. syringae pv. pisi 519, the bacterial blight pathogen of pea, produced a higher amount of polysaccharide (34.87 g/mL) at 60 h compared with 32.67 g/mL produced by P. syringae pv. glycinea NCPPB 1783, the bacterial blight pathogen of soya bean, and 30.03 g/mL produced by P. syringae pv. tomato NCPPB 269, the bacterial speck pathogen of tomato. EPS produced by P. syringae pv. pisi 519, P. syringae pv. tomato NCPPB 269, and P. syringae pv. glycinea NCPPB 1783 was characterized with infrared (FTIR), nuclear magnetic resonance (NMR), high performance thin layer chromatography, (HPTLC), and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. HPTLC profiles revealed the presence of glucose and glucuronic acid in all bacteria and mannose only in P. syringae pv. tomato. Molecular mass of EPS of P. syringae pv. pisi (m/z 933.8), P. syringae pv. tomato (m/z 950.4), and P. syringae pv. glycinea (m/z 933.5) was confirmed by MALDI-TOF mass spectrometry.  相似文献   

3.
BASHAN  Y.; OKON  Y.; HENIS  Y. 《Annals of botany》1985,55(6):803-809
The role of morphological characteristics of tomato leaves inthe infection process of the pathogen Pseudomonas syringae pv.tomato was studied in 15 cultivars of varying susceptibility.Natural openings such as stomata, broken trichomes and cuticularcracks were counted. It was found that susceptibility increasedin proportion to the number of these potential penetration sites.However, their role is probably limited because even in thehighly resistant cultivars there are enough natural openingsto enable successful bacterial penetration. Bacterial speck of tomato, Lycopersicon esculentum, phytopathogenic bacteria, plant morphology, Pseudomonas syringae pv. tomato, tomato  相似文献   

4.
The protein encoded by the activated disease resistance 1-like1 (ADR1-L1) gene (locus name, At4g33300) belongs to the activated disease resistance 1 (ADR1) family of coiled-coil nucleotide-binding site leucine-rich repeat-type disease resistance proteins. This family contains four proteins and they have specific features in their amino acid sequences. It has been reported that ADR1 protein belongs to the ADR1 family, which is related to not only defense response but also drought tolerance. We found that transgenic plants overexpressing the ADR1-L1 gene showed a dwarf phenotype and morphological change in leaves. The expression levels of defense-related genes and the resistance to Pseudomonas syringae pv. tomato DC3000 were increased in transgenic plants. However, enhancement of drought tolerance and activation of abiotic response genes were not observed. When the growth temperature was changed from 22°C to 28°C, the expression of defense-related genes and the enhancement of resistance to a bacterial pathogen were suppressed and the dwarf phenotype and morphological change of leaves recovered.  相似文献   

5.
In a previous study, we demonstrated the ability of the rhizobacterium Bacillus cereus AR156 (AR156) to protect tomato against bacterial wilt caused by Ralstonia solanacearum and root-knot disease caused by Meloidogyne incognita. Here, we investigate the ability of AR156 to promote plant growth and its role in the systemic protection of tomatoes cultivated in greenhouses against bacterial speck disease caused by Pseudomonas syringae pv. tomato DC3000 (DC3000). In our experiments, the AR156 population reached 105–106 CFU/g rhizosphere soil, and remained at that level in the rhizosphere of tomato plants for more than 2 months. In terms of its ability to promote plant growth, AR156 increased the average biomass of the tomato by 47.7%. AR156 also elicited induced systemic resistance against DC3000, significantly reduced bacterial speck disease severity 1.6-fold, and inhibited proliferation of the pathogen by approximately 15-fold. This strain triggered the accumulation of defence-related genes (PR1 and PIN2) in tomato leaves and primed the leaves for accelerated defence-related gene expression upon challenge with DC3000. That suggested simultaneous activation of the salicylic acid and the jasmonic acid dependent signalling pathways by AR156 against DC3000. In conclusion, B. cereus AR156 was found to form robust colonies in the roots of tomato and had some beneficial effects, including biological control of bacterial speck disease via ISR and promotion of plant growth.  相似文献   

