首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two-dimensional crystals of the reaction-centre-light-harvesting complex I (RC-LH1) of the purple non- sulfur bacterium Rhodospirillum rubrum have been formed from detergent-solubilized and purified protein complexes. Unstained samples of this intrinsic membrane protein complex have been analysed by electron cryomicroscopy (cryo EM). Projection maps were calculated to 8.5 A from two different crystal forms, and show a single reaction centre surrounded by 16 LH1 subunits in a ring of approximately 115 A diameter. Within each LH1 subunit, densities for the alpha- and beta-polypeptide chains are clearly resolved. In one crystal form the LH1 forms a circular ring, and in the other form the ring is significantly ellipsoidal. In each case, the reaction centre adopts preferred orientations, suggesting specific interactions between the reaction centre and LH1 subunits rather than a continuum of possible orientations with the antenna ring. This experimentally determined structure shows no evidence of any other protein components in the closed LH1 ring. The demonstration of circular or elliptical forms of LH1 indicates that this complex is likely to be flexible in the bacterial membrane.  相似文献   

2.
Despite intensive research for decades, the trapping mechanism in the core complex of purple bacteria is still under discussion. In this article, it is attempted to derive a conceptionally simple model that is consistent with all basic experimental observations and that allows definite conclusions on the trapping mechanism. Some experimental data reported in the literature are conflicting or incomplete. Therefore we repeated two already published experiments like the time-resolved fluorescence decay in LH1-only purple bacteria Rhodospirillum rubrum and Rhodopseudomonas viridis chromatophores with open and closed (Q(A)(-)) reaction centers. Furthermore, we measured fluorescence excitation spectra for both species under the two redox-conditions. These data, all measured at room temperature, were analyzed by a target analysis based on a three-state model (antenna, primary donor, and radical pair). All states were allowed to react reversibly and their decay channels were taken into consideration. This leads to seven rate constants to be determined. It turns out that a unique set of numerical values of these rate constants can be found, when further experimental constraints are met simultaneously, i.e. the ratio of the fluorescence yields in the open and closed (Q(A)(-)) states F(m)/F(o) approximately 2 and the P(+)H(-)-recombination kinetics of 3-6 ns. The model allows to define and to quantify escape probabilities and the transfer equilibrium. We conclude that trapping in LH1-only purple bacteria is largely transfer-to-the-trap-limited. Furthermore, the model predicts properties of the reaction center (RC) in its native LH1-environment. Within the framework of our model, the predicted P(+)H(-)-recombination kinetics are nearly indistinguishable for a hypothetically isolated RC and an antenna-RC complex, which is in contrast to published experimental data for physically isolated RCs. Therefore RC preparations may display modified kinetic properties.  相似文献   

3.
The bacterium Rhodospirillum rubrum contains a simple photosynthetic system, in which the reaction center (RC) receives energy from the light-harvesting (LH1) complex. We have used high-resolution atomic force microscopy (AFM) to image two-dimensional crystals of the RC-LH1 complex of R. rubrum. The AFM topographs show that the RC-LH1 complex is approximately 94 A in height, the RC-H subunit protrudes from the cytoplasmic face of the membrane by 40 A, and it sits 21 A above the highest point of the surrounding LH1 ring. In contrast, the RC on the periplasmic side is at a lower level than LH1, which protrudes from the membrane by 12 A. The RC-LH1 complex can adopt an irregular shape in regions of uneven packing forces in the crystal; this reflects a likely flexibility in the natural membrane, which might be functionally important by allowing the export of quinol formed as a result of RC photochemistry. Nanodissection of the RC by the AFM tip removes the RC-H subunit and reveals the underlying RC-L and -M subunits. LH1 complexes completely lacking the RC were also found, providing ideal conditions for imaging both rings of LH1 polypeptides for the first time by AFM. In addition, we demonstrate the ellipticity of the LH1 ring at the cytoplasmic and periplasmic sides of the membrane, in both the presence and absence of the RC. These AFM measurements have been reconciled with previous electron microscopy and NMR data to produce a model of the RC-LH1 complex.  相似文献   

