共查询到20条相似文献,搜索用时 15 毫秒
1.
Kostetskiĭ PV 《Biofizika》2005,50(6):993-997
It was found that the chymotrypsin active site is located in the largest cleft on the enzyme surface approximated by a sphere with a radius of 20 angstroms. The active site cleft volume is about 2 nm3, as computed by the Monte-Carlo method. The size and shape of the active site cleft-- the intersection of two unequal spheres--are sufficient for large (about 1 nm3) fragments of substrate molecules to enter the active site. The active site bottom and the adjacent narrow section are about 600 angstroms3 in volume and may serve as a combustion chamber of a water-substrate mixture during the operation of the enzyme machinery. Intrinsic water molecules inside the combustion chamber can take part in heat exchange during different steps of the enzymatic process. 相似文献
2.
3.
NCOAT is a bifunctional nucleo-cytoplasmic protein with both O-GlcNAcase and histone acetyltransferase domains. The O-GlcNAcase domain catalyzes the removal of O-linked GlcNAc modifications from proteins and we have found that it resides in the N-terminal third of NCOAT. The recognition of the substrate GlcNAc suggests that the O-GlcNAcase is related in structure and catalytic mechanism to chitinases, hexosaminidases and hyaluronidases. These families of glycosidases all possess a catalytic doublet of carboxylate-containing residues, with one providing an acid-base function, and the second acting to orient and use the N-acetyl group of GlcNAc during catalysis. Indeed, we show that the O-GlcNAcase also possesses the catalytic doublet motif shared among these enzymes and that these two essential residues are aspartic acids at positions 175 and 177, respectively, in mouse NCOAT. In addition, a conserved cysteine at 166 and a conserved aspartic acid at 174 were also found to be necessary for fully efficient enzymatic activity. Given this information, we propose that the O-GlcNAcase active site resembles those of the above glycosidases which carry out the hydrolysis of GlcNAc linkages in a substrate-assisted acid-base manner. 相似文献
4.
W E Brown 《Biochemistry》1975,14(23):5079-5084
The structure of octylcarbamoyl-alpha-chymotrypsin to a resolution of 3.0 A is described. The n-octyl side chain of the active site directed irreversible inactivator octyl isocyanate is bound exclusively in the hydrophobic substrate binding pocket. The n-octyl isocyanate forms a planar urethane bond with the Ser-195 Ogamma and extends approximately 1 A deeper into the hydrophobic pocket than the indolyl group of indoleacryloyl-alpha-chymotrypsin (Henderson, R. (1970), J. Mol. Biol. 54, 341). All the structural changes are essentially identical with those observed in indoleacryloyl-alpha-chymotrypsin including the observation of a hydrogen bonded water molecule between the carbonyl oxygen of the octylcarbamoyl group and the imidazole group of His-57. The observed mode of n-octyl alkyl binding to chymotrypsin is consistent with the hypothesis proposed earlier (Brown, W. E. and Wold, F. (1973), Biochemistry 12, 828). 相似文献
5.
6.
7.
Roussel A Mathieu M Dobbs A Luu B Cambillau C Kellenberger C 《The Journal of biological chemistry》2001,276(42):38893-38898
The crystal structures of two homologous inhibitors (PMP-C and PMP-D2v) from the insect Locusta migratoria have been determined in complex with bovine alpha-chymotrypsin at 2.1- and 3.0-A resolution, respectively. PMP-C is a potent bovine alpha-chymotrypsin inhibitor whereas native PMP-D2 is a weak inhibitor of bovine trypsin. One unique mutation at the P1 position converts PMP-D2 into a potent bovine alpha-chymotrypsin inhibitor. The two peptides have a similar overall conformation, which consists of a triple-stranded antiparallel beta-sheet connected by three disulfide bridges, thus defining a novel family of serine protease inhibitors. They have in common the protease interaction site, which is composed of the classical protease binding loop (position P5 to P'4, corresponding to residues 26-34) and of an internal segment (residues 15-18), held together by two disulfide bridges. Structural divergences between the two inhibitors result in an additional interaction site between PMP-D2v (position P10 to P6, residues 21-25) and the residues 172-175 of alpha-chymotrypsin. This unusual interaction may be responsible for species selectivity. A careful comparison of data on bound and free inhibitors (from this study and previous NMR studies, respectively) suggests that complexation to the protease stabilizes the flexible binding loop (from P5 to P'4). 相似文献
8.
