首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
In comparison to the cellular basis of pacemaking, the electrical interactions mediating synchronization and conduction in the sinoatrial node are poorly understood. Therefore, we have taken a combined immunohistochemical and electrophysiological approach to characterize gap junctions in the nodal area. We report that the pacemaker myocytes in the center of the rabbit sinoatrial node express the gap junction proteins connexin (Cx)40 and Cx46. In the periphery of the node, strands of pacemaker myocytes expressing Cx43 intermingle with strands expressing Cx40 and Cx46. Biophysical properties of gap junctions in isolated pairs of pacemaker myocytes were recorded under dual voltage clamp with the use of the perforated-patch method. Macroscopic junctional conductance ranged between 0.6 and 25 nS with a mean value of 7.5 nS. The junctional conductance did not show a pronounced sensitivity to the transjunctional potential difference. Single-channel recordings from pairs of pacemaker myocytes revealed populations of single-channel conductances at 133, 202, and 241 pS. With these single-channel conductances, the observed average macroscopic junctional conductance, 7.5 nS, would require only 30-60 open gap junction channels.  相似文献   

2.
Isolated and cultured neonatal cardiac myocytes contract spontaneously and cyclically. The contraction rhythms of two isolated cardiac myocytes, each of which beats at different frequencies at first, become synchronized after the establishment of mutual contacts, suggesting that mutual entrainment occurs due to electrical and/or mechanical interactions between two myocytes. The intracellular concentration of free Ca(2+) also changes rhythmically in association with the rhythmic contraction of myocytes (Ca(2+) oscillation), and such a Ca(2+) oscillation was also synchronized among cultured cardiac myocytes. In this study, we investigated whether intercellular communication other than via gap junctions was involved in the intercellular synchronization of intracellular Ca(2+) oscillation in spontaneously beating cultured cardiac myocytes. Treatment with either blockers of gap junction channels or an un-coupler of E-C coupling did not affect the intercellular synchronization of Ca(2+) oscillation. In contrast, treatment with a blocker of P2 purinoceptors resulted in the asynchronization of Ca(2+) oscillatory rhythms among cardiac myocytes. The present study suggested that the extracellular ATP-purinoceptor system was responsible for the intercellular synchronization of Ca(2+) oscillation among cardiac myocytes.  相似文献   

3.
Pairs of SKHep1 cells, which are derived from a highly metastatic human hepatoma, were studied using the whole cell voltage clamp technique with patch-type electrodes containing CsCl as the major ionic species. In 12 of 81 cell pairs, current flow through junctional membranes was detectable; in the remaining 69 cell pairs, junctional conductance was less than the noise limit of our recording apparatus (worst case: 10 pS). Macroscopic junctional conductance (gj) in the small percentage of pairs where it was detectable ranged from 100 to 600 pS. Unitary junctional conductance (gamma j) determined in the lowest conductance pairs or after reducing conductance with a short exposure to the uncoupling agent halothane was 25-35 pS. To study properties of gap junction channels formed of connexin32, the parental SKHep1 cell line was stably transfected with a plasmid containing cDNA that encodes connexin32, the major gap junction protein of rat liver cells. In 85 of 98 pairs of voltage clamped connexin32-transfected SKHep1 cells, macroscopic gj was greater than 1 nS; gj increased with time after dissociation (from 1.8 +/- 0.6 [mean +/- SE; n = 7] nS at 2 h after plating to 9.3 +/- 2.2 [n = 9] nS, the maximal value, at 24 h). Unitary conductance of gap junction channels between pairs of transfected SKHep1 cells was measured in low conductance pairs and after reducing gj by exposure to halothane or heptanol. Histograms of gamma j values in transfected cells, in 10 experiments where greater than 100 transitions were measurable, displayed two peaks; 120-130 pS and 25-35 pS. The smaller size corresponded to channels that were occasionally detected in the parental cells. We therefore conclude that connexin32 forms gap junctions channels of the 120-130 pS size class.  相似文献   

