首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2-Acetoxyamino-6-methyldipyrido[1,2-a:3',2'-d]imidazole binds covalently to the 8 position of guanine residues in DNA. Treatment of the modified DNA with aqueous piperidine causes the liberation of the modified nucleic acid base, 2-(C8-guanyl)amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole, and cleavage of DNA at the sites of the modified guanylic acid residues. By use of 5'-end 32P-labelled DNA and sequence analysing gel electrophoresis, we discovered the base sequence specificity of DNA modification with 2-acetoxyamino-6-methyldipyrido[1,2-a:3',2'-d]imidazole. The guanine residues in G-C cluster-like regions are modified more frequently.  相似文献   

2.
A potent mutagen, 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), isolated from a tryptophan pyrolysate, was activated metabolically by rat liver microsomes and bound to DNA. An active metabolite formed by rat liver microsomes was identified as 3-hydroxyamino-1-methyl-5H-pyrido[4,3-b]indole (N-OH-Trp-P-2). Synthetic N-OH-Trp-P-2 reacted with DNA efficiently after O-acetylation or to a lesser extent under acidic conditions (pH 5.5), but did not react appreciably under neutral conditions. Acid hydrolysis of DNA modified by O-acetylated N-OH-Trp-P-2 (N-OAc-Trp-P-2) gave 3-(8-guanyl)amino-1-methyl-5H-pyrido[4,3-b]indole (Gua-Trp-P-2), which is the main modified base of DNA formed by Trp-P-2 in the presence of microsomes. The glycoside bond of the modified base was found to be cleaved by heating at 100° for 1 hr at pH 7.0. In this way, the modified base was liberated from DNA modified by N-OAc-Trp-P-2 in good yield. N-OAc-Trp-P-2 bound to guanyl cytidine more effectively than to guanylic acid, suggesting that covalent binding with guanyl moiety of DNA involves intercalation of the ultimate mutagen into a base pair.  相似文献   

3.
Abstract

Theoretical and experimental analysis of interaction of modified D- and L- dNTP as substrates for template-dependent and template-independent DNA polymerases was performed. It is shown that if the modified nucleoside 5′-triphosphates do not contain a substituent in position 3′ DNA chains can be extended by both strereoisomeric series with the same kinetic parameters. But the presence of even a 3′- hydroxy group in L-dNTP prevents their incorporation into the DNA chain.  相似文献   

4.
We investigated the incorporation of oxidatively modified guanine residues in DNA using three DNA polymerases, Escherichia coli Kf exo+, Kf exo-, and Taq DNA polymerase. We prepared nucleoside 5'-triphosphates with modified bases (dN (ox)TP) including imidazolone associated with oxazolone (dIzTP/dZTP), dehydroguanidinohydantoin (dOGhTP), and oxaluric acid (dOxaTP). We showed that the single-nucleotide incorporation of these dN (ox)TP at the 3'-end of a primer DNA strand was possible opposite C or G for dIzTP/dZTP, opposite C for dOGhTP using the Klenow fragment, and opposite C for dOxaTP using Taq. The efficiency of these misincorporations was compared to that of the nucleoside 5'-triphosphate modified with the mutagenic guanine lesion 8-oxo-G opposite A or C as well as to that of the natural dNTPs. The reaction was found not competitive. However, the ability of Kf exo- to further copy the whole template DNA strand from the primer carrying one modified residue at the 3'-end proved to be easy and rapid. The two-step polymerization process consisting of the single-nucleotide extension followed by the full extension of a primer afforded a method for the preparation of tailored double-stranded DNA oligonucleotides carrying a single modified base at a precise site on any sequence. This very rapid method allowed the incorporation of unique residues in DNA that were not available before due to their unstable character.  相似文献   