6.
Thipyapong P  Hunt MD  Steffens JC 《Planta》2004,220(1):105-117
Polyphenol oxidases (PPOs; EC 1.14.18.1 or EC 1.10.3.2) catalyze the oxidation of phenolics to quinones, highly reactive intermediates whose secondary reactions are responsible for much of the oxidative browning that accompanies plant senescence, wounding, and responses to pathogens. To assess the impact of PPO expression on resistance to Pseudomonas syringae pv. tomato we introduced a chimeric antisense potato PPO cDNA into tomato (Lycopersicon esculentum L.). Oxidation of caffeic acid, the dominant o-diphenolic aglycone of tomato foliage, was decreased ca. 40-fold by antisense expression of PPO. All members of the PPO gene family were downregulated: neither immunoreactive PPO nor PPO-specific mRNA were detectable in the transgenic plants. In addition, the antisense PPO construct suppressed inducible increases in PPO activity. Downregulation of PPO in antisense plants did not affect growth, development, or reproduction of greenhouse-grown plants. However, antisense PPO expression dramatically increased susceptibility to P. syringae expressing the avirulence gene avrPto in both Pto and pto backgrounds. In a compatible (pto) interaction, plants constitutively expressing an antisense PPO construct exhibited a 55-fold increase in bacterial growth, three times larger lesion area, and ten times more lesions cm–2 than nontransformed plants. In an incompatible (Pto) interaction, antisense PPO plants exhibited 100-fold increases in bacterial growth and ten times more lesions cm–2 than nontransformed plants. Although it is not clear whether hypersusceptibility of antisense plants is due to low constitutive PPO levels or failure to induce PPO upon infection, these findings suggest a critical role for PPO-catalyzed phenolic oxidation in limiting disease development. As a preliminary effort to understand the role of induced PPO in limiting disease development, we also examined the response of PPO promoter::-glucuronidase constructs when plants are challenged with P. syringae in both Pto and pto backgrounds. While PPO B inducibility was the same in both compatible and incompatible interactions, PPO D, E and F were induced to higher levels and with different expression patterns in incompatible interactions.  相似文献   

7.
Integration of foliar bacterial biological control agents and plant growth promoting rhizobacteria (PGPR) was investigated to determine whether biological control of bacterial speck of tomato, caused by Pseudomonas syringae pv. tomato, and bacterial spot of tomato, caused by Xanthomonas campestris pv. vesicatoria and Xanthomonas vesicatoria, could be improved. Three foliar biological control agents and two selected PGPR strains were employed in pairwise combinations. The foliar biological control agents had previously demonstrated moderate control of bacterial speck or bacterial spot when applied as foliar sprays. The PGPR strains were selected in this study based on their capacity to induce resistance against bacterial speck when applied as seed and soil treatments in the greenhouse. Field trials were conducted in Alabama, Florida, and California for evaluation of the efficacy in control of bacterial speck and in Alabama and Florida for control of bacterial spot. The foliar biological control agent P. syringae strain Cit7 was the most effective of the three foliar biological control agents, providing significant suppression of bacterial speck in all field trials and bacterial spot in two out of three field trials. When applied as a seed treatment and soil drench, PGPR strain Pseudomonas fluorescens 89B-61 significantly reduced foliar severity of bacterial speck in the field trial in California and in three of six disease ratings in the field trials in Alabama. PGPR strains 89B-61 and Bacillus pumilus SE34 both provided significant suppression of bacterial spot in the two field trials conducted in Alabama. Combined use of foliar biological control agent Cit7 and PGPR strain 89B-61 provided significant control of bacterial speck and spot of tomato in each trial. In one field trial, control was enhanced significantly with combined biological control agents compared to single agent inoculations. These results suggest that some PGPR strains may induce plant resistance under field conditions, providing effective suppression of bacterial speck and spot of tomato, and that there may be some benefit to the integration of rhizosphere-applied PGPR and foliar-applied biological control agents.  相似文献   