4.
In the bacterium R. sphaeroides, the polypeptide PufX is indispensable for photosynthetic growth. Its deletion is known to have important consequences on the organization of the photosynthetic apparatus. In the wild-type strain, complexes between the reaction center (RC) and the antenna (light-harvesting complex 1 (LH1)) are associated in dimers, and LH1 does not fully encircle the RC. In the absence of PufX, the complexes become monomeric, and the LH1 ring closes around the RC. We analyzed the functional consequences of PufX deletion. Some effects can be ascribed to the monomerization of the RC.LH1 complexes: the number of RCs that share a common antenna for excitation transfer or a common quinone pool become smaller. We examined the kinetic effects of the closed LH1 ring on quinone turnover: diffusion across LH1 entails a delay of approximately 1 ms, and the barrier appears to be located directly against the quinone-binding (secondary quinone acceptor (Q(B))) pocket. The diffusion of ubiquinol from the RC to the cytochrome bc1 complex is approximately 2-fold slower in the mutant, suggesting an increased distance between the two complexes. The properties of the Q(B) pocket (binding of inhibitors, stabilization of Q(B-), and rate of Q(B)-H2 formation) appear to be modified in the mutant. Another specificity of PufX- is the accumulation of closed centers in the Q(A-) (where Q(A) is the primary quinone acceptor) state as the secondary acceptor pool becomes reduced, which is probably the origin of photosynthetic incompetence. We suggest that this is related to the Q(B) pocket alterations. The malfunction of the reaction center is probably due to a faulty association with LH1 that is prevented in the PufX-containing structure.  相似文献   

5.
The PufX membrane protein is essential for photosynthetic growth of Rhodobacter sphaeroides wild-type cells. PufX is associated with the reaction center-light harvesting 1 (RC-LH1) core complex and plays a key role in lateral ubiquinone/ubiquinol transfer. We have determined the PufX/RC stoichiometry by quantitative Western blot analysis and RC photobleaching. Independent of copy number effects and growth conditions, one PufX molecule per RC was observed in native membranes as well as in detergent-solubilized RC-LH1 complexes which had been purified over sucrose gradients. Surprisingly, two gradient bands with significantly different sedimentation coefficients were found to have a similar subunit composition, as judged by absorption spectroscopy and protein gel electrophoresis. Gel filtration chromatography and electron microscopy revealed that these membrane complexes represent a monomeric and a dimeric form of the RC-LH1 complex. Since PufX is strictly required for the isolation of dimeric core complexes, we suggest that PufX has a central structural role in forming dimeric RC-LH1 complexes, thus allowing efficient ubiquinone/ubiquinol exchange through the LH1 ring surrounding the RC.  相似文献   

6.
Although the polypeptides of core light-harvesting complexes (LH1) from many purple nonsulfur bacteria have been well characterized, little information is available on the polypeptides of LH1 from purple sulfur photosynthetic organisms. We present here the results of isolation and characterization of LH1 polypeptides from two purple sulfur bacteria, Thermochromatium (Tch.) tepidum and Allochromatium (Ach.) vinosum. Native LH1 complexes were extracted and purified in a reaction center (RC)-associated form with the Qy absorption at 914 nm and 889 nm for Tch. tepidum and Ach. vinosum, respectively. Three components were confirmed from reverse-phase HPLC for the LH1 apopolypeptides of Tch. tepidum. The beta-polypeptide was found to be methylated at N-terminus, and two alpha-polypeptides were identified with one of them being modified by a formyl group at the N-terminal methionine residue. Two alpha- and two beta-polypeptides were confirmed for the LH1 complex of Ach. vinosum, and their primary structures were precisely determined. Homologous and hybrid reconstitution abilities were examined using bacteriochlorophyll a and separated alpha- and beta-polypeptides. The beta-polypeptide from Tch. tepidum was capable of forming uniform structural subunit not only with the alpha-polypeptide of Tch. tepidum but also with the alpha-polypeptide from a nonsulfur bacterium Rhodospirillum rubrum. The alpha-polypeptide alone or beta-polypeptide alone appeared only to result in incomplete subunits in the reconstitution experiments.  相似文献   