5.
To introduce photoreactive dNTP residues to the 3'-end of a mononucleotide gap, base-substituted photoreactive deoxynucleoside triphosphate derivatives, (5-[N-(2,3,5,6-tetrafluoro-4-azidobenzoyl)-trans-3-aminopropenyl-1]- and 5-(N-[N-(4-azido-2,5-difluoro-3-chloropyridine-6-yl)-3-aminopropionyl]- trans-3-aminopropenyl-1)-2'-deoxyuridine 5'-triphosphates, were used as substrates in the DNA polymerase beta-catalyzed reaction. The resulting nick, containing a modified base at the 3'-end, was sealed by T4 phage DNA ligase. This approach enables the preparation of DNA duplexes bearing photoreactive groups at predetermined position(s) of the nucleotide chain. Using the generated photoreactive DNA duplexes, the photoaffinity modifications of DNA polymerase beta and human replicative protein A (hRPA) were carried out. It was shown that DNA polymerase beta and hRPA subunits were modified with the photoreactive double-stranded DNA considerably less effectively than by the nicked DNA. In the case of double-stranded DNA, the hRPA p70 subunit was preferentially labeled, implying a crucial role of this subunit in the protein-DNA interaction.  相似文献   

6.
In this article, gold nanostructure modified electrodes were achieved by a simple one-step electrodeposition method. The morphologies of modified electrodes could be easily controlled by changing the pH of HAuCl4 solution. The novel nanoflower-like particles with the nanoplates as the building blocks could be interestingly obtained at pH 5.0. The gold nanoflower modified electrodes were then used for the fabrication of electrochemical DNA biosensor. The DNA biosensor fabrication process was characterized by cyclic voltammetry and electrochemical impedance spectroscopy with the use of ferricyanide as an electrochemical redox indicator. The DNA immobilization and hybridization on gold nanoflower modified electrode was studied with the use of [Ru(NH3)6]3+ as a hybridization indicator. The electrochemical DNA biosensor shows a good selectivity and sensitivity toward the detection of target DNA. A detection limit of 1 pM toward target DNA could be obtained.  相似文献   

7.
DNA glycosylases help maintain the genome by excising chemically modified bases from DNA. Escherichia coli 3-methyladenine DNA glycosylase I (TAG) specifically catalyzes the removal of the cytotoxic lesion 3-methyladenine (3mA). The molecular basis for the enzymatic recognition and removal of 3mA from DNA is currently a matter of speculation, in part owing to the lack of a structure of a 3mA-specific glycosylase bound to damaged DNA. Here, high-resolution crystal structures of Salmonella typhi TAG in the unliganded form and in a ternary product complex with abasic DNA and 3mA nucleobase are presented. Despite its structural similarity to the helix-hairpin-helix superfamily of DNA glycosylases, TAG has evolved a modified strategy for engaging damaged DNA. In contrast to other glycosylase-DNA structures, the abasic ribose is not flipped into the TAG active site. This is the first structural demonstration that conformational relaxation must occur in the DNA upon base hydrolysis. Together with mutational studies of TAG enzymatic activity, these data provide a model for the specific recognition and hydrolysis of 3mA from DNA.  相似文献   

8.
Ionizing radiation, oxidative stress and endogenous DNA-damage processing can result in a variety of single-strand breaks with modified 5' and/or 3' ends. These are thought to be one of the most persistent forms of DNA damage and may threaten cell survival. This study addresses the mechanism involved in recognition and processing of DNA strand breaks containing modified 3' ends. Using a DNA-protein cross-linking assay, we followed the proteins involved in the repair of oligonucleotide duplexes containing strand breaks with a phosphate or phosphoglycolate group at the 3' end. We found that, in human whole cell extracts, end-damage-specific proteins (apurinic/apyrimidinic endonuclease 1 and polynucleotide kinase in the case of 3' ends containing phosphoglycolate and phosphate, respectively) which recognize and process 3'-end-modified DNA strand breaks are required for efficient recruitment of X-ray cross-complementing protein 1-DNA ligase IIIalpha heterodimer to the sites of DNA repair.  相似文献   

9.
P M Rae  R E Steele 《Bio Systems》1978,10(1-2):37-53
The occurrence of small amounts of one or more of several modified bases in the DNA of an organism is widespread in nature. Prominent among these bases are 5-methylcytosine, N6-methyladenine and 5-hydroxymethyluracil. All can be found in varying amounts in DNA of viral, prokaryotic and eukaryotic origin. In some organisms, modified nucleotides comprise a large fraction of DNA nucleotides and in others there is complete replacement of one of the common four nucleotides by a modified one. This article discusses the distributions and possible roles of the several modified bases found in prokaryote and eukaryote DNAs. Emphasis is given (1) methylcytosine in a broad variety of eukaryotes, (2) methyladenine in certain protozoa and protophyta and (3) hydroxymethyluracil in dinoflagellates. Attention is focused on the phenomenology and the possible consequences of the presence of hydroxymethyluracil in DNA.  相似文献   