4.
We analyzed by Fotonic Sensor, a fiber-optic displacement measurement instrument, the effects of heptanol on synchronized contraction of primary neonatal rat cardiac myocytes cultured at confluent density. We also examined the effect of heptanol on the changes in gap junctional intercellular communication by using the microinjection dye transfer method, and on intercellular Ca2+ fluctuation by confocal laser scanning microscopy of myocytes loaded with the fluorescent Ca2+ indicator fluo 3. In addition, we studied expression, phosphorylation, and localization of the major cardiac gap junction protein connexin 43 (Cx43) using immunofluorescence and Western blotting. At Day 6 of culture, numerous myocytes exhibited spontaneous, synchronous contractions, excellent dye coupling, and synchronized intracellular Ca2+ fluctuations. We treated the cells with 1.5, 2.0, 2.5, and 3.0 mmol/liter heptanol. With 1.5 mmol/liter heptanol, we could not observe significant effects on spontaneous contraction of myocytes. At 3.0 mmol/liter, the highest concentration used in the current experiment, heptanol inhibited synchronous contractions and even after washing out of heptanol, synchronous contraction was not rapidly recovered. On the other hand, at the intermediate concentrations of 2.0 and 2.5 mmol/liter, heptanol reversely inhibited synchronized contraction, gap junctional intercellular communication, and synchronization of intracellular Ca2+ fluctuations in the myocytes without preventing contraction and changes of intracellular Ca2+ in individual cells. Brief exposure (5-20 min) to heptanol (2.0 mmol/liter) did not cause detectable changes in the expression, phosphorylation, or localization of Cx43, despite strong inhibition of gap junctional intercellular communication. These results suggest that gap junctional intercellular communication plays an important role in synchronous intracellular Ca2+ fluctuations, which facilitate synchronized contraction of cardiac myocytes.  相似文献   

5.
Coupling between beta cells through gap junctions has been postulated as a principal mechanism of electrical synchronization of glucose-induced activity throughout the islet of Langerhans. We characterized junctional conductance between isolated pairs of mouse pancreatic beta cells by whole-cell recording with two independent patch-clamp circuits. Most pairs were coupled (67%, n = 155), although the mean junctional conductance (gj) (215 +/- 110 pS) was lower than reported in other tissues. Coupling could be recorded for long periods, up to 40 min. Voltage imposed across the junctional or nonjunctional membranes had no effect on gj. Up to several hours of treatment to increase intracellular cAMP levels did not affect gj. Electrically coupled pairs did not show transfer of the dye Lucifer yellow. Octanol (2 mM) reversibly decreased gj. Lower concentrations of octanol (0.5 mM) and heptanol (0.5 mM) than required to uncouple beta cells decreased voltage-dependent K+ and Ca2+ currents in nonjunctional membranes. Although gj recorded in these experiments would be expected to be provided by current flowing through only a few channels of the unitary conductance previously reported for other gap junctions, no unitary junctional currents were observed even during reversible suppression of gj by octanol. This result suggests either that the single channel conductance of gap junction channels between beta cells is smaller than in other tissues (less than 20 pS) or that the small mean conductance is due to transitions between open and closed states that are too rapid or too slow to be resolved.  相似文献   

6.
The gating properties of macroscopic and microscopic gap junctional currents were compared by applying the dual whole cell patch clamp technique to pairs of neonatal rat Schwann cells. In response to transjunctional voltage pulses (Vj), macroscopic gap junctional currents decayed exponentially with time constants ranging from < 1 to < 10 s before reaching steady-state levels. The relationship between normalized steady-state junctional conductance (Gss) and (Vj) was well described by a Boltzmann relationship with e-fold decay per 10.4 mV, representing an equivalent gating charge of 2.4. At Vj > 60 mV, Gss was virtually zero, a property that is unique among the gap junctions characterized to date. Determination of opening and closing rate constants for this process indicated that the voltage dependence of macroscopic conductance was governed predominantly by the closing rate constant. In 78% of the experiments, a single population of unitary junctional currents was detected corresponding to an unitary channel conductance of approximately 40 pS. The presence of only a limited number of junctional channels with identical unitary conductances made it possible to analyze their kinetics at the single channel level. Gating at the single channel level was further studied using a stochastic model to determine the open probability (Po) of individual channels in a multiple channel preparation. Po decreased with increasing Vj following a Boltzmann relationship similar to that describing the macroscopic Gss voltage dependence. These results indicate that, for Vj of a single polarity, the gating of the 40 pS gap junction channels expressed by Schwann cells can be described by a first order kinetic model of channel transitions between open and closed states.  相似文献   

