首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
4.
赵赣 《生物学杂志》2010,27(3):69-70,100
迄今为止的资料表明,大多数植酸酶与酸性磷酸酶的关系密切。通过测定Km,即可判断只有以植酸(盐)为最适底物的酶(包括酸性磷酸酶)才是严格意义上的植酸酶。  相似文献   

5.
Pullulan, a relationship between molecular weight and fine structure   总被引:9,自引:0,他引:9  
Catley BJ 《FEBS letters》1970,10(3):190-193
  相似文献   

6.
The relationship between the molecular weight and the number of subunits in oligomeric globular proteins consisting of identical subunits has been analyzed. It has been shown that the molecular weights of the subunits are distributed about a mean value of 48,000 and consequently that the molecular weights of the native oligomeric proteins are distributed in clearly distinguishable molecular weight regions. This observation allows the probability of a particular oligomeric structure to be predicted from a measurement of the oligomer molecular weight alone, which is useful in a number of types of study of protein structure, particularly comparative studies. Calculations have been performed which suggest that there is no thermodynamic limitation, in terms of the subunit interactions themselves, to the size of an oligomeric protein with a given number of subunits. Rather, an individual polypeptide chain itself has inherent size limitations, which consequently limits the molecular weight of the corresponding oligomer.  相似文献   

7.
Proper hydration of the stratum corneum (SC) is important for maintaining skin's vital functions. Water loss causes development of drying stresses, which can be perceived as ‘tightness’, and plays an important role in dry skin damage processes. However, molecular structure modifications arising from water loss and the subsequent development of stress has not been established. We investigated the drying stress mechanism by studying, ex vivo, the behaviors of the SC components during water desorption from initially fully hydrated samples using Raman spectroscopy. Simultaneously, we measure the SC mechanical stress with a substrate curvature instrument. Very good correlations of water loss to the mechanical stress of the stratum corneum were obtained, and the latter was found to depend mainly on the unbound water fraction. In addition to that, the water loss is accompanied with an increase of lipids matrix compactness characterized by lower chain freedom, while protein structure showed an increase in amount of α‐helices, a decline in α‐sheets, and an increase in folding in the tertiary structure of keratin. The drying process of SC involves a complex interplay of water binding, molecular modifications, and mechanical stress. This article provides a better understanding of the molecular mechanism associated to SC mechanics. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

8.
Summary The ability to convert cyclohexanecarboxylic acid to hippuric acid has been studied in liver from guinea pigs, rabbits, rats and mice using a gas chromatographic- mass spectrometric method employing selected ion monitoring. Guinea pig liver showed the highest activity, giving values double of those found in rabbit liver and five times those in rat liver. Only very weak activity was found in mouse liver. (Hydroxymethyl)cyclohexane, cyclohexanealdehyde and a-hydroxyethylcyclohexane, which are structurally related to cyclohexanecarboxylic acid but lack the carboxyl group, were not aromatized by guinea pig liver mitochondria. This finding indicates that the carboxyl group is essential for aromatization. Absence of aromatization was also found with the homologs cyclohexaneacetic acid and cyclohexanepropionic acid and with the di-acidstrans-1,2- andtrans-1,4-cyclohexanedicarboxylic acid. The effect of a methyl group in cyclohexanecarboxylic acid depended on its position. 2-Methyl-1-cyclohexanecarboxylic acid was not aromatized, however the 3- and 4-methyl derivatives underwent aromatization and subsequent conjugation with glycine. The rates of formation ofm-methyl- andp-methylhippuric acid were 16% and 9%, respectively, of that found for hippuric acid from cyclohexanecarboxylic acid (8.0 nmol/min/mg protein).  相似文献   

9.
Electrooxidation of poly (I) at a paraffin wax-impregnated spectroscopic graphite electrode was studied by means of differential pulse voltammetry. It was found that the transition of single-stranded poly (I) to its multistranded form, induced by increasing the ionic strength of neutral medium, is accompanied by a lowering of the oxidation current of poly (I). The marked lowering of the oxidation current is also observable as a consequence of the formation of double-stranded complex of poly (I). poly (C). The voltammetry at carbon electrodes provides for the study of poly(I) structure in principle identical information as optical methods.  相似文献   

10.
11.
The molecular and species specificity of glucocorticoid suppression of corticosteroidogenesis was investigated in isolated adrenocortical cells. Trypsin-isolated cells from male rat, domestic fowl and bovine adrenal glands were incubated with or without steroidogenic agents and with or without steroids. Glucocorticoids were measured by radioimmunoassay or fluorometric assay after 1-2 h incubation. Glucocorticoids suppressed ACTH-induced steroidogenesis of isolated rat cells with the following relative potencies: corticosterone greater than cortisol = cortisone greater than dexamethasone. The mineralocorticoid, aldosterone did not affect steroidogenesis. Suppression by glucocorticoids was acute (within 1-2 h), and varied directly with the glucocorticoid concentration. Testosterone also suppressed ACTH-induced steroidogenesis. Glucocorticoid-type steroids have equivalent suppressive potencies, thus suggesting that these steroids may induce suppression at least partly by a common mechanism. Although corticosterone caused the greatest suppression, testosterone was more potent. The steroid specificity of suppression of cyclic AMP (cAMP)-induced and ACTH-induced steroidogenesis were similar, suggesting that suppression is not solely the result of interference with ACTH receptor function or the induction of adenylate cyclase activity. Exogenous glucocorticoids also suppressed ACTH-induced steroidogenesis of cells isolated from domestic fowl and beef adrenal glands, thus suggesting that this observed suppression may be a general mechanism of adrenocortical cell autoregulation.  相似文献   

