首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-Affinity [3H]Choline Accumulation in Cultured Human Skin Fibroblasts   总被引:1,自引:0,他引:1  
[3H]Choline can be transported across cell membranes by high-affinity (KT less than 5 microM) and low-affinity (KT much greater than 5 microM) systems. High-affinity choline accumulation (HACA) has been demonstrated in synaptosomes made from cholinergic brain regions such as the hippocampus and caudate-putamen. In cell culture, HACA has been demonstrated in glia and avian telencephalon, dissociated spinal cord, and muscle fibroblasts. We examined [3H]choline accumulation in a single normal human fibroblast line cultured from skin biopsy. [3H]Choline accumulation was temperature-dependent and linear with incubation time up to 6 min at 0.125 microM-choline. The apparent KT for [3H]choline was 5 microM, which is similar to that observed in avian fibroblasts. Isoosmotic replacement of Na+ with either Li+ (144 mM) or sucrose (288 mM) severely reduced [3H]choline accumulation (by 70-90%). Pre-incubation with ouabain (100 microM), sodium orthovanadate (100 microM), or 2,4-dinitrophenol (100 microM), or replacement of Ca2+ by Mg2+ had little or no effect on subsequent [3H]choline accumulation. [3H]Choline accumulation was inhibited by hemicholinium-3 (HC-3); after pre-incubation in HC-3 at 37 degrees C for 10 min, the IC50 (at 0.125 microM-choline) was 5.6 microM. The HC-3 sensitivity, Na+ dependence, and low KT suggest that human skin fibroblasts have a high-affinity transport system for choline.  相似文献   

2.
The cardiac ganglion of the horseshoe crab, Limulus polyphemus, was incubated in Chao's solution containing 0.01 microM [3H]choline at room temperature (25 +/- 2 degrees C) and the ganglion readily accumulated the radiolabel. The ganglion uptake of [3H]choline was linear over 60 min. Kinetic analysis revealed dual choline uptake systems within the cardiac ganglion, a high affinity uptake system (Km = 2.2 microM, Vmax = 0.16 pmoles/mg/min) and a low affinity system (Km = 92.3 microM, Vmax = 3.08 pmoles/mg/min). The high affinity uptake system was sodium-dependent and inhibited by micromolar concentrations of hemicholinium-3. A 15 min pre-exposure of the ganglion to Chao's solution containing 90 mM potassium stimulated a significant increase in choline uptake. There was no detectable synthesis of [3H]acetylcholine from the [3H]choline taken up by the cardiac ganglion. The major portion of the extractable label appeared in a fraction which co-electrophoresed with phosphorylcholine. These results suggest that the sodium-dependent high affinity [3H]choline uptake system of the cardiac ganglion subserves a specific requirement for choline which is unrelated to a cholinergic function.  相似文献   

3.
Tor 23 is a monoclonal antibody, generated against cholinergic terminals of theTorpedo californica, that has been found to bind to the extracellular surface of cholinergic neurons in a variety of tissues. This study shows that Tor 23 inhibits: 1) high affinity [3H]hemicholinium-3 binding to detergent-solubilized membranes prepared from rat neocortices; 2) high affinity [3H]choline uptake in rat neocortical and striatal P2 preparations; and 3) [3H]acetylcholine synthesis in isolated nerve terminals. Tor 23 does not appear to affect low affinity [3H]choline uptake or [3H]acetylcholine release. These results are consistent with the hypothesis that Tor 23 may bind to nerve terminal high affinity choline transporters in the rat brain.  相似文献   

