首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stress responses are largely conserved in eukaryotic cells, but with plants having certain distinctive reactions to specific stresses, e.g. the induction of pathogenesis-related proteins. General responses to stress involve signaling stress detection via the redox system, checkpoints arresting the cell cycle and DNA repair processes stimulated in response to DNA damage. Specific responses to stress include the induction of protective metabolites, such as betaines, and protective proteins, for example, heat shock proteins. Chemical signals, e.g. reactive oxygen species, Ca2+ and plant hormones, acting through signal transduction cascades activate genomic re-programming. Genome plasticity in plants allows adaptation to environmental conditions and includes genomic or epigenetic changes (histone acetylation, methylation, chromatin remodeling etc.) and possibly directed mutation. In plants, recent research has indicated that intricate stress response mechanisms and `cross talk' between stress responses exist. Here, changes in the plant genome and in genomic expression in development and as a response to environmental stress are reviewed as background to a discussion of the basis of aberrant genomic expression in vitro. Markers are discussed which may be used to characterize the stress exposure of in vitro tissues.  相似文献   

2.
R L Melnick 《FASEB journal》1992,6(9):2698-2706
Cell proliferation has long been recognized as having an important role in chemically induced carcinogenesis. Based on findings that certain nongenotoxic chemical carcinogens induced cell proliferation in the same organ that had an increased incidence of tumors, it has been hypothesized that a chemically induced response of enhanced DNA synthesis and cellular division causes cancer by increasing the rate of spontaneous mutations. It was further suggested that there would be no increased human risk of cancer by non-DNA-reactive compounds at doses that do not cause a proliferative response. An evaluation of the literature on the relationship between chemically induced cell proliferation and liver carcinogenesis reveals that very few systematic cell proliferation studies have been conducted over periods of extended exposure, and in many cases the exposure concentrations were not similar to those used in the cancer studies. The proliferative response resulting from exposure to many nongenotoxic carcinogens is not well sustained, whereas the carcinogenic response by these chemicals often requires prolonged exposure. The available literature leads to the conclusion that quantitative correspondences between cellular proliferation and carcinogenic responses have not been demonstrated and do not support the hypothesis that chemically induced cell proliferation is the primary mechanism by which nongenotoxic chemicals cause liver cancer. Studies of liver carcinogenesis in two-stage models point out the need to better understand chemical effects on cell loss as well as on cell replication, and demonstrate that measurements of cell proliferation alone are not sufficient to elucidate mechanisms of tumor development.  相似文献   

3.
Human exposure to methylating agents appears to be widespread, as indicated by the frequent occurrence of methylated DNA adducts in human DNA. The high incidence of methylated DNA adducts even in humans thought not to have suffered extensive exposure to environmental methylating agents implies that chemicals of endogenous origin, probably N-nitroso compounds such as the strongly carcinogenic N-nitrosodimethylamine (NDMA), may be primarily responsible for their formation and raises the question of the carcinogenic risks associated with such exposure. In addition to accumulation of DNA damage, other factors (such as induced cell proliferation) appear to be important in determining the probability of induction of mutation or cancer by NDMA, implying that high to low dose risk extrapolations should not be based on the assumption of dose- or even adduct-linearity. Comparative studies of the accumulation and repair of methylated adducts in humans and animals treated with methylating cytostatic drugs do not reveal significant species differences. Based on this and the dosimetry of adduct accumulation in rats chronically exposed to very low doses of NDMA, it is suggested that the exposure needed to account for the levels of adducts found in human DNA may be of the order of hundreds of micrograms NDMA (or equivalent) per day, a level of exposure which may well represent a significant carcinogenic hazard for man.  相似文献   

4.
The epigenome serves as an interface between the dynamic environment and the inherited static genome. It is comprised of chromatin and a covalent modification of DNA by methylation. The epigenome is sculpted during development to shape the diversity of gene expression programs in the organism’s different cell types by a highly organized process. Epigenetic aberrations have consequences similar to those of genetic polymorphisms, resulting in variations in gene function. Recent data suggest that the epigenome is dynamic and is therefore responsive to environmental signals, not only during the critical periods in development but also later in life. It is postulated here that not only chemicals but also exposure to social behavior, such as maternal care, may affect the epigenome. It is proposed that exposure to different environmental agents could lead to interindividual phenotypic diversity as well as to varying susceptibility to disease and behavioral pathologies. Interindividual differences in the epige­netic state could also affect susceptibility to xenobiotics.  相似文献   