Graspases--a special group of serine proteases of the chymotrypsin family that has lost a conserved active site disulfide bond 总被引:1,自引:0,他引:1
In this report we propose a new approach to classification of serine proteases of the chymotrypsin family. Comparative structure–function analysis has revealed two main groups of proteases: a group of trypsin-like enzymes and graspases (granule-associated proteases). The most important structural peculiarity of graspases is the absence of conservative active site disulfide bond Cys191–Cys220. The residue at position 226 in the S1-subsite of graspases is responsible for substrate specificity, whereas the residue crucial for specificity in classical serine proteases is located at position 189. We distinguish three types of graspases on the base of their substrate specificity: 1) chymozymes prefer uncharged substrates and contain an uncharged residue at position 226; 2) duozymes possess dual trypsin-like and chymotrypsin-like specificity and contain Asp or Glu at 226; 3) aspartases hydrolyze Asp-containing substrates and contain Arg residue at 226. The correctness of the proposed classification was confirmed by phylogenic analysis. 相似文献
9.
Wong L Lieser S Chie-Leon B Miyashita O Aubol B Shaffer J Onuchic JN Jennings PA Woods VL Adams JA 《Journal of molecular biology》2004,341(1):93-106
The SH2 domain is required for high catalytic activity in the COOH-terminal Src kinase (Csk). Previous solution studies suggest that a short peptide sequence, the SH2-kinase linker, provides a functional connection between the active site and the distal SH2 domain that could underlie this catalytic phenomenon. Substitutions in Phe183 (tyrosine, alanine, and glycine), a critical hydrophobic residue in the linker, result in large decreases in substrate turnover and large increases in the K(m) for ATP. Indeed, F183G possesses kinetic parameters that are similar to that for a truncated form of Csk lacking the SH2 domain, suggesting that a single mutation disrupts communication between this domain and the active site. Based on equilibrium and stopped-flow fluorescence experiments, the elevated K(m) values for the mutants are due to changes in the rates of phosphoryl transfer and not to reduced ATP-binding affinities. Based on hydrogen-deuterium exchange experiments, glycine substitution reduces flexibility in several polypeptide regions in Csk, tyrosine substitution increases flexibility, and alanine substitution leads to mixed effects compared to wild-type. Normal mode analysis indicates that Phe183 and its environment are under strain, a theoretical finding that supports the results of mutations. Overall, the data indicate that domain-domain interactions, controlled through the SH2-kinase linker, provide a dynamic balance within the Csk framework that is ideal for efficient phosphoryl transfer in the active site. 相似文献
10.
11.
12.
Influence of the acetylcholinesterase active site protonation on omega loop and active site dynamics
Wiesner J Kříž Z Kuča K Jun D Koča J 《Journal of biomolecular structure & dynamics》2010,28(3):393-403
Existence of alternative entrances in acetylcholinesterase (AChE) could explain the contrast between the very high AChE catalytic efficiency and the narrow and long access path to the active site revealed by X-ray crystallography. Alternative entrances could facilitate diffusion of the reaction products or at least water and ions from the active site. Previous molecular dynamics simulations identified side door and back door as the most probable alternative entrances. The simulations of non-inhibited AChE suggested that the back door opening events occur only rarely (0.8% of the time in the 10ns trajectory). Here we present a molecular dynamics simulation of non-inhibited AChE, where the back door opening appears much more often (14% of the time in the 12ns trajectory) and where the side door opening was observed quite frequently (78% of trajectory time). We also present molecular dynamics, where the back door does not open at all, or where large conformational changes of the AChE omega loop occur together with alternative passage opening events. All these differences in AChE dynamical behavior are caused by different protonation states of two glutamate residues located on bottom of the active site gorge (Glu202 and G450 in Mus musculus AChE). Our results confirm the results of previous molecular dynamics simulations, expand the view and suggest the probable reasons for the overall conformational behavior of AChE omega loop. 相似文献
13.