4.
The relationship between transport and metabolism in synaptoneurosomes was examined to determine the metabolic stability of rapidly accumulated D-[3H]adenosine and L-[3H]adenosine and the degree to which metabolism of the accumulated purines affected measurements of apparent KT and Vmax values for adenosine transport. For D-[3H]adenosine, high- and low-affinity accumulation processes were present. For the high-affinity system an inverse relationship was found between transport reaction times and KT and Vmax values. For incubations of 5, 15, and 600 s, which corresponded to 24, 32, and 76% phosphorylation of accumulated D-[3H]adenosine to nucleotides, apparent KT values were 9.4, 8.4, and 4.5 microM, respectively, and Vmax values were 850, 70, and 12 pmol/min/mg of protein, respectively. Pretreatment with 10 microM erythro-9-(2-hydroxy-3-nonyl)adenine, an adenosine deaminase inhibitor, and 5'-iodotubercidin, an adenosine kinase inhibitor, decreased the phosphorylation of accumulated D-[3H]adenosine to 6% with 5-s and 9% with 15-s incubations. This resulted in significantly higher KT values: 36 microM at 5 s and 44 microM at 15 s. At 10-min incubations in the presence of these inhibitors, metabolism of accumulated D-[3H]adenosine was 32%, and apparent KT and Vmax values at this time were not significantly different from those obtained without inhibitors. For L-[3H]adenosine, apparent KT and Vmax values for 20-s incubations were 38.7 microM and 330 pmol/min/mg of protein, respectively. Metabolism (mainly phosphorylation) of accumulated L-[3H]adenosine was observed only at incubations of greater than 30 s.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
This report describes the membrane binding properties of [3H]hemicholinium-3 ([3H]HC-3), a selective inhibitor of sodium-dependent high-affinity choline uptake (SDHACU) in cholinergic nerve terminals. Under the described assay conditions, [3H]HC-3 bind with a saturable population of high-affinity (apparent Kd = 1.9 nM) CNS membrane sites having the regional distribution: striatum much greater than hippocampus greater than cerebral cortex greater than cerebellum. High-affinity [3H]HC-3 binding is entirely dependent upon the presence of sodium chloride (EC50 = 35-50 mM) and is markedly reduced when other salts of sodium or monovalent ions are substituted. [3H]HC-3 binding is inhibited by choline (Ki = 6 microM) and acetylcholine (Ki = 35 microM) but markedly less sensitive to other cholinergic agents and metabolic inhibitors. In light of the similar ionic dependencies, regional distributions and pharmacological specificities of [3H]HC-3 binding and SDHACU, closely associated sites may be involved in both processes.  相似文献   

6.
Presynaptic muscarinic and nicotinic receptors in the cerebral cortex reportedly inhibit and increase acetylcholine (ACh) release, respectively. In this study, we investigated whether these receptors reside on cholinergic nerve terminals projecting to the cerebral cortex from the nucleus basalis magnocellularis (nbm). Adult male rats received unilateral infusions of ibotenic acid (5 micrograms/1 microliter) in the nbm. Two weeks later, cerebral cortical cholinergic markers (choline acetyltransferase activity, high-affinity choline uptake, and coupled ACh synthesis) were significantly reduced in synaptosomes prepared from the lesioned hemispheres compared to contralateral controls. The depolarization-induced release of [3H]ACh from these synaptosomes was also reduced in the lesioned hemispheres, reflecting the reduced synthesis of transmitter. However, the nbm lesions had no effect on the inhibition of release induced by 100 microM oxotremorine. Synaptosomal [3H]ACh release was not altered by nicotine or the nicotinic agonists anabaseine and 2-(3-pyridyl)-1,4,5,6-tetrahydropyrimidine. Nicotine (10-100 microM) did increase [3H]ACh release in control and lesioned hemispheres in cortical minces, but to a similar extent. These results suggest that neither muscarinic nor nicotinic receptors modulating ACh release reside on nbm-cholinergic terminals.  相似文献   

7.
The main objective of these studies was to determine whether adenosine inhibits choline kinase in rat striata, leading to a decreased incorporation of choline into phosphorylcholine, a mechanism that may mediate seizure-induced increases in the levels of free choline in brain. Incubation of particulate and soluble fractions of striatal synaptosomes with adenosine or its metabolically stable analogues significantly inhibited enzyme activity. The inhibition was noncompetitive versus choline and competitive versus MgATP. Inhibitor constants for adenosine, 2-chloroadenosine, and 2',5'-dideoxyadenosine at the MgATP site were 94, 49, and 207 microM, respectively; these values were less than the Michaelis constant for MgATP (340 microM). To determine whether adenosine altered the phosphorylation of choline in an intact preparation, synaptosomes were incubated with [3H]choline in the presence or absence of adenosine or its analogues and the amount of [3H]-phosphorylcholine formed from the [3H]choline taken up was measured. All compounds tested significantly reduced the synthesis of [3H]phosphorylcholine. Results suggest that following seizures or hypoxia, when levels of adenosine increase and the concentration of ATP decreases, inhibition of choline phosphorylation may be manifest, resulting in increased levels of free choline in brain.  相似文献   

