首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The restricted diversity of the major histocompatibility complex (MHC) of Mauritian cynomolgus macaques provides powerful opportunities for insight into host-viral interactions and cellular immune responses that restrict lentiviral infections. However, little is known about the effects of Mhc haplotypes on control of SIV in this species. Using microsatellite-based genotyping and allele-specific PCR, Mhc haplotypes were deduced for 35 macaques infected with the same stock of SIVmac251. Class I haplotype H6 was associated with a reduction in chronic phase viraemia (p = 0.0145) while a similar association was observed for H6 class II (p = 0.0063). An increase in chronic phase viraemia, albeit an insignificant trend, was observed in haplotype H5-positive animals. These results further emphasise the value of genetically defined populations of non-human primates in AIDS research and provide a foundation for detailed characterisation of MHC restricted cellular immune responses and the effects of host genetics on SIV replication in cynomolgus macaques. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Nonhuman primates are widely used to study correlates of protective immunity in AIDS research. Successful cellular immune responses have been difficult to identify because heterogeneity within macaque major histocompatibility complex (MHC) genes results in quantitative and qualitative differences in immune responses. Here we use microsatellite analysis to show that simian immunodeficiency virus (SIV)-susceptible cynomolgus macaques (Macaca fascicularis) from the Indian Ocean island of Mauritius have extremely simple MHC genetics, with six common haplotypes accounting for two-thirds of the MHC haplotypes in feral animals. Remarkably, 39% of Mauritian cynomolgus macaques carry at least one complete copy of the most frequent MHC haplotype, and 8% of these animals are homozygous. In stark contrast, entire MHC haplotypes are rarely conserved in unrelated Indian rhesus macaques. After intrarectal infection with highly pathogenic SIVmac239 virus, a pair of MHC-identical Mauritian cynomolgus macaques mounted concordant cellular immune responses comparable to those previously reported for a pair of monozygotic twins infected with the same strain of human immunodeficiency virus. Our identification of relatively abundant SIV-susceptible, MHC-identical macaques will facilitate research into protective cellular immunity.  相似文献   

4.
The impact of feto-maternal histocompatibility on reproduction has inspired long-lasting debates. However, after the review of numerous articles, the impact of HLA allele sharing within couples on fecundity remains questionable. We decided to explore the impact of major histocompatibility complex (MHC) feto-maternal compatibility on reproduction in a cynomolgus macaque facility composed of animals of Mauritian descent. The Mauritian-derived macaque population presents a very restricted MHC polymorphism (only seven founding haplotypes) due to a strong founding bottleneck effect. The MHC polymorphism was investigated in 237 trios (male, female and offspring) using 17 microsatellite markers distributed across the MHC. Haplotypes were confirmed by segregation analysis. We evaluated the relative frequencies of MHC-compatible and MHC-semi-compatible offspring with the mothers. Among the 237 trios, we selected 42 trios for which the identity of the father is certain and for which the theoretical probabilities of fully compatible and semi-compatible offspring were equal. We found 11 offspring fully compatible and 31 offspring semi-compatible with their respective mother. The observed proportions were clearly outside the interval of confidence of 99 % and therefore most probably resulted from a selection of the semi-compatible offspring during pregnancy. We concluded that MHC fully compatible cynomolgus macaque offspring have a selective survival disadvantage in comparison with offspring inheriting a paternal MHC haplotype differing from maternal haplotypes.  相似文献   

5.
6.
Experimental infection of Mauritian cynomolgus macaques by simian immunodeficiency virus is a representative model of HIV infection, currently in favour for evaluating the efficacy of new preventive or curative treatments. Extensive studies of major histocompatibility complex (MHC) polymorphism by microsatellites revealed seven haplotypes (H1–H7). We present statistical evidence of the influence of MHC polymorphism on the set-point plasma viral load (PVL). Our analysis was based on the study of 45 Mauritian cynomolgus macaques inoculated by intravenous or intrarectal injection of a 50 AID50 dose of the SIVmac251 virus. The animals received no treatment before or after the inoculation. MHC polymorphism was investigated by means of 20 microsatellites distributed across the MHC and by DRB genotyping using the DGGE sequencing method. Statistical analysis with Unphased software revealed that two markers located in the class IB region significantly influenced the Log PVL and that three class IB haplotypes were significantly associated with lower (H2 or H6) or higher (H4) set-point Log PVL values. Although the impact of MHC on Log PVL was found to be low (around one Log10), it is important to dispose of animals paired for their MHC genotypes, each animal tested for a given treatment and its untreated control, to minimize the influence of the MHC and clearly reveal the effect of the treatment.  相似文献   