8.
Pseudomonas syringae pv. tomato, the causal agent of bacterial speck of tomato, and the plant growth-promoting bacterium Azospirillum brasilense were inoculated onto tomato plants, either alone, as a mixed culture, or consecutively. The population dynamics in the rhizosphere and foliage, the development of bacterial speck disease, and their effects on plant growth were monitored. When inoculated onto separate plants, the A. brasilense population in the rhizosphere of tomato plants was 2 orders of magnitude greater than the population of P. syringae pv. tomato (107 versus 105 CFU/g [dry weight] of root). Under mist chamber conditions, the leaf population of P. syringae pv. tomato was 1 order of magnitude greater than that of A. brasilense (107 versus 106 CFU/g [dry weight] of leaf). Inoculation of seeds with a mixed culture of the two bacterial strains resulted in a reduction of the pathogen population in the rhizosphere, an increase in the A. brasilense population, the prevention of bacterial speck disease development, and improved plant growth. Inoculation of leaves with the mixed bacterial culture under mist conditions significantly reduced the P. syringae pv. tomato population and significantly decreased disease severity. Challenge with P. syringae pv. tomato after A. brasilense was established in the leaves further reduced both the population of P. syringae pv. tomato and disease severity and significantly enhanced plant development. Both bacteria maintained a large population in the rhizosphere for 45 days when each was inoculated separately onto tomato seeds (105 to 106 CFU/g [dry weight] of root). However, P. syringae pv. tomato did not survive in the rhizosphere in the presence of A. brasilense. Foliar inoculation of A. brasilense after P. syringae pv. tomato was established on the leaves did not alleviate bacterial speck disease, and A. brasilense did not survive well in the phyllosphere under these conditions, even in a mist chamber. Several applications of a low concentration of buffered malic acid significantly enhanced the leaf population of A. brasilense (>108 CFU/g [dry weight] of leaf), decreased the population of P. syringae pv. tomato to almost undetectable levels, almost eliminated disease development, and improved plant growth to the level of uninoculated healthy control plants. Based on our results, we propose that A. brasilense be used in prevention programs to combat the foliar bacterial speck disease caused by P. syringae pv. tomato.  相似文献   

9.
Abscisic acid (ABA) has been implicated in determining the outcome of interactions between many plants and their pathogens. We had previously shown that increased concentrations of ABA within leaves of Arabidopsis induced susceptibility towards an avirulent strain of Pseudomonas syringae pathovar (pv.) tomato. We now show that ABA induces susceptibility via suppression of the accumulation of components crucial for a resistance response. Lignin and salicylic acid concentrations in leaves were increased during a resistant interaction but reduced when plants were treated with ABA. The reduction in lignin and salicylic acid production was independent of the development of the hypersensitive response (HR), indicating that, in this host-pathogen system, HR is not required for resistance. Genome-wide gene expression analysis using microarrays showed that treatment with ABA suppressed the expression of many defence-related genes, including those important for phenylpropanoid biosynthesis and those encoding resistance-related proteins. Together, these results show that resistance induction in Arabidopsis to an avirulent strain of P. syringae pv. tomato is regulated by ABA. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

10.
Two genotypes of tomato A 100 and Ontario 7710 which were inoculated separately with four strains of Pseudomonas syringae pv. tomato differed significantly in disease severity (susceptibility) to bacterial speck. At both concentrations of inoculum of each strain used (107 and 108 cfu/ml) A 100 appeared to be highly susceptible whereas Ontario 7710 showed very low or no susceptibility. The significant differences in virulence between strains and in response of tomato plants in three replicate experiments were found. Generally, concentration of inoculum 107 cfu/ml was too low to induce consistent level of disease severity. The obtained results indicate the importance of consistent and favorable conditions for disease development in screening of tomato resistance to bacterial speck.  相似文献   

11.

Background  

The tomato kinase Pto confers resistance to bacterial speck disease caused by Pseudomonas syringae pv. tomato in a gene for gene manner. Upon recognition of specific avirulence factors the Pto kinase activates multiple signal transduction pathways culminating in induction of pathogen defense. The soluble cytoplasmic serine/threonine kinase Pti1 is one target of Pto phosphorylation and is involved in the hypersensitive response (HR) reaction. However, a clear role of Pti1 in plant pathogen resistance is uncertain. So far, no Pti1 homologues from monocotyledonous species have been studied.  相似文献   

12.
Chlorophyll fluorescence imaging has been used to analyse the response elicited in Phaseolus vulgaris after inoculation with Pseudomonas syringae pv. phaseolicola 1448A (compatible interaction) and P. syringae pv. tomato DC3000 (incompatible interaction). With the aim of modulating timing of symptom development, different cell densities were used to inoculate bean plants and the population dynamics of both bacterial strains was followed within the leaf tissue. Fluorescence quenching analysis was carried out and images of the different chlorophyll fluorescence parameters were obtained for infected as well as control plants at different timepoints post-infection. Among the different parameters analysed, we observed that non-photochemical quenching maximised the differences between the compatible and the incompatible interaction before the appearance of visual symptom. A decrease in non-photochemical quenching, evident in both infiltrated and non-infiltrated leaf areas, was observed in P. syringae pv. phaseolicola-infected plants as compared with corresponding values from controls and P. syringae pv. tomato-infected plants. No photoinhibitory damage was detected, as the maximum photosystem II quantum yield remained stable during the infection period analysed.  相似文献   