7.
The reaction center (RC) and the core (RC-LH1) complex were isolated and purified from Rhodobium marinum; together with the LH1 complex [Meckenstock et al. (1992a) FEBS Lett. 311: 128], a complete set of RC, LH1 and RC-LH1 from the same wild-type strain of a purple photosynthetic bacterium can therefore now be made. Comparison of the BChl a/BPhe a ratio (determined by HPLC) between the RC and the RC-LH1 complexes lead us to the determination of the number of BChls in the LH1 ring to be 32.06+/-2.90, indicating that the LH1 ring from Rh. marinum consists of 16 alphabeta subunits.  相似文献   

8.
Introduction of the bchP gene from Rhodobacter sphaeroides encoding geranylgeranyl reductase into Rhodospirillum rubrum alters the esterification of the bacteriochlorophylls so that phytol is used instead of geranylgeraniol. The resulting transconjugant strain of Rs. rubrum grows photosynthetically, showing that phytolated Bchla can substitute for the native pigment in both the reaction center (RC) and the light-harvesting 1 (LH1) complexes. This genetic manipulation perturbs the native carotenoid biosynthetic pathway; several biosynthetic intermediates are assembled into the core complex and are capable of energy transfer to the bacteriochlorophylls. RC-LH1 complexes containing phytolated Bchla were analyzed by low temperature absorption and fluorescence spectroscopy and circular dichroism. These show that phytolated Bchls can assemble in vivo into the photosynthetic apparatus of Rs. rubrum and that the newly introduced phytol tail provokes small perturbations to the Bchls within their binding sites in the LH1 complex. The RC-LH1 core complex was purified from membranes and reconstituted into well ordered two-dimensional crystals with a p4212 space group. A projection map calculated to 9 A shows clearly that the LH1 ring from the mutant is composed of 16 subunits that surround the reaction center and that the diameter of this complex is in close agreement with that of the wild-type LH1 complex.  相似文献   

9.
Redox-active quinones play essential roles in efficient light energy conversion in type-II reaction centers of purple phototrophic bacteria. In the light-harvesting 1 reaction center (LH1-RC) complex of purple bacteria, QB is converted to QBH2 upon light-induced reduction and QBH2 is transported to the quinone pool in the membrane through the LH1 ring. In the purple bacterium Rhodobacter sphaeroides, the C-shaped LH1 ring contains a gap for quinone transport. In contrast, the thermophilic purple bacterium Thermochromatium (Tch.) tepidum has a closed O-shaped LH1 ring that lacks a gap, and hence the mechanism of photosynthetic quinone transport is unclear. Here we detected light-induced Fourier transform infrared (FTIR) signals responsible for changes of QB and its binding site that accompany photosynthetic quinone reduction in Tch. tepidum and characterized QB and QBH2 marker bands based on their 15N- and 13C-isotopic shifts. Quinone exchanges were monitored using reconstituted photosynthetic membranes comprised of solubilized photosynthetic proteins, membrane lipids, and exogenous ubiquinone (UQ) molecules. In combination with 13C-labeling of the LH1-RC and replacement of native UQ8 by ubiquinones of different tail lengths, we demonstrated that quinone exchanges occur efficiently within the hydrophobic environment of the lipid membrane and depend on the side chain length of UQ. These results strongly indicate that unlike the process in Rba. sphaeroides, quinone transport in Tch. tepidum occurs through the size-restricted hydrophobic channels in the closed LH1 ring and are consistent with structural studies that have revealed narrow hydrophobic channels in the Tch. tepidum LH1 transmembrane region.  相似文献   