8.
The multiple molecular forms of choline acetyltransferase (ChAT) were analysed during the postnatal development of rat brain. Changes in the sodium-dependent, high affinity uptake of [3H]choline (HAUC) and in the efficiency of conversion of labelled choline into ACh in vitro were also examined. Both mature and 7-day old brain contained three molecular forms of ChAT, with isoelectric points of pH 7.3, 7.9 and 8.3, but the immature brain appeared to contain smaller concentrations of the most basic form of the enzyme (pI = 8.3). Of the total choline uptake measured in slices of frontal cortex, adult samples exhibited a greater proportion of HAUC than 7-day samples and appeared to acetylate more efficiently the [3H]choline accumulated by high affinity uptake. This evidence suggests a basic molecular form of ChAT, appearing in rat brain during postnatal development, might be responsible for the efficient coupling of the high affinity uptake and subsequent acetylation of choline in cholinergic nerve terminals.  相似文献   

9.
Sodium-dependent 3H-labeled nucleoside transport was studied using a mixed population of dissociated brain cells from adult rats. The accumulation of [3H]adenosine during brief (15-s) incubation periods was significantly greater in the presence of 110 mM Na+ than in its absence. This occurred at substrate concentrations that ranged from 0.25 to 100 microM. Similar findings were observed for the rapid accumulation of [3H]uridine. Kinetically, the rapid accumulation of [3H]adenosine in both the absence and the presence of Na+ was best described by a two-component system. In the presence of Na+, the KT and Vmax values for the high-affinity affinity component were 0.9 microM and 8.9 pmol/mg of protein/15 s, and those for the low-affinity component were 313 microM and 3,428 pmol/mg of protein/15 s, respectively. In the absence of Na+, the KT value for the high-affinity component was significantly higher (1.8 microM). [3H]Uridine accumulation was best described kinetically by a one-component system that in the presence of Na+ had KT and Vmax values of 1.0 mM and 2.6 nmol/mg of protein/15 s, respectively. As was found for [3H]adenosine, in the absence of Na+, the KT value was significantly higher (1.8 mM). The sodium-dependent transport of [3H]adenosine was inhibitable by ouabain and 2,4-dinitrophenol. Of the three nucleoside transport inhibitors tested, only nitrobenzylthioninosine demonstrated high affinity and selectivity in blocking the sodium component. Thus, high-affinity sodium-dependent nucleoside transport systems, in addition to facilitated diffusion systems, exist on brain cells from adult rats.  相似文献   

10.
Synaptosomes prepared from rat cerebral cortex and labeled with [3H]noradrenaline (NA) were superfused with calcium-free Krebs-Ringer-bicarbonate medium and exposed to 10 mM K+ plus 0.1 mM Ca2+ so that [3H]NA release was induced. 6,7-Dihydroxy-N,N-dimethyl-2-aminotetralin (TL-99) strongly inhibited synaptosomal K+-induced [3H]NA release (EC50 = 5-10 nM) by activating alpha 2-adrenoceptors. Release was also inhibited (maximally by 40-50%) by morphine (EC50 = 5-10 nM), [Leu5]enkephalin (EC50 = approximately 300 nM), [D-Ala2,D-Leu5]enkephalin (DADLE), and Tyr-D-Ala-Gly-(NMe)Phe-Gly-ol (DAGO) (EC50 values = approximately 30 nM). In contrast to the mu-selective opioid receptor agonists morphine and DAGO, the highly delta-selective agonist [D-Pen2,D-Pen5]enkephalin (1 microM) did not affect [3H]-NA release. Furthermore, the inhibitory effect of DADLE, an agonist with affinity for both delta- and mu-opioid receptors, was antagonized by low concentrations of naloxone. The findings strongly support the view that, like alpha 2-adrenoceptors, mu-opioid receptors mediating inhibition of NA release in the rat cerebral cortex are localized on noradrenergic nerve terminals.  相似文献   