13.
Bacterial speck, caused by Pseudomonas syringae pv. tomato (Pst), is an economically important disease of tomato, resulting in yield loss of marketable fruit. Management of bacterial speck is a challenge in commercial production fields due to the limited efficacy of current disease management strategies, as the pathogen acquires resistance to antibiotics and fixed copper bactericides and host resistance has not proven durable. Therefore, it is essential to develop alternative disease management strategies, like biological control. In this study, the efficacy of the commercially available biocontrol agent Bacillus subtilis QST 713 along with copper hydroxide was tested against Pst under greenhouse conditions. QST 713 reduced significantly disease severity and incidence compared to control and the copper hydroxide treatment; subsequently, the Pst population was lower in the QST 713‐treated plants compared to control. In parallel, QST 713 and copper hydroxide increased plant height compared to control and mock plants. Furthermore, the quantitative PCR analysis of PR1a, PR1b and Pin2 expression suggests a positive role for Pin2 in the plant protective activity of QST 713, as Pin2 expression was significantly higher in the QST 713‐treated plants challenged with Pst compared to the control Pst‐inoculated plants.  相似文献   

14.
Pseudomonas syringae pv. tomato, the causal agent for bacterial speck of tomato, produces the phytotoxin coronatine. A 5.3-kilobase XhoI fragment from the chromosomal region controlling toxin production was cloned into the plasmid pGB2, and the resulting recombinant plasmid, pTPR1, was tested for its ability to serve as a diagnostic probe for P. syringae pv. tomato. In a survey of 75 plant-associated bacteria, pTPR1 hybridized exclusively to those strains that produced coronatine. The detection limit for this probe, which was labeled with the Chemiprobe nonradioactive reporter system, was approximately 4 × 103 CFU of lesion bacteria. During the 1989 growing season, a total of 258 leaf and fruit lesions from nine tomato fields were screened for P. syringae pv. tomato by using pTPR1 and the culture method of detection. The best agreement between the two methods, 90%, occurred early in the season with samples taken from relatively young (5-week-old) plants. Young plants also had a higher percentage of P. syringae pv. tomato-positive lesions. P. syringae pv. tomato was the only coronatine producer recovered from the nine tomato fields. All 244 P. syringae pv. tomato strains isolated during this study reacted strongly with the probe. The P. syringae pv. tomato population of healthy field tomato leaves was determined by a pTPR1 colony hybridization procedure. Every probe-positive colony that was isolated and characterized was identified as P. syringae pv. tomato. The pTPR1 probe should expedite disease diagnosis and facilitate epidemiological studies of this pathogen. It also should aid in screening transplant seedlings for bacterial speck infestation.  相似文献   

15.
Inheritance of resistance to bacterial speck of tomato was determined by analysing F1 F2 and backcross progenies of crosses involving a susceptible (VF-198) and a resistant cultivar (Rehovot-13). The results fit the hypothesis that resistance is controlled by a single dominant gene in interaction with minor genes. Cultivar susceptibility to Pseudomonas syringae pv. tomato was tested under greenhouse conditions under high inoculum pressure using infested tomato seeds together with infested soils and spray-inoculated wounded plants. Of 21 species, cultivars and lines, Rehovot-13, Ontario 7710 and Lycopersiconpimpinellifolium P.I. 126927 were found to be resistant to the pathogen. VF-198 and Tropic-VF were the most susceptible. Extra Marmande, Saladette, Acc.339944–3 and the wild type Lycopersicon esculentum var. cerasiforme were moderately resistant.  相似文献   

16.
Phytosensors are useful for rapid‐on‐the‐plant detection of contaminants and agents that cause plant stress. Previously, we produced a series of plant pathogen‐inducible synthetic promoters fused to an orange fluorescent protein (OFP) reporter gene and transformed them into tobacco and Arabidopsis thaliana plants; in these transgenic lines, an OFP signal is expressed commensurate with the presence of plant pathogens. We report here the results of 2 years of field experiments using a subset of these bacterial phytosensing tobacco plants. Time‐course analysis of field‐grown phytosensors showed that a subset of plants responded predictably to treatments with Pseudomonas phytopathogens. There was a twofold induction in the OFP fluorescence driven by two distinct salicylic acid‐responsive synthetic promoters, 4 × PR1 and 4 × SARE. Most notably, transgenic plants containing 4 × PR1 displayed the earliest and highest OFP induction at 48 and 72 h postinoculation (h p.i.) upon inoculation with two phytopathogens Pseudomonas syringae pv. tomato and P. syringae pv. tabaci, respectively. These results demonstrate transgenic tobacco harbouring a synthetic inducible promoter‐driven OFP could be used to facilitate monitoring and early‐warning reporting of phytopathogen infections in agricultural fields.  相似文献   