7.
We analyzed the expression, phosphorylation, and localization of the major cardiac gap-junction protein connexin 43 (Cx43) during the establishment of a synchronized contraction in confluent monolayers of primary cultured neonatal rat cardiac myocytes, combined with a functional assay of gap junctions by the microinjection-dye transfer method. Monitoring of the beating rate and synchronization by Fotonic Sensor showed that at Day 1 of culture cardiac myocytes contracted spontaneously but irregularly, that the contractile rate increased with culture time, and that a synchronized contraction was gradually formed. At Day 7, the confluent cells exhibited synchronous contraction with a relatively constant rate (125 ± 20 beats/min). Cardiac myocytes expressed a large amount of Cx43 mRNA even at Day 1 and maintained the expression until at least Day 7. Immunofluorescence of Cx43 showed that the localization of Cx43-positive spots was mostly restricted to cell-cell contacts between myocytes and that few Cx43-positive spots were present between myocytes and fibroblasts or between fibroblasts. The amount of Cx43 protein, the proportion of phosphorylated forms to the nonphosphorylated one, and the number and total area of Cx43-positive spots increased with culture time. Gap-junctional intercellular communication measured by dye transfer assay was also increased with culture time and correlated well with the number and total area of Cx43-positive spots. Our systematic study suggests that a concerted action of the expression, phosphorylation, and localization of Cx43 and gap-junctional intercellular communication plays a major role in the reestablishment of synchronous beating of cultured neonatal rat cardiac myocytes.  相似文献   

8.
Summary To investigate the mechanisms whereby annular gap junctions in the papillary cells of the enamel organ are degraded intracellularly, continuously growing rat incisors were examined by electron microscopy of routine thin sections as well as for the cytochemical localization of inorganic trimetaphosphatase activity. Routine thin-section analysis revealed small flat or undulated gap junctions, hemi-annular gap junctions between an invaginated cell process and a cell body, and fully internalized cytoplasmic annular gap junctions. Both hemi-annular and annular gap junctions usually contain various organelles and/or inclusions, such as mitochondria, endoplasmic reticulum, ribosomes, vesicles, and lysosomes in the cytoplasm confined by the junctional membranes. Annular gap junctions are sometimes fused with vesicular or tubulovesicular structures. Cytochemistry of inorganic trimetaphosphatase activity revealed an intense enzymatic reaction within a system of tubular structures and round or oval dense bodies. Both structures are believed to correspond to primary lysosomes. A part of the Golgi apparatus also shows a weak reaction. Although hemi-annular gap junctions never show enzymatic reaction, annular gap junctions sometimes contain reaction products throughout their interior cytoplasm and inclusions. Fusion of annular gap-junctional membranes with reaction-positive tubular structures is also observed. In one instance, revealed in serial sections, an annular gap junction was encircled entirely by a reaction-positive structure. These results suggest that cytoplasmic annular gap junctions are formed by endocytosis of hemi-annular gap junctional membranes from the cell surface and then degraded intracellularly by lysosomal enzymes.  相似文献   