10.
Gerken U  Lupo D  Tietz C  Wrachtrup J  Ghosh R 《Biochemistry》2003,42(35):10354-10360
The effect of the interaction of the reaction center (RC) upon the geometrical arrangement of the bacteriochlorophyll a (BChla) pigments in the light-harvesting 1 complex (LH1) from Rhodospirillum rubrum has been examined using single molecule spectroscopy. Fluorescence excitation spectra at 1.8 K obtained from single detergent-solubilized as well as single membrane-reconstituted LH1-RC complexes showed predominantly (>70%) a single broad absorption maximum at 880-900 nm corresponding to the Q(y) transition of the LH1 complex. This absorption band was independent of the polarization direction of the excitation light. The remaining complexes showed two mutually orthogonal absorption bands in the same wavelength region with moderate splittings in the range of DeltaE = 30-85 cm(-1). Our observations are in agreement with simulated spectra of an array of 32 strongly coupled BChla dipoles arranged in perfect circular symmetry possessing only a diagonal disorder of 相似文献   

11.
12.
Atomic force microscopy (AFM) of the native architecture of the intracytoplasmic membrane (ICM) of a variety of species of purple photosynthetic bacteria, obtained at submolecular resolution, shows a tightly packed arrangement of light harvesting (LH) and reaction center (RC) complexes. Since there are no unattributed structures or gaps with space sufficient for the cytochrome bc(1) or ATPase complexes, they are localized in membrane domains distinct from the flat regions imaged by AFM. This has generated a renewed interest in possible long-range pathways for lateral diffusion of UQ redox species that functionally link the RC and the bc(1) complexes. Recent proposals to account for UQ flow in the membrane bilayer are reviewed, along with new experimental evidence provided from an analysis of intrinsic near-IR fluorescence emission that has served to test these hypotheses. The results suggest that different mechanism of UQ flow exist between species such as Rhodobacter sphaeroides, with a highly organized arrangement of LH and RC complexes and fast RC electron transfer turnover, and Phaeospirillum molischianum with a more random organization and slower RC turnover. It is concluded that packing density of the peripheral LH2 antenna in the Rba. sphaeroides ICM imposes constraints that significantly slow the diffusion of UQ redox species between the RC and cytochrome bc(1) complex, while in Phs. molischianum, the crowding of the ICM with LH3 has little effect upon UQ diffusion. This supports the proposal that in this type of ICM, a network of RC-LH1 core complexes observed in AFM provides a pathway for long-range quinone diffusion that is unaffected by differences in LH complex composition or organization.  相似文献   

13.
The individual components of the photosynthetic unit (PSU), the light-harvesting complexes (LH2 and LH1) and the reaction center (RC), are structurally and functionally known in great detail. An important current challenge is the study of their assembly within native membranes. Here, we present AFM topographs at 12 A resolution of native membranes containing all constituents of the PSU from Rhodospirillum photometricum. Besides the major technical advance represented by the acquisition of such highly resolved data of a complex membrane, the images give new insights into the organization of this energy generating apparatus in Rsp. photometricum: (i) there is a variable stoichiometry of LH2, (ii) the RC is completely encircled by a closed LH1 assembly, (iii) the LH1 assembly around the RC forms an ellipse, (iv) the PSU proteins cluster together segregating out of protein free lipid bilayers, (v) core complexes cluster although enough LH2 are present to prevent core-core contacts, and (vi) there is no cytochrome bc1 complex visible in close proximity to the RCs. The functional significance of all these findings is discussed.  相似文献   

14.
15.
We have studied photosynthetic membranes of wild type Rhodobacter blasticus, a closely related strain to the well studied Rhodobacter sphaeroides, using atomic force microscopy. High-resolution atomic force microscopy topographs of both cytoplasmic and periplasmic surfaces of LH2 and RC-LH1-PufX (RC, reaction center) complexes were acquired in situ. The LH2 is a nonameric ring inserted into the membrane with the 9-fold axis perpendicular to the plane. The core complex is an S-shaped dimer composed of two RCs, each encircled by 13 LH1 alpha/beta-heterodimers, and two PufXs. The LH1 assembly is an open ellipse with a topography-free gap of approximately 25 A. The two PufXs, one of each core, are located at the dimer center. Based on our data, we propose a model of the core complex, which provides explanation for the PufX-induced dimerization of the Rhodobacter core complex. The QB site is located facing a approximately 25-A wide gap within LH1, explaining the PufX-favored quinone passage in and out of the core complex.  相似文献   