14.
15.
The proton nuclear magnetic resonance signal of the His57-Asp102 hydrogen bonded proton in the charge relay system of chymotrypsinogen A and chymotrypsin Aδ has been monitored to determine the influence of substrate analogues and competitive inhibitors on the electronic state of the active site regions. Borate ion, benzene boronic acid and 2-phenylethylboronic acid, when bound to chymotrypsin at pH 9.5 shift the resonance position of the His-Asp hydrogen bonded proton to ?15.9, ?16.3 and ?17.2 parts per million, respectively. These positions are intermediate between the low pH position in the free enzyme of ?18.0 parts per million and the high pH position of ?14.9 parts per million. The presence of these analogues prevents the His-Asp proton resonance from titrating in the region of pH 6 to 9.5. Similar low field shifts are observed for the hydrogen bonded proton resonance of subtilisin BPN′ when complexed with these boronic acids. The results support the chemical and crystallographic data which show that negatively charged tetrahedral adducts of the boronic acid substrate analogues are formed at the active sites of these enzymes. When combined with similar nuclear magnetic resonance data for the binding of N-acetyl-l-tryptophan to chymotrypsin Aδ, they suggest that a direct interaction occurs between the active site histidine and the atom occupying the leaving group position of the substrate, presumably a hydrogen bond.The His-Asp proton resonance was also monitored in complexes of chymotrypsin Aδ with bovine pancreatic trypsin inhibitor over the pH range 4 to 9. In the complex the low field proton resonance had a field position of ?14.9 parts per million over the pH range 4 to 9 indicating that His57 is in the neutral form, similar to the active enzyme at high pH. 相似文献
16.
Chun-Yen Lai Qi-Chang Xia Poonam T. Salotra 《Biochemical and biophysical research communications》1983,116(1):341-348
Renatured, S-carboxymethylated subunit A1 of cholera toxin possess the ADP-ribose transferase activity (Lai, et.al., Biochem. Biophys. Res. Commun. 1981, , 1021). In the absence of acceptor self ADP-ribosylation of A1 subunit was observed. Stoicheometric incorporation of ADP-ribose moiety was achieved in 20 min at room temperature in a 0.1 – 0.2M PO4(Na) buffer, pH 6.6. On incubation of the complex with polyarginine, 75% of the enzyme-bound ADP-ribose moiety was transferred to the acceptor in 25 min. The ADP-ribosylated A1 was stable at low pH, and on cleavage with BrCN, the ADP-ribose moiety was found associated with peptide Cn I, the COOH-terminal fragment of A1 subunit. On further fragmentation with cathepsin D, a dodecapeptide containing ADP-ribose moiety was isolated whose structure was determined as: Asp-Glu-Glu-Leu-His-Arg-Gly-Tyr-Arg1-Asp-Arg-Tyr. The Arg1 in the peptide was indicated to be the site of ADP-ribosylation. 相似文献
17.
18.