11.
The binding properties of opioid receptors on isolated nerve terminals (neurosecretosomes) from bovine posterior pituitaries were characterized. Both [3H]etorphine and [3H]ethylketocyclazocine ([3H]EKC) showed high-affinity binding with complex binding isotherms, consistent with the presence of multiple classes of binding sites. [D-Ala2,D-Leu5]enkephalin showed no specific binding and failed to displace [3H]etorphine at high concentrations, indicating the absence of mu, delta, or benzomorphan (kappa 2) sites. Mathematical modelling of the data suggested the presence of three classes of binding sites. The first was of high affinity with Kd values of 0.9 and 2.0 nM for etorphine and EKC, respectively. The second class of sites appeared to bind etorphine with a KD of 150 nM, and EKC with extremely low affinity (unmeasurable binding). The third class of sites was characterized by KD values of 7 and 2 microM for etorphine and EKC, respectively. These results indicate that the nerve terminals of bovine posterior pituitary contain opioid binding sites of the kappa type. Furthermore, these binding sites appear heterogeneous, consisting of at least two and possibly more subtypes or states.  相似文献   

12.
The Independency of Choline Transport and Acetylcholine Synthesis   总被引:3,自引:2,他引:1  
The coupling of choline transport to acetylcholine synthesis has been investigated by measurement of the isotopic dilution of a pulse of [3H]choline during its incorporation into the recently synthesised acetylcholine of cerebral cortex synaptosomes. Recently synthesised acetylcholine was identified as that containing 14C-labelled precursors introduced by a preincubation before the pulse. When [14C]glucose was used to label acetyl-CoA coupling ratios (calculated as the inverse of the dilution of extracellular [3H]choline during its incorporation into [3H]acetylcholine) of about 0.05-0.2 were found at a choline concentration of 1 microM, rising to 0.5 at choline concentrations of 10-50 microM. Experiments using [14C]choline as a precursor gave similar results, and it was shown that the isotopic dilution did not occur extrasynaptosomally and was not affected by low glucose concentrations. Coupling ratios were always less than unity and rose as the choline concentration increased. It is concluded that choline transported into the nerve terminal has no privileged access to choline acetyltransferase. The results can be explained by a rate-controlling transport of choline into the terminal followed by its rapid acetylation rather than any linkage or coupling of the two processes.  相似文献   

13.
Cholinergic nerve terminals were affinity purified from rat caudate nucleus. On stimulation with both 22.6 mM KCl and 50 microM veratridine, ATP was released in a Ca2+-dependent manner. The molar ratio of released acetylcholine to ATP (9:1) was closer to that found in isolated cholinergic vesicles (7:1) than whole terminals (3:1). Extracellular [14C]ATP was rapidly metabolized by these terminals to adenosine and inosine via ectonucleotidases. The terminals had a saturable, high-affinity uptake mechanism for adenosine (Km = 16.6 microM). Veratridine stimulation also caused the Ca2+-dependent release of nucleosides in a dipyridamole-sensitive manner. Both theophylline treatment and inhibition of extracellular ATP breakdown resulted in increased ATP and nucleoside release. Extracellular adenosine was shown to inhibit acetylcholine release, probably via the A1 receptor. The role of extracellular purines at the cholinergic nerve terminal is discussed.  相似文献   

14.
The ginsenoside Rb1 has previously been reported to improve memory deficits induced by anticholinergic drug treatment, and to facilitate acetylcholine (Ach) release from rat brain hippocampal slices. The increase in ACh release was not associated with an increase in calcium uptake into nerve terminals, but was associated with an increase in uptake of the precursor choline. In the present studies, analysis of choline uptake kinetics indicated that Rb1 increased the maximum velocity of choline uptake, while the affinity of the choline uptake carrier for choline (Km) was not significantly altered. Acute treatment with Rb1 did not alter the number of [3H]hemicholinium-3 (HC-3) binding sites in any of three cholinergic brain regions examined, suggesting that the increase in the maximum velocity of choline uptake was not associated with an increase in the number of choline carriers. However, chronic (3 day) administration of Rb1 did increase the number of choline uptake sites in the hippocampus, and to a lesser extent in the cortex.  相似文献   