9.
Gap junctional coupling among cumulus cells is important for oogenesis since its deficiency in mice leads to impaired folliculogenesis. Multiple connexins (Cx), the subunits of gap junction channels, have been found within ovarian follicles in several species but little is known about the connexins in human follicles. The aim of this study was to determine which connexins contribute to gap junctions in human cumulus cells and to explore the possible relationship between connexin expression and pregnancy outcome from in vitro fertilization (IVF). Cumulus cells were obtained from IVF patients undergoing intra-cytoplasmic sperm injection (ICSI). Connexin expression was examined by RT-PCR and confocal microscopy. Cx43 was quantified by immunoblotting and gap junctional coupling was measured by patch-clamp electrophysiology. All but 5 of 20 connexin mRNAs were detected. Of the connexin proteins detected, Cx43 forms numerous gap junction-like plaques but Cx26, Cx30, Cx30.3, Cx32 and Cx40 appeared to be restricted to the cytoplasm. The strength of gap junctional conductance varied between patients and was significantly and positively correlated with Cx43 level, but neither was correlated with patient age. Interestingly, Cx43 level and intercellular conductance were positively correlated with embryo quality as judged by cleavage rate and morphology, and were significantly higher in patients who became pregnant than in those who did not. Thus, despite the presence of multiple connexins, Cx43 is a major contributor to gap junctions in human cumulus cells and its expression level may influence pregnancy outcome after ICSI.  相似文献   

10.
All mammalian gap junction channels are sensitive to the voltage difference imposed across the junctional membrane, and parameters of voltage sensitivity have been shown to vary according to the gap junction protein that is expressed. For connexin43, the major gap junction protein in the cardiovascular system, in the uterus, and between glial cells in brain, voltage clamp studies have shown that transjunctional voltages (Vj) exceeding +/- 50 mV reduce junctional conductance (gj). However, substantial gj remains at even very large Vj values; this residual voltage-insensitive conductance has been termed gmin. We have explored the mechanism underlying gmin using several cell types in which connexin43 is endogenously expressed as well as in communication-deficient hepatoma cells transfected with cDNA encoding human connexin43. For pairs of transfectants exhibiting series resistance-corrected maximal gj (gmax) values ranging from < 2 to > 90 nS, the ratio gmin/gmax was found to be relatively constant (about 0.4-0.5), indicating that the channels responsible for the voltage-sensitive and -insensitive components of gj are not independent. Single channel studies further revealed that different channel sizes comprise the voltage-sensitive and -insensitive components, and that the open times of the larger, more voltage-sensitive conductance events declined to values near zero at large voltages, despite the high gmin. We conclude that the voltage-insensitive component of gj is ascribable to a voltage-insensitive substate of connexin43 channels rather than to the presence of multiple types of channels in the junctional membrane. These studies thus demonstrate that for certain gap junction channels, closure in response to specific stimuli may be graded, rather than all-or-none.  相似文献   

11.
To examine the role of cell–cell communication via gap junctions in controlling proliferation and differentiation we transfected the malignant trophoblast cell line Jeg-3, which exhibits extremely low cell–cell communication mediated by endogenously expressed connexin40, with connexin26, connexin40, and connexin43, respectively.In vitrogrowth of all cell clones transfected with connexin genes was significantly reduced compared to controls. This effect corresponded to a significant increase in total junctional conductance of all clones. Single-channel conductances for channels formed by the transfected connexins were in the range of the values published previously. Though total junctional conductance varied highly among clones and even within one clone, differentiation of the cells indicated by β-hCG secretion was most prominent in the clones that revealed the largest amount of well-coupled cell pairs. Connexin26 channels enable cells of one clone to reduce drastically growth rate and produce significantly higher secretion of β-hCG. Connexin43 had only moderate effects on the differentiation properties of Jeg-3 cells. These findings suggest that restoration of cell–cell communication plays a role in growth reduction and in differentiation of tumor cells and that different channel proteins might have different effects.  相似文献   

12.
Direct cell-to-cell communication in the heart is maintained via gap junction channels composed of proteins termed connexins. Connexin channels ensure molecular and electrical signals propagation and hence are crucial in myocardial synchronization and heart function. Disease-induced gap junctions remodeling and/or an impairment or even block of intercellular communication due to acute pathological conditions results in derangements of myocardial conduction and synchronization. This is critical in the development of both ventricular fibrillation, which is a major cause of sudden cardiac death and persistent atrial fibrillation, most common arrhythmia in clinical practice often resulting in stroke. Many studies suggest that alterations in topology (remodeling), expression, phosphorylation and particularly function of connexin channels due to age or disease are implicated in the development of these life-threatening arrhythmias. It seems therefore challenging to examine whether compounds that could prevent or attenuate gap junctions remodeling and connexin channels dysfunction can protect the heart against arrhythmias that cause sudden death in humans. This assumption is supported by very recent findings showing that an increase of gap junctional conductance by specific peptides can prevents atrial conduction slowing or re-entrant ventricular tachycardia in ischemic heart. Suppression of ischemia-induced dephosphorylation of connexin seems to be one of the mechanisms involved. Another approach for identifying novel treatments is based on the hypothesis that even non-antiarrhythmic drugs with antiarrhythmic ability can modulate gap junctional communication and hence attenuate arrhythmogenic substrates.  相似文献   