S-Adenosylmethionine (AdoMet) synthetase catalyzes the biosynthesis of AdoMet in a unique enzymatic reaction. Initially the sulfur of methionine displaces the intact tripolyphosphate chain (PPP(i)) from ATP, and subsequently PPP(i) is hydrolyzed to PP(i) and P(i) before product release. The crystal structure of Escherichia coli AdoMet synthetase shows that the active site contains four aspartate residues. Aspartate residues Asp-16* and Asp-271 individually provide the sole protein ligand to one of the two required Mg(2+) ions (* denotes a residue from a second subunit); aspartates Asp-118 and Asp-238* are proposed to interact with methionine. Each aspartate has been changed to an uncharged asparagine, and the metal binding residues were also changed to alanine, to assess the roles of charge and ligation ability on catalytic efficiency. The resultant enzyme variants all structurally resemble the wild type enzyme as indicated by circular dichroism spectra and are tetramers. However, all have k(cat) reductions of approximately 10(3)-fold in AdoMet synthesis, whereas the MgATP and methionine K(m) values change by less than 3- and 8-fold, respectively. In the partial reaction of PPP(i) hydrolysis, mutants of the Mg(2+) binding residues have >700-fold reduced catalytic efficiency (k(cat)/K(m)), whereas the D118N and D238*N mutants are impaired less than 35-fold. The catalytic efficiency for PPP(i) hydrolysis by Mg(2+) site mutants is improved by AdoMet, like the wild type enzyme. In contrast AdoMet reduces the catalytic efficiency for PPP(i) hydrolysis by the D118N and D238*N mutants, indicating that the events involved in AdoMet activation are hindered in these methionyl binding site mutants. Ca(2+) uniquely activates the D271A mutant enzyme to 15% of the level of Mg(2+), in contrast to the approximately 1% Ca(2+) activation of the wild type enzyme. This indicates that the Asp-271 side chain size is a discriminator between the activating ability of Ca(2+) and the smaller Mg(2+). 相似文献
19.
The isoinhibitors of chymotrypsin/elastase from Ascaris lumbricoides: the reactive site 总被引:1,自引:0,他引:1
R J Peanasky Y Bentz G A Homandberg S T Minor D R Babin 《Archives of biochemistry and biophysics》1984,232(1):135-142
Five isoinhibitors of chymotrypsin/elastase present in aqueous extracts of Ascaris were isolated. The reactive site in each isoinhibitor, the peptide bond that during encounter is positioned over the catalytic site in chymotrypsin, is Leu-Met. This bond was hydrolyzed by incubating intact isoinhibitors with 5-25 mol% chymotrypsin at pH 3.2 for 4-6 days (isoinhibitor 1) or 2.5-5 weeks (isoinhibitors 2-5). The reaction under these conditions did not proceed beyond 60% modified isoinhibitor (peptide bond hydrolyzed) and 40% intact inhibitor. The Leu-Met bond, hydrolyzed in modified isoinhibitor, can be resynthesized at pH 7.6 by incubating modified inhibitor with a stoichiometric amount of chymotrypsin bound to Sepharose CL-4B and then dissociating the complex in a kinetically controlled fashion with 5% trichloroacetic acid. The product, intact inhibitor, was obtained in greater than 80% yield. The site in the isoinhibitor that is positioned over the catalytic site in elastase during encounter is the same as for encounter with chymotrypsin. The Leu-Met bond hydrolyzed during encounter with elastase can be resynthesized by chymotrypsin. Chymotrypsin and elastase bind to the inhibitor at the same site. 相似文献
20.
The molecular mechanism of the autolysis of rat alpha-chymotrypsin B was investigated. In addition to the two already known autolytic sites, Tyr146 and Asn147, a new site formed by Phe114 was identified. The former two sites and the latter one are located in the autolysis and the interdomain loops, respectively. By eliminating these sites by site-directed mutagenesis, their involvement in the autolysis and autolytic inactivation processes was studied. Mutants Phe114-->Ile and Tyr146-->His/Asn147-->Ser, that had the same enzymatic activity and molecular stability as the wild-type enzyme, displayed altered routes of autolytic degradation. The Phe114-->Ile mutant also exhibited a significantly slower autolytic inactivation (its half-life was 27-fold longer in the absence and sixfold longer in the presence of Ca2+ ions) that obeyed a first order kinetics instead of the second order displayed by wild-type chymotrypsin inactivation. The comparison of autolysis and autolytic inactivation data showed that: (a) the preferential cleavage of sites followed the order of Tyr146-Asn147 --> Phe114 --> other sites; (b) the cleavage rates at sites Phe114 and Tyr146-Asn147 were independent from each other; and (c) the hydrolysis of the Phe114-Ser115 bond was the rate determining step in autolytic inactivation. Thus, it is the cleavage of the interdomain loop and not of the autolysis or other loops that determines the half-life of chymotrypsin activity. 相似文献