15.
The binding characteristics and distribution of M1 and M2 muscarinic cholinergic receptors and high-affinity choline uptake sites were studied in the striatum of the rat at 3-4 and 9-12 weeks of age after exposure to unilateral perinatal hypoxic-ischemic brain injury. High-affinity choline uptake sites were labeled with [3H]hemicholinium-3, M1 receptors with [3H]pirenzepine, and M2 receptors with [3H]AF-DX 116. Saturation experiments revealed a significant decrease in the maximal binding capacity (Bmax) for [3H]pirenzepine-labeled M1 receptors in the lesioned caudate/putamen complex in immature rats with moderate brain injury, in comparison with controls. In contrast, the Bmax value for [3H]hemicholinium-3-labeled high-affinity choline uptake sites was significantly increased. No changes in dissociation constants (KD) were observed. These changes were most pronounced in the dorsolateral region of striatum. Striatal regional distribution of [3H]AF-DX 116 was not affected. In mature rats, binding of [3H]pirenzepine returned to control values, whereas [3H]hemicholinium binding showed a persistent increase (23%). The increase in [3H]hemicholinium-3 binding, as a specific marker of cholinergic nerve terminals, is consistent with our prior morphologic studies demonstrating relative preservation of cholinergic neurons and neuropil, and supports the concept that striatal cholinergic systems are resistant to hypoxic-ischemic injury.  相似文献   

16.
We examined the effect of dehydroepiandrosterone (DHEA) on glucose uptake and phospholipase D (PLD) activation in rat adipocytes. DHEA (1 microM) provoked a twofold increase in [3H]2-deoxyglucose (DG) uptake for 30 min. Incorporation of [3H]glycerol into diacylglycerol was increased 150% above basal level for 20 min after stimulation with 1 microM DHEA. DHEA increased PLD activity, measured by the incorporation into [3H]phosphatidylethanol in [3H]palmitate labelled rat adipocytes, or by [3H]choline release in [methyl-(3)H]choline labeled rat adipocytes. Our results suggest that DHEA stimulates glucose uptake with activation of PLD in rat adipocytes.  相似文献   

17.
The effects of gamma-aminobutyric acid (GABA) on the release of [3H]acetylcholine ([3H]ACh) were studied in synaptosomes prepared from rat hippocampus, cerebral cortex, hypothalamus, and striatum and prelabelled with [3H]choline. When synaptosomes were exposed in superfusion to exogenous GABA (0.01-0.3 mM) the basal release of newly synthesized [3H]ACh was increased in a concentration-dependent way in hippocampus, cortex, and hypothalamus nerve endings. In contrast, the release of [3H]ACh was not significantly affected by GABA in striatal synaptosomes. The effect of GABA was not antagonized significantly by bicuculline or picrotoxin. Muscimol caused only a slight not significant increase of [3H]ACh release when tested at 0.3 mM whereas, at this concentration, (-)-baclofen was totally inactive. The GABA-induced release of [3H]ACh was counteracted by SKF 89976A, SKF 100561, and SKF 100330A, three strong and selective GABA uptake inhibitors. The data suggest that, in selective areas of the rat brain, GABA causes release of [3H]ACh following penetration into cholinergic nerve terminals through a GABA transport system.  相似文献   

18.
Cytidine, as cytidine 5'-diphosphate choline, is a major precursor in the synthesis of phosphatidylcholine in cell membranes. In the present study, we examined the relationships between extracellular levels of cytidine, the conversion of [14C]choline to [14C]phosphatidylcholine, and the net syntheses of phosphatidylcholine and phosphatidylethanolamine by PC12 cells. The rate at which cytidine (as [3H]cytidine) was incorporated into the PC12 cells followed normal Michaelis-Menten kinetics (Km = 5 microM; Vmax = 12 x 10(-3) mmol/mg of protein/min) when the cytidine concentrations in the medium were below 50 microM; at higher concentrations, intracellular [3H]cytidine nucleotide levels increased linearly. Once inside the cell, cytidine was converted mainly into cytidine triphosphate. In pulse-chase experiments, addition of cytidine to the medium caused a time- and dose-dependent increase (by up to 30%) in the incorporation of [14C]choline into membrane [14C]-phosphatidylcholine. When the PC12 cells were supplemented with both cytidine and choline for 14 h, small but significant elevations (p less than 0.05) were observed in their absolute contents of membrane phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine, all increasing by 10-15% relative to their levels in cells incubated with choline alone. Exogenous cytidine, acting via cytidine triphosphate, can thus affect the synthesis and levels of cell membrane phospholipids.  相似文献   