16.
Jaschke PR  Beatty JT 《Biochemistry》2007,46(43):12491-12500
A Rhodobacter sphaeroides bchD (magnesium chelatase) mutant was studied to determine the properties of its photosystem in the absence of bacteriochlorophyll (BChl). Western blots of reaction center H, M, and L (RC H/M/L) proteins from mutant membranes showed levels of 12% RC H, 32% RC L, and 46% RC M relative to those of the wild type. Tricine-SDS-PAGE revealed 52% light-harvesting complex alpha chain and 14% beta chain proteins compared to those of the wild type. Pigment analysis of bchD cells showed the absence of BChl and bacteriopheophytin (BPhe), but zinc bacteriochlorophyll (Zn-BChl) was discovered. Zn-BChl binds to light-harvesting 1 (LH1) and 2 (LH2) complexes in place of BChl in bchD membranes, with a LH2:LH1 ratio resembling that of wild-type cells under BChl-limiting conditions. Furthermore, the RC from the bchD mutant contained Zn-BChl in the special pair and accessory BChl binding sites, as well as carotenoid and quinone, but BPhe was absent. Comparison of the bchD mutant RC absorption spectrum to that of Acidiphilium rubrum, which contains Zn-BChl in the RC, suggests the RC protein environment at L168 contributes to A. rubrum special pair absorption characteristics rather than solely Zn-BChl. We speculate that Zn-BChl is synthesized via the normal BChl biosynthetic pathway, but with ferrochelatase supplying zinc protoporphyrin IX for enzymatic steps following the nonfunctional magnesium chelatase. The absence of BPhe in bchD cells is likely related to Zn2+ stability in the chlorin macrocycle and consequently high resistance of Zn-BChl to pheophytinization (dechelation). Possible agents prevented from dechelating Zn-BChl include the RC itself, a hypothetical dechelatase enzyme, and spontaneous processes.  相似文献   

17.
The core of the photosynthetic apparatus of purple photosynthetic bacteria such as Rhodobacter capsulatus consists of a reaction center (RC) intimately associated with light-harvesting complex 1 (LH1) and the PufX polypeptide. The abundance of the RC and LH1 components was previously shown to depend on the product of the puhB gene (formerly known as orf214). We report here that disruption of puhB diminishes RC assembly, with an indirect effect on LH1 assembly, and reduces the amount of PufX. Under semiaerobic growth conditions, the core complex was present at a reduced level in puhB mutants. After transfer of semiaerobically grown cultures to photosynthetic (anaerobic illuminated) conditions, the RC/LH1 complex became only slightly more abundant, and the amount of PufX increased as cells began photosynthetic growth. We discovered that the photosynthetic growth of puhB disruption strains of R. capsulatus starts after a long lag period, which is due to physiological adaptation rather than secondary mutations. Using a hybrid protein expression system, we determined that the three predicted transmembrane segments of PuhB are capable of spanning a cell membrane and that the second transmembrane segment could mediate self-association of PuhB. We discuss the possible function of PuhB as a dimeric RC assembly factor.  相似文献   