10.
DNA glycosylases catalyze the excision of chemically modified bases from DNA. Although most glycosylases are specific to a particular base, the 3-methyladenine (m3A) DNA glycosylases include both highly specific enzymes acting on a single modified base, and enzymes with broader specificity for alkylation-damaged DNA. Our structural understanding of these different enzymatic specificities is currently limited to crystal and NMR structures of the unliganded enzymes and complexes with abasic DNA inhibitors. Presented here are high-resolution crystal structures of the m3A DNA glycosylase from Helicobacter pylori (MagIII) in the unliganded form and bound to alkylated bases 3,9-dimethyladenine and 1,N6-ethenoadenine. These are the first structures of a nucleobase bound in the active site of a m3A glycosylase belonging to the helix-hairpin-helix superfamily. MagIII achieves its specificity for positively-charged m3A not by direct interactions with purine or methyl substituent atoms, but rather by stacking the base between two aromatic side chains in a pocket that excludes 7-methylguanine. We report base excision and DNA binding activities of MagIII active site mutants, together with a structural comparison of the HhH glycosylases.  相似文献   

11.
The effect of chromatin structure on the binding of a chemical carcinogen to the genomic DNA was studied. The binding in vivo of the ultimate carcinogen, benzo-pyrene 7,8,-diol,-9,10-epoxide, to various regions of the SV40 chromosome was revealed by an immunological method. Particular attention was given to restriction fragments which include the origin of replication which is "non-nucleosomal" in a significant fraction of the chromosomes. The distribution of (+/-) trans-7,8-dihydrobenzo[alpha]pyrene-7,8-diol-9,10-epoxide (BPDE) adducts was studied in 1) SV40 DNA modified in vitro to a level of 20 adducts/molecule, 2) DNA from SV40 chromosomes modified in vivo to a level of less than 1 adduct, and 3) DNA from only those chromosomes with an open origin of replication. In other experiments, the binding of BPDE to the origin region was compared to the binding to nucleosome core particle DNA from the viral chromosome. The origin region bound 1.7-fold more BPDE than core DNA, while linker DNA is 3-fold more modified than core DNA. However, the origin region was only about 20% more modified than any other region of the chromosome. We conclude that while the conformation of the DNA in chromatin has a slight effect on its accessibility to the carcinogen, the SV40 chromosome does not contain a particular "hot spot" which is preferentially modified by BPDE.  相似文献   

12.
The effects of DNA methyltransferases on Tn3 transposition were investigated. The E. coli dam (deoxyadenosine methylase) gene was found to have no effect on Tn3 transposition. In contrast, Tn3 was found to transpose more frequently in dcm+ (deoxycytosine methylase) cells than in dcm- mutants. When the EcoRII methylase gene was introduced into dcm- cells (E. coli strain GM208), the frequency of Tn3 transposition in GM208 was dramatically increased. The EcoRII methylase recognizes and methylates the same sequence as does the dcm methylase. These results suggest that deoxycytosine methylase modified DNA may be a preferred target for Tn3 transposition. Experiments were also performed to determine whether the Tn3 transposase was involved in DNA modification. Plasmid DNA isolated from dcm- E. coli containing the Tn3 transposase gene was susceptible to ApyI digestion but resistant to EcoRI digestion, suggesting that Tn3 transposase modified the dcm recognition sequence. In addition, restriction enzymes TaqI, AvaII, BglI and HpaII did not digest this DNA completely, suggesting that the recognition sequences of TaqI, AvaII, BglI and HpaII were modified by Tn3 transposase to a certain degree. The type(s), the extent and mechanism(s) of this modification remain to be investigated.  相似文献   