13.
Electrophysiological studies of low-resistance junctions between Novikoff hepatoma cells grown in suspension cultures were carried out and correlated with gap-junctional areas per inferface determined by freeze-fracture. The mean coupling coefficient between isolated cell pairs was 0.773 +/- 0.025 (SEM) in 67G medium and 0.653 +/- 0.028 in M67 medium; the respective means for the central pairs of four-cell chains were 0.714 +/- 0.034 and 0.595 +/- 0.026. Mean estimates of nonjunctional resistances for cell pairs were 3.0 +/- 0.32 x 10(7) ohm (67G) and 2.01 +/- 0.01 x 10(7) ohm (M67), and the respective estimates for specific nonjunctional resistances were 158.6 +/- 8.1 ohm-cm2 (67G) and 133.0 +/- 812 ohm-cm2 (M67). Mean estimates of junctional conductances were 0.409 +/- 0.058 x 10(-6) mho (67G) and 0.211 +/- 0.018 x 10(-6) mho (M67) for pairs and 0.291 +/- 0.063 x 10(-6) mho (67G) and 0.212 +/- 0.04 mho (M67) for four-cell chains. The mean area of gap junction per interface for separate cell populations was 0.187 +/- 0.049 micron 2 and 0.269 +/- 0.054 micron 2 for cells fixed in loose pellets and in suspension, respectively. When compared with the mean junctional conductance, these values gave specific junctional conductance estimates of 1.13 x 10(2) mho/cm2 and 0.78 x 10(2) mho/cm2, respectively. These values are higher than most previous estimates, but are consistent with the hypothesis that gap-junctional particles contain central hydrophilic channels, about 2 nm in diameter, which have cytoplasmic resistivity.  相似文献   

14.
The permselectivity (permeance/conductance) of Cx43-comprised gap junctions is a variable parameter of junctional function. To ascertain whether this variability in junctional permselectivity is explained by heterogeneous charge or size selectivity of the comprising channels, the permeance of individual Cx43 gap junctions to combinations of two dyes differing in either size or charge was determined in four cell types: Rin43, NRKe, HeLa43, and cardiac myocytes. The results show that Cx43 junctions are size- but not charge-selective and that both selectivities are constant parameters of junctional function. The consistency of dye selectivities indicates that the large continuum of measured junctional permselectivities cannot be ascribed to an equivalent continuum of individual channel selectivities. Further, the relative dye permeance sequence of NBD-M-TMA approximately Alexa 350 > Lucifer yellow > Alexa 488 > Alexa 594 (Stokes radii of 4.3 A, 4.4 A, 4.9 A, 5.8 A, and 7.4 A, respectively) and the conductance sequence of KCl > TEACl approximately Kglutamate are well described by hindered diffusion through an aqueous pore with radius approximately 10 A and length 160 A. The permselectivity and dye selectivity data suggest the variable presence in Cx43-comprised junctions of conductive channels that are either dye-impermeable or dye-permeable.  相似文献   