19.
Na+-dependent uptake of L-[3H]proline was measured in a crude synaptosomal preparation from the entire rat hippocampal formation or from isolated hippocampal regions. Among hippocampal regions, Na+-dependent proline uptake was significantly greater in areas CA1 and CA2-CA3-CA4 than in the fascia dentata, whereas there was no marked regional difference in the distribution of Na+-dependent gamma-[14C]aminobutyric acid ([14C]GABA) uptake. A bilateral kainic acid lesion, which destroyed most of the CA3 hippocampal pyramidal cells, reduced Na+-dependent proline uptake by an average of 41% in area CA1 and 52% in area CA2-CA3-CA4, without affecting the Na+-dependent uptake of GABA. In the fascia dentata, neither proline nor GABA uptake was significantly altered. Kinetic studies suggested that hippocampal synaptosomes take up proline by both a high-affinity (KT = 6.7 microM) and a low-affinity (KT = 290 microM) Na+-dependent process, whereas L-[14C]glutamate is taken up predominantly by a high-affinity (KT = 6.1 microM) process. A bilateral kainic acid lesion reduced the Vmax of high-affinity proline uptake by an average of 72%, the Vmax of low-affinity proline uptake by 44%, and the Vmax of high affinity glutamate uptake by 43%, without significantly changing the affinity of the transport carriers for substrate. Ipsilateral-commissural projections of CA3 hippocampal pyramidal cells appear to possess nearly as great a capacity for taking up proline as for taking up glutamate, a probable transmitter of these pathways. Therefore proline may play an important role in transmission at synapses made by the CA3-derived Schaffer collateral, commissural, and ipsilateral associational fibers.  相似文献   

20.
Heparin (H) was previously shown to accelerate the inactivation of alpha-thrombin (T) by antithrombin III (AT) primarily by promoting the initial binding of thrombin and AT in a ternary T.AT.H complex intermediate without significantly influencing the subsequent product formation step (Olson, S. T., and Shore, J. D. (1982) J. Biol. Chem. 257, 14891-14895). In the present study, the protein-heparin interactions which contribute to the assembly of the ternary complex intermediate and their linkage were quantitated by equilibrium binding and stopped-flow kinetic studies at pH 7.4, I 0.3, 25 degrees C, using p-aminobenzamidine (P) as a fluorescence probe. Equilibrium binding studies of the AT.H and T.H binary complex interactions monitored by the 40% enhancement in AT fluorescence or the 16-18% quenching of thrombin-bound p-aminobenzamidine fluorescence, respectively, indicated a 100-fold greater affinity of AT for heparin (KAT,H 0.23 microM) as compared to thrombin for heparin (KT,H 35-42 microM). Consistent with this large difference in affinities, rapid kinetic studies indicated that assembly of the ternary complex occurred predominantly as a bimolecular association between the AT.H binary complex and free thrombin. Thus, under pseudo-first order conditions ([AT]o, [H]o much greater than [T]o much less than [P]o), the observed thrombin inactivation rate constant (kobs) exhibited a saturable dependence on [AT]o or [H]o when [H]o much less than KT,H, reflecting a KAT,H (0.25 microM) similar to that directly determined by equilibrium binding. Moreover, competitive inhibition of the reaction by T.H binary complexes was indicated from the hyperbolic decrease in kobs produced by heparin with either high or low affinity for AT or active-site blocked thrombin at concentrations comparable to KT,H. This behavior was consistent with values of KT,H (27-51 microM) similar to those determined directly from equilibrium binding measurements. Comparison of the affinities of the binary protein-heparin interactions with the affinity of thrombin for AT.H complex in the ternary complex measured previously, indicated that the affinity of either protein for heparin was enhanced about 10-fold by the prior binding of the other protein to heparin. This linkage of the protein-heparin interactions implies that the ternary complex will be assembled at thrombin, AT, and heparin concentrations considerably lower than those predicted from previous reaction models which fail to account for this linkage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号