13.
The enzymatic digest from salmon sperm DNA photochemically modified by the monofunctional 3-carbethoxypsoralen was analyzed by high-performance liquid chromatography. The modified nucleosides extracted from DNA were compared with model compounds obtained from irradiation in the dry state of mixtures of 3-carbethoxypsoralen with 2'-deoxyribonucleosides whose chemical structures had previously been characterized. The main photoadducts formed in DNA are two cis-syn diastereoisomers formed via a C4-cycloaddition reaction involving the 4', 5' double bond of 3-carbethoxypsoralen and the 5,6 double bond of 2'-deoxythymidine. Among them, the most polar one accounts for 72%. Under the same conditions, photoadducts formed between 3-carbethoxypsoralen and 2'deoxycytidine account for less than 1%.  相似文献   

14.
The sensitivity of S1 nuclease to cis- and trans-(NH3)2PtCl2 modified DNAs is examined as a function of the level of cis- and trans-(NH3)2PtCl2 bound, the % (G+C) content in DNA from different sources and the sequence dependence in poly(dG).poly(dC) and poly(dG-dC).poly(dG-dC). The extent of DNA digested increases with increasing levels of either isomer and is inversely influenced by the % (G+C) content of the DNA. However, the difference in the extent of digestion between the cis-and trans-(NH3)2PtCl2 modified DNAs at equivalent levels of bound isomer follows the order, calf-thymus greater than M. lysodeikticus greater than poly(dG-dC).poly(dG-dC). While there is virtually no difference in the digestion profiles for poly(dG-dC).poly(dG-dC) modified with the two isomers, there is a striking difference in the extent of digestion between cis- and trans-(NH3)2PtCl2 modified poly(dG).poly(dC). These results are discussed in light of the possible modes of binding for cis-(NH3)2PtCl2, previously reported findings on modified DNA and possible implications for modifications in cellular chromatin.  相似文献   

15.
Bacterial magnetic particles (BMPs) were modified with 3-[2-(2-aminoethylamino)-ethylamino]-propyltrimethoxysilane (AEEA) to produce a dense amine surface. Modification of BMPs in a toluene solution resulted in an increased amine yield, and approximately 11.3 x 10(4) surface amines were detected on a single particle. The modified BMPs were capable of efficient electrostatic capture of DNA. The maximum amount of DNA captured on 10 microg of aminosilane-modified BMPs was 600 ng. A 10 mM phosphate buffer effectively released the captured DNA. This efficiency was dramatically enhanced by incubation at 80 degrees C and DNA recovery from aminosilane-modified BMPs approached 95%. DNA extraction from whole blood using these modified BMPs, followed by PCR, was successfully performed. Furthermore, automated single nucleotide polymorphism (SNP) detection of the aldehyde dehydrogenase 2 (ALDH2) was demonstrated.  相似文献   

16.

Background

The interaction of environmental chemicals and their metabolites with biological macromolecules can result in cytotoxic and genotoxic effects. 4-Aminobiphenyl (4-ABP) and several other related arylamines have been shown to be causally involved in the induction of human urinary bladder cancers. The genotoxic and the carcinogenic effects of 4-ABP are exhibited only when it is metabolically converted to a reactive electrophile, the aryl nitrenium ions, which subsequently binds to DNA and induce lesions. Although several studies have reported the formation of 4-ABP-DNA adducts, no extensive work has been done to investigate the immunogenicity of 4-ABP-modified DNA and its possible involvement in the generation of antibodies in bladder cancer patients.

Methodology/Principal Findings

Human DNA was modified by N-hydroxy-4-acetylaminobiphenyl (N-OH-AABP), a reactive metabolite of 4-ABP. Structural perturbations in the N-OH-AABP modified DNA were assessed by ultraviolet, fluorescence, and circular dichroic spectroscopy as well as by agarose gel electrophoresis. Genotoxicity of N-OH-AABP modified DNA was ascertained by comet assay. High performance liquid chromatography (HPLC) analysis of native and modified DNA samples confirmed the formation of N-(deoxyguanosine-8-yl)-4-aminobiphenyl (dG-C8-4ABP) in the N-OH-AABP damaged DNA. The experimentally induced antibodies against N-OH-AABP-modified DNA exhibited much better recognition of the DNA isolated from bladder cancer patients as compared to the DNA obtained from healthy individuals in competitive binding ELISA.