7.
MHC class I characterization of Indonesian cynomolgus macaques   总被引:2,自引:2,他引:0  
Cynomolgus macaques (Macaca fascicularis) are quickly becoming a useful model for infectious disease and transplantation research. Even though cynomolgus macaques from different geographic regions are used for these studies, there has been limited characterization of full-length major histocompatibility complex (MHC) class I immunogenetics of distinct geographic populations. Here, we identified 48 MHC class I cDNA nucleotide sequences in eleven Indonesian cynomolgus macaques, including 41 novel Mafa-A and Mafa-B sequences. We found seven MHC class I sequences in Indonesian macaques that were identical to MHC class I sequences identified in Malaysian or Mauritian macaques. Sharing of nucleotide sequences between these geographically distinct populations is also consistent with the hypothesis that Indonesia was a source of the Mauritian macaque population. In addition, we found that the Indonesian cDNA sequence Mafa-B7601 is identical throughout its peptide binding domain to Mamu-B03, an allele that has been associated with control of Simian immunodeficiency virus (SIV) viremia in Indian rhesus macaques. Overall, a better understanding of the MHC class I alleles present in Indonesian cynomolgus macaques improves their value as a model for disease research, and it better defines the biogeography of cynomolgus macaques throughout Southeast Asia.  相似文献   

8.
Cynomolgus macaques (Macaca fascicularis) provide increasingly common models for infectious disease research. Several geographically distinct populations of these macaques from Southeast Asia and the Indian Ocean island of Mauritius are available for pathogenesis studies. Though host genetics may profoundly impact results of such studies, similarities and differences between populations are often overlooked. In this study we identified 47 full-length MHC class I nucleotide sequences in 16 cynomolgus macaques of Filipino origin. The majority of MHC class I sequences characterized (39 of 47) were unique to this regional population. However, we discovered eight sequences with perfect identity and six sequences with close similarity to previously defined MHC class I sequences from other macaque populations. We identified two ancestral MHC haplotypes that appear to be shared between Filipino and Mauritian cynomolgus macaques, notably a Mafa-B haplotype that has previously been shown to protect Mauritian cynomolgus macaques against challenge with a simian/human immunodeficiency virus, SHIV89.6P. We also identified a Filipino cynomolgus macaque MHC class I sequence for which the predicted protein sequence differs from Mamu-B*17 by a single amino acid. This is important because Mamu-B*17 is strongly associated with protection against simian immunodeficiency virus (SIV) challenge in Indian rhesus macaques. These findings have implications for the evolutionary history of Filipino cynomolgus macaques as well as for the use of this model in SIV/SHIV research protocols. Kevin J. Campbell and Ann M. Detmer contributed equally to this work.  相似文献   

9.
In recent years, the use of cynomolgus macaques in biomedical research has increased greatly. However, with the exception of the Mauritian population, knowledge of the MHC class II genetics of the species remains limited. Here, using cDNA cloning and Sanger sequencing, we identified 127 full-length MHC class II alleles in a group of 12 Indonesian and 12 Vietnamese cynomolgus macaques. Forty two of these were completely novel to cynomolgus macaques while 61 extended the sequence of previously identified alleles from partial to full length. This more than doubles the number of full-length cynomolgus macaque MHC class II alleles available in GenBank, significantly expanding the allele library for the species and laying the groundwork for future evolutionary and functional studies.  相似文献   

10.
Acute shortages of Indian origin Rhesus macaques significantly hinder HIV/AIDS research. Cellular immune responses are particularly difficult to study because only a subset of animals possess MHC class I (MHC I) alleles with defined peptide-binding specificities. To expand the pool of nonhuman primates suitable for studies of cellular immunity, we defined 66 MHC I alleles in Cynomolgus macaques (Macaca fascicularis) of Chinese, Vietnamese, and Mauritian origin. Most MHC I alleles were found only in animals from a single geographic origin, suggesting that Cynomolgus macaques from different origins are not interchangeable in studies of cellular immunity. Animals from Mauritius may be particularly valuable because >50% of these Cynomolgus macaques share the MHC class I allele combination Mafa-B*430101, Mafa-B*440101, and Mafa-B*460101. The increased MHC I allele sharing of Mauritian origin Cynomolgus macaques may dramatically reduce the overall number of animals needed to study cellular immune responses in nonhuman primates while simultaneously reducing the confounding effects of genetic heterogeneity in HIV/AIDS research.  相似文献   