15.
T Hfer 《Biophysical journal》1999,77(3):1244-1256
Hepatocytes respond with repetitive cytosolic calcium spikes to stimulation by vasopressin and noradrenalin. In the intact liver, calcium oscillations occur in a synchronized fashion as periodic waves across whole liver lobules, but the mechanism of intercellular coupling remains unclear. Recently, it has been shown that individual hepatocytes can have very different intrinsic oscillation frequencies but become phase-locked when coupled by gap junctions. We investigate the gap junction hypothesis for intercellular synchronization by means of a mathematical model. It is shown that junctional calcium fluxes are effective in synchronizing calcium oscillations in coupled hepatocytes. An experimentally testable estimate is given for the junctional coupling coefficient required; it mainly depends on the degree of heterogeneity between cells. Intercellular synchronization by junctional calcium diffusion may occur also in other cell types exhibiting calcium-activated calcium release through InsP(3) receptors, if the gap junctional coupling is strong enough and the InsP(3) receptors are sufficiently sensitized by InsP(3).  相似文献   

16.
In the heart, individual cardiac muscle cells are linked by gap junctions. These junctions form low resistance pathways along which the electrical impulse flows rapidly and repeatedly between all the cells of the myocardium, ensuring their synchronous contraction. To obtain probes for mapping the distribution of gap junctions in cardiac tissue, polyclonal antisera were raised to three synthetic peptides, each matching different cytoplasmically exposed portions of the sequence of connexin43, the major gap-junctional protein reported in the heart. The specificity of each antiserum for the peptide to which it was raised was established by dot blotting. New methods were developed for isolating enriched fractions of gap junctions from whole heart and from dissociated adult myocytes, in which detergent-treatment and raising the temperature (potentially damaging steps in previously described techniques) are avoided. Analysis of these fractions by SDS-polyacrylamide gel electrophoresis revealed major bands at 43 kDa (matching the molecular mass of connexin43) and at 70 kDa. Western blot experiments using our antisera indicated that both the 43-kDa and the 70-kDa bands represent cardiac gap-junctional proteins. Pre-embedding immunogold labelling of isolated gap junctions and post-embedding immunogold labelling of Lowicryl-embedded whole tissue demonstrated the specific binding of the antibodies to ultrastructurally defined gap junctions. One antiserum (raised to residues 131–142) was found to be particularly effective for cytochemical labelling. Using this antiserum for immunofluorescence labelling in combination with confocal scanning laser microscopy enabled highly sensitive detection and three-dimensional mapping of gap junctions through thick slices of cardiac tissue. By means of the serial optical sectioning ability of the confocal microscope, images of the entire gap junction population of complete en face-viewed disks were reconstructed. These reconstructions reveal the presence of large junctions arranged as a peripheral ring around the disk, with smaller junctions in an interior zone: an arrangement that may facilitate efficient intercellular transfer of current. By applying our immunolabelling techniques to tissue from hearts removed from transplant patients with advanced ischaemic heart disease, we have demonstrated that gap junction distribution between myocytes at the border zone of healed infarcts is markedly disordered. This abnormality may contribute to the genesis of reentrant arrhythmias in ischaemic heart disease.  相似文献   

17.
Numerous two-cell voltage-clamp studies have concluded that the electrical conductance of mammalian cardiac gap junctions is not modulated by the transjunctional voltage (Vj) profile, although gap junction channels between low conductance pairs of neonatal rat ventricular myocytes are reported to exhibit Vj-dependent behavior. In this study, the dependence of macroscopic gap junctional conductance (gj) on transjunctional voltage was quantitatively examined in paired 3-d neonatal hamster ventricular myocytes using the double whole-cell patch-clamp technique. Immunolocalization with a site-specific antiserum directed against amino acids 252-271 of rat connexin43, a 43-kD gap junction protein as predicted from its cDNA sequence, specifically stained zones of contact between cultured myocytes. Instantaneous current-voltage (Ij-Vj) relationships of neonatal hamster myocyte pairs were linear over the entire voltage range examined (0 less than or equal to Vj less than or equal to +/- 100 mV). However, the steady-state Ij-Vj relationship was nonlinear for Vj greater than +/- 50 mV. Both inactivation and recovery processes followed single exponential time courses (tau inactivation = 100-1,000 ms, tau recovery approximately equal to 300 ms). However, Ij recovered rapidly upon polarity reversal. The normalized steady-state junctional conductance-voltage relationship (Gss-Vj) was a bell-shaped curve that could be adequately described by a two-state Boltzmann equation with a minimum Gj of 0.32-0.34, a half-inactivation voltage of -69 and +61 mV and an effective valence of 2.4-2.8. Recordings of gap junction channel currents (ij) yielded linear ij-Vj relationships with slope conductances of approximately 20-30 and 45-50 pS. A kinetic model, based on the Boltzmann relationship and the polarity reversal data, suggests that the opening (alpha) and closing (beta) rate constants have nearly identical voltage sensitivities with a Vo of +/- 62 mV. The data presented in this study are not consistent with the contingent gating scheme (for two identical gates in series) proposed for other more Vj-dependent gap junctions and alternatively suggest that each gate responds to the applied Vj independently of the state (open or closed) of the other gate.  相似文献   