Conclusions/Significance

This work shows epitope sharing between the DNA isolated from bladder cancer patients and the N-OH-AABP-modified DNA implicating the role of 4-ABP metabolites in the DNA damage and neo-antigenic epitope generation that could lead to the induction of antibodies in bladder cancer patients.  相似文献   

17.
Randerath's procedure for 32P postlabeling of 3'-monophosphate deoxyribonucleotides from digests of cellular DNA has been modified. 3'-Monophosphate deoxyribonucleotides are converted to 3',5'-bis[32P]phosphate deoxyribonucleotides with polynucleotide kinase and [32P]ATP; these products are enzymatically converted by P1 nuclease and polynucleotide kinase into 5'-[32P]monophosphate deoxyribonucleotides, which are separated from [32P]ATP on an anion-exchange column eluted with 0.1 M NaH2PO4, pH 6.5. Labeled mononucleotides in the effluent are separated by high-performance liquid chromatography. Values for the base composition of calf thymus DNA determined with this modified assay compare very favorably with reported values. The assay was used to measure the level of incorporation of the clinically useful agent bromodeoxyuridine into the DNA of 9L rat brain tumor cells. The modified assay appears to be a very accurate method for the determination of levels of base analogs incorporated into DNA.  相似文献   

18.
In order to investigate whether several DNA lesions (O6-methylguanine, 8-hydroxyguanine, xanthine, an abasic site analogue and hypoxanthine) activate a c-Ha-ras gene and to determine the type of mutations induced by the DNA lesions, they were introduced into a synthetic c-Ha-ras gene by DNA cassette mutagenesis techniques. The modified genes were transfected into mouse NIH3T3 cells and the c-Ha-ras genes present in transformed cells were analysed. O6-methylguanine and xanthine induced a mutation to A, hypoxanthine induced a mutation to G. 8-hydroxyguanine and the abasic site analogue caused random mutations in the modified and adjacent positions. These results indicated that the synthetic c-Ha-ras gene is very useful for the detection of mutations caused by a DNA lesion.  相似文献   

19.
Among the hundreds of nucleic acid analogues that have been studied over the last two decades only very few exhibit backbones with linkers between residues that are either shorter or longer than the four-atom linker O3'-P-O5'-C5' connecting sugar ring moieties in DNA and RNA. 2'-Deoxyribonucleoside dimers connected by a five-atom linker O3'-CH(CH(3))-CO-NH-CH(2) (*designates a chiral center) were reported to lead to only a slight destabilization of RNA-DNA hybrids in which the DNA strand contained one or several of these amide-linked dimers (De Napoli, L., Iadonisi, A., Montesarchio, D., Varra, M., and Piccialli, G. (1995) Synthesis of thymidine dimers containing a new internucleosidic amide linkage and their incorporation into oligodeoxyribonucleotides, Bioorg. Med. Chem. Lett. 5, 1647-1652). To analyze the influence of various chemistries of such five-atom amide linkers on the RNA-binding affinity of modified DNA strands, we have synthesized five different amide-linked dimers, including structures with homochiral linkers of the type X3'-C*H(CH(3))-CO-NH-CH(2) (X = O, CH(2)) as well as the corresponding analogues carrying methoxy groups at the 2'-position of the 3'-nucleosides. We have conducted a detailed thermodynamic analysis of duplex formation between the modified DNA and RNA, with the DNA strands containing between one and seven consecutive modified dimers. Some of the five-atom-linked dimers lead to significantly higher RNA-binding affinities compared with that of native DNA. Interestingly, the linkers with opposite stereochemistry at the chiral center stabilize duplexes between the modified DNA and RNA to different degrees. CD spectroscopy in solution and a crystal structure of an RNA-DNA duplex with a single amide-linked dimer demonstrate that the longer amide backbones do not disrupt the duplex geometry. These observations provide further evidence that stable cross-pairing between two different types of nucleic acids does not require the numbers of atoms linking their individual residues to match.  相似文献   

20.
In order to study the mechanisms of DNA biosynthesis a number of modified nucleoside - substrates of DNA polymerases was synthesized. The absence of hydroxyl at 3'-position of ribose results in terminating properties of DNA biosynthesis of these analogues. A single step synthesis of triphosphates and alpha-thiotriphosphates of natural and 3'-modified 2'-deoxynucleosides is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号