11.
Killer Ig-like receptors (KIRs) are implicated in protection from multiple pathogens including HIV, human papillomavirus, and malaria. Nonhuman primates such as rhesus and cynomolgus macaques are important models for the study of human pathogens; however, KIR genetics in nonhuman primates are poorly defined. Understanding KIR allelic diversity and genomic organization are essential prerequisites to evaluate NK cell responses in macaques. In this study, we present a complete characterization of KIRs in Mauritian cynomolgus macaques, a geographically isolated population. In this study we demonstrate that only eight KIR haplotypes are present in the entire population and characterize the gene content of each. Using the simplified genetics of this population, we construct a model for macaque KIR genomic organization, defining four putative KIR3DL loci, one KIR3DH, two KIR2DL, and one KIR1D. We further demonstrate that loci defined in Mauritian cynomolgus macaques can be applied to rhesus macaques. The findings from this study fundamentally advance our understanding of KIR genetics in nonhuman primates and establish a foundation from which to study KIR signaling in disease pathogenesis.  相似文献   

12.
The presence of certain MHC class I alleles is correlated with remarkable control of HIV and SIV, indicating that specific CD8 T cell responses can effectively reduce viral replication. It remains unclear whether epitopic breadth is an important feature of this control. Previous studies have suggested that individuals heterozygous at the MHC class I loci survive longer and/or progress more slowly than those who are homozygous at these loci, perhaps due to increased breadth of the CD8 T cell response. We used Mauritian cynomolgus macaques with defined MHC haplotypes and viral inhibition assays to directly compare CD8 T cell efficacy in MHC-heterozygous and homozygous individuals. Surprisingly, we found that cells from heterozygotes suppress viral replication most effectively on target cells from animals homozygous for only one of two potential haplotypes. The same heterozygous effector cells did not effectively inhibit viral replication as effectively on the target cells homozygous for the other haplotype. These results indicate that the greater potential breadth of CD8 T cell responses present in heterozygous animals does not necessarily lead to greater antiviral efficacy and suggest that SIV-specific CD8 T cell responses in heterozygous animals have a skewed focus toward epitopes restricted by a single haplotype.  相似文献   

13.
The TRIM5α restriction factor can protect some species of monkeys, but not humans, from HIV infection. It has also emerged that some monkeys have a cyclophilin A domain retrotransposed into the TRIM5 locus resulting in the expression of a TRIMCyp protein with anti-retroviral activity. A high degree of sequence variation in the primate TRIM5 gene has been reported that varies between populations of rhesus macaques, a widely used non-human primate model of HIV/AIDS, and recently shown to correlate with susceptibility to simian immunodeficiency viruses in this species. Cynomolgus macaques are also used widely in HIV research. A non-indigenous population on Mauritius has highly restricted genetic diversity compared with macaques from Indonesia. The relative allelic diversity of TRIM5α and TRIMCyp within these two sub-populations may impact on the susceptibility of the macaques to simian immunodeficiency virus thereby influencing the outcome of studies using these monkeys. We sought to establish the genetic diversity of these alleles in cynomolgus macaques. We identified seven TRIM5α alleles in Indonesian macaques, three of which are novel, but only three in the Mauritian-origin macaques. Strikingly, 87% of Indonesian, but none of the Mauritian macaques, possessed a retrotransposed Cyp domain. A splice acceptor site single-nucleotide polymorphism that allows formation of a TRIMCyp protein was absent for the TRIM5α alleles found in the Mauritian macaques. The level of allelic diversity reported here is greater than previously proposed for cynomolgus macaque species.  相似文献   

14.
There are currently no nonhuman primate models with fully defined major histocompatibility complex (MHC) class II genetics. We recently showed that six common MHC haplotypes account for essentially all MHC diversity in cynomolgus macaques (Macaca fascicularis) from the island of Mauritius. In this study, we employ complementary DNA cloning and sequencing to comprehensively characterize full length MHC class II alleles expressed at the Mafa-DPA, -DPB, -DQA, -DQB, -DRA, and -DRB loci on the six common haplotypes. We describe 34 full-length MHC class II alleles, 12 of which are completely novel. Polymorphism was evident at all six loci including DPA, a locus thought to be monomorphic in rhesus macaques. Similar to other Old World monkeys, Mauritian cynomolgus macaques (MCM) share MHC class II allelic lineages with humans at the DQ and DR loci, but not at the DP loci. Additionally, we identified extensive sharing of MHC class II alleles between MCM and other nonhuman primates. The characterization of these full-length-expressed MHC class II alleles will enable researchers to generate MHC class II transferent cell lines, tetramers, and other molecular reagents that can be used to explore CD4+ T lymphocyte responses in MCM.  相似文献   