17.
18.
Lee SC  Hwang IS  Choi HW  Hwang BK 《Plant physiology》2008,148(2):1004-1020
Pathogen-inducible antimicrobial defense-related proteins have emerged as key antibiotic peptides and enzymes involved in disease resistance in plants. A novel antimicrobial protein gene, CaAMP1 (for Capsicum annuum ANTIMICROBIAL PROTEIN1), was isolated from pepper (C. annuum) leaves infected with Xanthomonas campestris pv vesicatoria. Expression of the CaAMP1 gene was strongly induced in pepper leaves not only during pathogen infection but also after exposure to abiotic elicitors. The purified recombinant CaAMP1 protein possessed broad-spectrum antimicrobial activity against phytopathogenic bacteria and fungi. CaAMP1:smGFP fusion protein was localized mainly in the external and intercellular regions of onion (Allium cepa) epidermal cells. The virus-induced gene silencing technique and gain-of-function transgenic plants were used to determine the CaAMP1 gene function in plant defense. Silencing of CaAMP1 led to enhanced susceptibility to X. campestris pv vesicatoria and Colletotrichum coccodes infection, accompanied by reduced PATHOGENESIS-RELATED (PR) gene expression. In contrast, overexpression of CaAMP1 in Arabidopsis (Arabidopsis thaliana) conferred broad-spectrum resistance to the hemibiotrophic bacterial pathogen Pseudomonas syringae pv tomato, the biotrophic oomycete Hyaloperonospora parasitica, and the fungal necrotrophic pathogens Fusarium oxysporum f. sp. matthiolae and Alternaria brassicicola. CaAMP1 overexpression induced the salicylic acid pathway-dependent genes PR1 and PR5 but not the jasmonic acid-dependent defense gene PDF1.2 during P. syringae pv tomato infection. Together, these results suggest that the antimicrobial CaAMP1 protein is involved in broad-spectrum resistance to bacterial and fungal pathogen infection.  相似文献   

19.
Thionins are cysteine-rich, 5 kDa polypeptides which are toxic to plant pathogens in vitro. Expression of the gene encoding α-thionin from barley endosperm, under the 35S promoter from cauliflower mosaic virus, conferred to transgenic tobacco enhanced resistance to the bacterial plant pathogens Pseudomonas syringae pv. tabaci 153 and P. syringae pv. syringae. The barley α-thionin gene, which has two introns, was correctly spliced in tobacco. The α-thionin in transgenic plants had the expected mobility in the gradient, when separated by high-performance liquid chromatography, reacted with monospecific antibodies and showed the expected antibiotic properties in vitro.  相似文献   

20.
Tomato (Solanum lycopersicum L.) is susceptible to many diseases including bacterial speck caused by Pseudomonas syringae pv. tomato. Bacterial speck disease is a serious problem worldwide in tomato production areas where moist conditions and cool temperatures occur. To enhance breeding of speck resistant fresh-market tomato cultivars we identified a race 0 field isolate, NC-C3, of P. s. pv. tomato in North Carolina and used it to screen a collection of heirloom tomato lines for speck resistance in the field. We observed statistically significant variation among the heirloom tomatoes for their response to P. s. pv. tomato NC-C3 with two lines showing resistance approaching a cultivar that expresses the Pto resistance gene, although none of the heirloom lines have Pto. Using an assay that measures microbe-associated molecular pattern (MAMP)-induced production of reactive oxygen species (ROS), we investigated whether the heirloom lines showed differential responsiveness to three bacterial-derived peptide MAMPs: flg22 and flgII-28 (from flagellin) and csp22 (from cold shock protein). Significant differences were observed for MAMP responsiveness among the lines, although these differences did not correlate strongly with resistance or susceptibility to bacterial speck disease. The identification of natural variation for MAMP responsiveness opens up the possibility of using a genetic approach to identify the underlying loci and to facilitate breeding of cultivars with enhanced disease resistance. Towards this goal, we discovered that responsiveness to csp22 segregates as a single locus in an F2 population of tomato.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号