12.
Lysosomal acid lipase (LAL) is essential for the intracellular degradation of cholesteryl esters (CE) and triacylglycerols (TG) that are delivered to lysosomes by low density lipoprotein (LDL) receptor mediated endocytosis. We have analysed the difference in the catalytic properties and substrate specificity of human and mouse LALs. LAL activities were measured in human and mouse fibroblasts and in HeLa cells transiently expressing wild-type or site-directed mutant LALs of the two species using the T7 vaccinia system. Cholesteryl esterase and triacylglycerol lipase activities were determined in cellular homogenates with a phospholipid/detergent vesicle assay, an assay frequently used to diagnose human LAL deficiency syndromes, and with LDL particles, a more physiological substrate. Characterisation of human and mouse LAL using these two assays demonstrated marked differences in their TG and CE hydrolysing activities. Compared to human LAL mouse LAL showed a much lower cholesteryl esterase activity in both assays used. The difference was more pronounced in the vesicle assay. The lower cholesteryl esterase activity of mouse LAL did not affect the LDL-CE degradation in intact fibroblasts. The analysis of site-directed mutants suggests a role of the non-conserved cysteine residue at position 240 in cholesteryl esterase activity in human LAL. Our results show a significant difference between human and mouse LAL in their specificity toward cholesteryl esters. The low cholesteryl esterase activity does not result in reduced LDL-cholesterol ester degradation in mouse fibroblasts in situ. In addition, this work emphasises the importance of the physical state of substrates in studies of the specificity and properties of lipolytic enzymes.  相似文献   

13.
Carnitine acyltransferases catalyze the reversible conversion of acyl-CoAs into acylcarnitine esters. This family includes the mitochondrial enzymes carnitine palmitoyltransferase 2 (CPT2) and carnitine acetyltransferase (CrAT). CPT2 is part of the carnitine shuttle that is necessary to import fatty acids into mitochondria and catalyzes the conversion of acylcarnitines into acyl-CoAs. In addition, when mitochondrial fatty acid β-oxidation is impaired, CPT2 is able to catalyze the reverse reaction and converts accumulating long- and medium-chain acyl-CoAs into acylcarnitines for export from the matrix to the cytosol. However, CPT2 is inactive with short-chain acyl-CoAs and intermediates of the branched-chain amino acid oxidation pathway (BCAAO). In order to explore the origin of short-chain and branched-chain acylcarnitines that may accumulate in various organic acidemias, we performed substrate specificity studies using purified recombinant human CrAT. Various saturated, unsaturated and branched-chain acyl-CoA esters were tested and the synthesized acylcarnitines were quantified by ESI-MS/MS. We show that CrAT converts short- and medium-chain acyl-CoAs (C2 to C10-CoA), whereas no activity was observed with long-chain species. Trans-2-enoyl-CoA intermediates were found to be poor substrates for this enzyme. Furthermore, CrAT turned out to be active towards some but not all the BCAAO intermediates tested and no activity was found with dicarboxylic acyl-CoA esters. This suggests the existence of another enzyme able to handle the acyl-CoAs that are not substrates for CrAT and CPT2, but for which the corresponding acylcarnitines are well recognized as diagnostic markers in inborn errors of metabolism.  相似文献   

14.
The catabolism of insulins modified at the A1, B1 or B29 positions or containing a synthetic crosslink between the A1 and B29 positions has been studied in vivo and in vitro. The metabolic clearance rates (MCR) of insulin, proinsulin and chemically modified insulins have been measured by a priming-dose constant infusion technique in greyhounds. Insulins modified at A1 and B29, particularly the crosslinked materials, had markedly lowered MCR's whilst B1 analogues did not differ from insulin. Proinsulin and the A1-B29 crosslinked materials showed a markedly lowered degradability by glutathione-insulin transhydrogenase.  相似文献   

15.
A cDNA encoding the human fur gene product was isolated from a human hepatoma cell line. The cDNA encodes a protein with significant amino acid sequence identity to the prokaryotic subtilisin family of serine proteases. More extensive sequence identity was found when the protein was compared with eukaryotic proteases such as PRB1 of Saccharomyces cerevisiae, and with PC2 and PC3, the only other known mammalian subtilisin-like proteases. In contrast to these proteins, however, the fur gene product shares a more extensive topographic and functional homology with the KEX2 endoprotease of S. cerevisiae. Each protease contains a signal peptide, a glycosylated extra cytoplasmic domain, a hydrophobic membrane-spanning region, and a short, hydrophilic "tail" sequence. As with KEX2, the expressed human protease was shown to cleave mammalian proproteins at their paired basic amino acid processing sites. We have, therefore, proposed the function-based acronym PACE (paired basic amino acid cleaving enzyme) for this prototypic mammalian proprotein processing enzyme.  相似文献   