15.
Pigtailed macaques (Macaca nemestrina) provide an important model for biomedical research on human disease and for studying the evolution of primate behavior. The genetic structure of captive populations of pigtailed macaques is not as well described as that of captive rhesus (M. mulatta) or cynomolgus (M. fascicularis) macaques. The Washington National Primate Research Center houses the largest captive colony of pigtailed macaques located in several different housing facilities. Based on genotypes of 18 microsatellite (short tandem repeat [STR]) loci, these pigtailed macaques are more genetically diverse than captive rhesus macaques and exhibit relatively low levels of inbreeding. Colony genetic management facilitates the maintenance of genetic variability without compromising production goals of a breeding facility. The periodic introduction of new founders from specific sources to separate housing facilities at different times influenced the colony's genetic structure over time and space markedly but did not alter its genetic diversity significantly. Changes in genetic structure over time were predominantly due to the inclusion of animals from the Yerkes National Primate Research Center in the original colony and after 2005. Strategies to equalize founder representation in the colony have maximized the representation of the founders’ genomes in the extant population. Were exchange of animals among the facilities increased, further differentiation could be avoided. The use of highly differentiated animals may confound interpretations of phenotypic differences due to the inflation of the genetic contribution to phenotypic variance of heritable traits. Am. J. Primatol. 74:1017‐1027, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
Background  Prevalence of simian retrovirus-2 (SRV-2) and simian T lymphotropic virus type I (STLV-I), was unknown in 337 captive cynomolgus macaques.
Methods and Results  Molecular assays identified 29% of animals as SRV-2 mono-infected, 4% of animals as STLV-I mono-infected and 9% of animals as dual-infected. Of 108 juvenile animals, 83% were SRV-2-negative and no juvenile animal was STLV-I-positive. A subsequent study of juvenile macaques over a period of 2.5 years detected no STLV-I and 10 SRV-2 infections, six of which occurred between testing and day of colony formation. The study also highlighted that an anti-SRV-2 serological response does not presuppose infection. Tissue reservoirs of latent SRV-2 were not identified in suspected SRV-2 infections.
Conclusions  Low transmissibility of the viruses present in the parental cohort and improved knowledge of the host response to SRV-2 has facilitated the creation of specific-retrovirus-free colonies of cynomolgus macaques.  相似文献   

17.
18.
19.
The cynomolgus macaque (Macaca fascicularis) is currently used as an animal model in various fields of immunology especially in the development of innovative vaccines for the prevention and treatment of infectious diseases. The polymorphism of the major histocompatibility complex (MHC) influences the development of adaptive immune responses, and it is crucial to characterize the polymorphism of cynomolgus MHC genes. Among all macaque species, the cynomolgus macaque has the most diversified geographical area encompassing continental and insular populations. By the study of a large sample of animals from the Philippines (N = 359), we have characterized 20 DRB haplotypes. The DRB genotyping was performed by denaturing gradient gel electrophoresis (DGGE) sequencing of exon 2 and was confirmed by polymerase chain reaction-sequence-specific oligonucleotide. The DRB and DRA cDNA of 126 animals were characterized by cloning and sequencing. By means of DGGE sequencing, we characterized the polymorphism of genomic DRB exon 2 in three other cynomolgus macaque population samples (Java, Vietnam, and Mauritius), and we discuss about the origin of the founders of the Mauritian and the Filipino cynomolgus macaque populations.  相似文献   

20.
Cynomolgus macaques have been used widely to build a research model of infectious and chronic diseases, as well as in transplantation studies, where disease susceptibility and/or resistance are associated with the major histocompatibility complex (MHC). To better elucidate polymorphisms and genetic differences in the Mafa‐DRB locus, and facilitate the experimental use of cynomolgus macaques, we used pool screening combined with cloning and direct sequencing of polymerase chain reaction products to characterize MhcMafa‐DRB gene alleles in 153 Vietnamese cynomolgus macaques. We identified 30 Mafa‐DRB alleles belonging to 17 allelic lineages, including four novel sequences that had not been documented in earlier reports. The highest frequency allele was Mafa‐DRB*W27:04, which was present in 7 of 35 (20%) monkeys. The next most frequent alleles were Mafa‐DRB*3:07 and Mafa‐DRB*W7:01, which were detected in 5 of 35 (14.3%) and 4 of 35 (11.4%) of the monkeys, respectively. The high‐frequency alleles in this Vietnamese population may be high priority targets for additional characterization of immune functions. Only the DRB1*03 and DRB1*10 lineages were also present in humans, whereas the remaining alleles were monkey‐specific lineages. We found 25 variable sites by aligning the deduced amino acid sequences of 29 identified alleles. Evolutionary and population analyses based on these sequences showed that human, rhesus, and cynomolgus macaques share several Mhc‐DRB lineages and the shared polymorphisms in the DRB region may be attributable to the existence of interbreeding between rhesus and cynomolgus macaques. This information will promote the understanding of MHC diversity and polymorphism in cynomolgus macaques and increase the value of this species as a model for biomedical research. Am. J. Primatol. 74:958‐966, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号