18.
Currents from gap junction channels were recorded from pairs of astrocytes in primary culture using the double whole-cell recording technique. In weakly coupled pairs, single-channel events could be resolved without pharmacological uncoupling treatment. Under these conditions, unitary conductance was 56 +/- 7 pS, and except for multiples of this value, no other level of conductance was observed consistently. To characterize the type of junctional protein constituting astrocyte gap junction channels, immunological and biochemical experiments were carried out on the same material. Specific cDNA probes for three connexins identified in mammals (Cx26, Cx32, and Cx43) showed that only Cx43 mRNA was expressed in cultured astrocytes. The presence of Cx43 protein in cultured astrocytes was demonstrated by immunoblotting, immunofluorescence, and immunogold labeling using anti-peptide antibodies specific to Cx43. These results strongly suggest that gap junctions in astrocytes have a 50-60 pS unitary conductance associated with channels composed of Cx43 protein.  相似文献   

19.
Summary Gap junctions exist in the septa between the segments of the lateral giant axons in the ventral nerve cord of the crayfish Procambarus. A large increase in the resistance (uncoupling) of these gap junctions was brought about by mechanical injury to the axonal segments. Both thin sections and freeze-fracture preparations were used to monitor the morphological changes which occurred up to 45 min after injury.There was no apparent change in the organization (a loose polygonal array) of the intramembrane particles which make up the junctional complex up to 45 min after injury. In some instances, however, the intramembrane particles appeared to have moved away from the junctional area. Other junctional regions were internalized and appeared similar to what have been called annular gap junctions. Also at this time (20–25 min after injury), a dense cytoplasmic plug formed in uninjured axon near the junctional region. It is concluded that the gap junctions that exhibit a loose polygonal organization of the intramembrane particles may be either in a state of low resistance (coupled) or a state of high resistance (uncoupled).  相似文献   

20.
《The Journal of cell biology》1988,106(5):1667-1678
Gap junctions between crayfish lateral axons were studied by combining anatomical and electrophysiological measurements to determine structural changes associated during uncoupling by axoplasmic acidification. In basal conditions, the junctional resistance, Rj, was approximately 60-80 k omega and the synapses appeared as two adhering membranes; 18-20-nm overall thickness, containing transverse densities (channels) spanning both membranes and the narrow extracellular gap (4- 6 nm). In freeze-fracture replicas, the synapses contained greater than 3 X 10(3) gap junction plaques having a total of approximately 3.5 X 10(5) intramembrane particles. "Single" gap junction particles represented approximately 10% of the total number of gap junction particles present in the synapse. Therefore, in basal conditions, most of the gap junction particles were organized in plaques. Moreover, correlations of the total number of gap junction particles with Rj suggested that most of the junctional particles in plaques corresponded to conducting channels. Upon acidification of the axoplasm to pH 6.7- 6.8, the junctional resistance increased to approximately 300 k omega and action potentials failed to propagate across the septum. Morphological measurements showed that the total number of gap junction particles in plaques decreased approximately 11-fold to 3.1 X 10(4) whereas the number of single particles dispersed in the axolemmae increased significantly. Thin sections of these synapses showed that the width of the extracellular gap increased from 4-6 nm in basal conditions to 10-20 nm under conditions where axoplasmic pH was 6.7- 6.8. These observations suggest that single gap junction particles dispersed in the synapse most likely represent hemi-channels produced by the dissasembly of channels previously arranged in plaques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号