16.
Kim SJ  Jeong DG  Yoon TS  Son JH  Cho SK  Ryu SE  Kim JH 《Proteins》2007,66(1):239-245
The testis- and skeletal-muscle-specific dual-specificity phosphatase (TMDP) is a member of the dual-specificity phosphatase (DSP) subgroup of protein tyrosine phosphatases. TMDP has similar activities toward both tyrosine and threonine phosphorylated substrates, and is supposed to be involved in spermatogenesis. Here, we report the crystal structure of human TMDP at a resolution of 2.4 A. In spite of high sequence similarity with other DSPs, the crystal structure of TMDP shows distinct structural motifs and surface properties. In TMDP, the alpha1-beta1 loop, a substrate recognition motif is located further away from the active site loop in comparison to prototype DSP Vaccinia H1 related phophatase (VHR), which preferentially dephosphorylates tyrosine phosphorylated substrates and down-regulates MAP kinase signaling. Residues in the active site residues of TMDP are smaller in size and more hydrophobic than those of VHR. In addition, TMDP cannot be aligned with VHR in loop beta3-alpha4. These differences in the active site of TMDP result in a flat and wide pocket structure, allowing equal binding of phosphotyrosine and phosphothreonine substrates.  相似文献   

17.
18.
Humans are one of the few species that produce large amounts of catecholamine sulfates, and they have evolved a specific sulfotransferase, SULT1A3 (M-PST), to catalyze the formation of these conjugates. An orthologous protein has yet to be found in other species. To further our understanding of the molecular basis for the unique substrate selectivity of this enzyme, we have solved the crystal structure of human SULT1A3, complexed with 3'-phosphoadenosine 5'-phosphate (PAP), at 2.5 A resolution and carried out quantitative structure-activity relationship (QSAR) analysis with a series of phenols and catechols. SULT1A3 adopts a similar fold to mouse estrogen sulfotransferase, with a central five-stranded beta-sheet surrounded by alpha-helices. SULT1A3 is a dimer in solution but crystallized with a monomer in the asymmetric unit of the cell, although dimer interfaces were formed by interaction across crystallographic 2-fold axes. QSAR analysis revealed that the enzyme is highly selective for catechols, and catecholamines in particular, and that hydrogen bonding groups and lipophilicity (cLogD) strongly influenced K(m). We also investigated further the role of Glu(146) in SULT1A3 using site-directed mutagenesis and showed that it plays a key role not only in defining selectivity for dopamine but also in preventing many phenolic xenobiotics from binding to the enzyme.  相似文献   

19.
Structural differences between human leukocyte virus-induced interferon and human fibroblast polyinosinic-polycytidylic acid (rIn-rCn)-induced interferon have been noted in previous studies. This study reports the behavior of human leukocyte and fibroblast interferon, induced by virus and by rIn-rCn, in several lectin and hydrophobic chromatographic systems. Differences in both glycosylation and in hydrophobicity of human leukocyte and fibroblast interferons are documented. Human fibroblast interferon is a glycoprotein, whereas our evidence suggests that human leukocyte interferon probably is not. Also, fibroblast interferon is more hydrophobic than leukocyte interferon, as probed on several hydrophobic adsorbents. The possible relationships of these differences to each other and to antigenic variations are discussed. Generally, the differences appear to be attributable to the cell type in which the interferon was induced. However, our results suggest that at least subtle differences in the processing of the induction signal (virus or rIn-rCn) within the same cell type may occur, slightly altering some structural features.  相似文献   

20.
Griffiths SW  Cooney CL 《Biochemistry》2002,41(20):6245-6252
alpha 1-Antitrypsin is a metastable and conformationally flexible protein that belongs to the serpin family of protease inhibitors. Although it is known that methionine oxidation in the protein's active site results in a loss of biological activity, there is little specific knowledge regarding the reactivity of each of the protein's methionine residues. In this study, we have used peptide mapping to study the oxidation kinetics of each of alpha 1-antitrypsin's methionines in alpha 1-AT((C232S)) as well as M351L and M358V mutants. These kinetic studies establish that Met1, Met226, Met242, Met351, and Met358 are reactive with hydrogen peroxide at neutral pH and that each reactive methionine is oxidized in a bimolecular, rather than coupled, mechanism. Analysis of Met226, Met351, and Met358 oxidation provides insights regarding the structure of alpha 1-antitrypsin's active site that allow us to relate conformation to experimentally observed reactivity. The relationship between solution pH and methionine oxidation was also examined to evaluate methionine reactivity under conditions that perturb the native structure. Methionine oxidation data show that at pH 5, global conformational changes occur that alter the oxidation susceptibility of each of alpha 1-antitrypsin's 10 methionine residues. Between pH 6 and 9, however, more localized conformational changes occur that affect primarily the reactivity of Met242. In sum, this work provides a detailed analysis of methionine oxidation in alpha 1-antitrypsin and offers new insights into the protein's solution structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号