18.
A functional proteomic analysis of the intracytoplasmic membrane (ICM) development process was performed in Rhodobacter sphaeroides during adaptation from high-intensity illumination to indirect diffuse light. This initiated an accelerated synthesis of the peripheral light-harvesting 2 (LH2) complex relative to that of LH1-reaction center (RC) core particles. After 11 days, ICM vesicles (chromatophores) and membrane invagination sites were isolated by rate-zone sedimentation and subjected to clear native gel electrophoresis. Proteomic analysis of gel bands containing the RC-LH1 and -LH2 complexes from digitonin-solubilized chromatophores revealed high levels of comigrating electron transfer enzymes, transport proteins, and membrane assembly factors relative to their equivalent gel bands from cells undergoing adaptation to direct low-level illumination. The GroEL chaperonin accounted for >65% of the spectral counts in the RC-LH1 band from membrane invagination sites, which together with the appearance of a universal stress protein suggested that the viability of these cells was challenged by light limitation. Functional aspects of the photosynthetic unit assembly process were monitored by near-IR fast repetition rate analysis of variable fluorescence arising from LH-bacteriochlorophyll a components. The quantum yield of the primary charge separation during the early stages of adaptation showed a gradual increase (variable/maximal fluorescence = 0.78-0.83 between 0 and 4 h), while the initial value of ~70 for the functional absorption cross section (σ) gradually increased to 130 over 4 days. These dramatic σ increases showed a direct relation to gradual slowing of the RC electron transport turnover rate (τ(QA)) from ~1.6 to 6.4 ms and an ~3-fold slowing of the rate of reoxidation of the ubiquinone pool. These slowed rates are not due to changes in UQ pool size, suggesting that the relation between increasing σ and τ(QA) reflects the imposition of constraints upon free diffusion of ubiquinone redox species between the RC and cytochrome bc(1) complex as the membrane bilayer becomes densely packed with LH2 rings.  相似文献   

19.
In addition to the roles of antioxidant and spacer, carotenoids (Cars) in purple photosynthetic bacteria pursue two physiological functions, i.e., light harvesting and photoprotection. To reveal the mechanisms of the photoprotective function, i.e., quenching triplet bacteriochlorophyll to prevent the sensitized generation of singlet oxygen, the triplet absorption spectra were recorded for Cars, where the number of conjugated double bonds (n) is in the region of 9-13, to determine the dependence on n of the triplet lifetime. The Cars examined include those in (a) solution; (b) the reconstituted LH1 complexes; (c) the native LH2 complexes from Rba. sphaeroides G1C, Rba. sphaeroides 2.4.1, Rsp. molischianum, and Rps. acidophila 10050; (d) the RCs from Rba. sphaeroides G1C, Rba. sphaeroides 2.4.1, and Rsp. rubrum S1; and (e) the RC-LH1 complexes from Rba. sphaeroides G1C, Rba. sphaeroides 2.4.1, Rsp. molischianum, Rps. acidophila 10050, and Rsp. rubrum S1. The results lead us to propose the following mechanisms: (i) A substantial shift of the linear dependence to shorter lifetimes on going from solution to the LH2 complex was ascribed to the twisting of the Car conjugated chain. (ii) A substantial decrease in the slope of the linear dependence on going from the reconstituted LH1 to the LH1 component of the RC-LH1 complex was ascribed to the minor-component Car forming a leak channel of triplet energy. (iii) The loss of conjugation-length dependence on going from the isolated RC to the RC component of the RC-LH1 complex was ascribed to the presence of a triplet-energy reservoir consisting of bacteriochlorophylls in the RC component.  相似文献   

20.
Native tubular membranes were purified from the purple non-sulfur bacterium Rhodobacter sphaeroides. These tubular structures contain all the membrane components of the photosynthetic apparatus, in the relative ratio of one cytochrome bc1 complex to two reaction centers, and approximately 24 bacteriochlorophyll molecules per reaction center. Electron micrographs of negative-stained membranes diffract up to 25 A and allow the calculation of a projection map at 20 A. The unit cell (a = 198 A, b = 120 A and gamma = 103 degrees) contains an elongated S-shaped supercomplex presenting a pseudo-2-fold symmetry. Comparison with density maps of isolated reaction center and light-harvesting complexes allowed interpretation of the projection map. Each supercomplex is composed of light-harvesting 1 complexes that take the form of two C-shaped structures of approximately 112 A in external diameter, facing each other on the open side and enclosing the two reaction centers. The remaining positive density is tentatively attributed to one cytochrome bc1 complex. These features shed new light on the association of the reaction center and the light-harvesting complexes. In particular, the organization of the light-harvesting complexes in C-shaped structures ensures an efficient exchange of ubihydroquinone/ubiquinone between the reaction center and the cytochrome bc1 complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号