5.
The induction of double-strand breaks (DSBs) in DNA by exposure to DNA damaging agents, or as intermediates in normal cellular processes, constitutes a severe threat for the integrity of the genome. If not properly repaired, DSBs may result in chromosomal aberrations, which, in turn, can lead to cell death or to uncontrolled cell growth. To maintain the integrity of the genome, multiple pathways for the repair of DSBs have evolved during evolution: homologous recombination (HR), non-homologous end joining (NHEJ) and single-strand annealing (SSA). HR has the potential to lead to accurate repair of DSBs, whereas NHEJ and SSA are essentially mutagenic. In yeast, DSBs are primarily repaired via high-fidelity repair of DSBs mediated by HR, whereas in higher eukaryotes, both HR and NHEJ are important. In this review, we focus on the functional conservation of HR from fungi to mammals and on the role of the individual proteins in this process.  相似文献   

6.
DNA adducts generated by carcinogenic chemicals reflects human exposure and DNA adducts are related to tumor formation. Most chemical carcinogens require activation to reactive intermediates that bind to nucleophilic centers in proteins and nucleic acids thereby forming covalent adducts. Also, many of the chemicals considered carcinogenic for humans form covalent DNA adducts. Therefore, such DNA damage is generally considered to be causative and linked to tumor formation. In this article we have summarized the work done for many years on the role of DNA adduct formation as an indicator of their carcinogenicity. We have also addressed the important role for measurement of DNA adducts in studies with potential chemopreventive agents for which it is central to have a marker that can be measured more rapidly than changes in cancer incidence.  相似文献   

7.
Some environmental estrogen-like compounds, such as bisphenol A (BPA), 4-nonylphenol (NP), 4-octylphenol (OP), propyl p-hydroxybenzoate (P-PHBA), and butyl p-hydroxybenzoate (B-PHBA), synthetic estrogen, diethylstilbestrol (DES), and natural estrogen, 17beta-estradiol (E2), were studied for their genotoxicity in CHO-K1 cells using sister-chromatid exchange (SCE), chromosome aberration (CA), and DNA strand break (comet) assays. Six of the chemicals, excluding E2, caused DNA migration in the comet assay and induced SCEs at one or more of the highest doses. Among the chemicals, OP produced an especially high incidence of SCEs. Structural CA was induced by five of the chemicals, excluding OP and NP, and BPA, E2, and DES also induced aneuploid cells. E2 and DES particularly increased the rate of polyploidy at high doses. The incidence of colchicine-mitosis-like (c-mitotic) figures suggesting spindle disrupting effects was also detected with five of the chemicals, excluding OP and NP, and six of the chemicals, excluding E2, caused endoreduplication (ERD), a form of nuclear polyploidization induced by block of cell cycle at G2 phase, at one or more high doses. Our present results suggest that OP and NP cause repairable DNA damage, including SCEs, and do not result in CA, while the damage caused by DES, BPA, P-PHBA, and B-PHBA results in the induction of CAs together with SCEs probably because of imperfect repair. We are unable to explain the observation that the DNA damage caused by E2 resulted in CA induction but not DNA migration or SCE induction, except for speculating that the DNA damage is different from that caused by DES and the estrogen-like chemicals. Our findings also suggest that E2, DES and BPA have aneuploidogenic properties, and that the former two of chemicals also are polyploidy-inducing agents.  相似文献   

8.
DNA amplification is a frequently observed event in continuous cell lines and in tumors. It is likely that a common mechanism underlies the amplification of specific DNA sequences which confer drug resistance and genes which give a growth advantage to the tumor. To find a correlation between the induction of DNA amplification by chemicals and morphological cell transformation we treated Syrian hamster embryo (SHE) cells with diverse antineoplastic agents of different classes. Analysis of these agents seems to be important since they are potentially carcinogenic and resistance inducing. For the measurement of DNA amplification we established a new system using adeno-associated virus type 2 (AAV)-infected primary SHE cells as target cells and amplification of viral DNA as marker of DNA amplification. Simultaneously we determined morphological cell transformation in SHE cells. Our findings demonstrate that there is only a limited correlation between the induction of AAV DNA amplification and the morphological cell transformation in SHE cells. The newly established system of AAV DNA amplification appears to be a useful tool for the investigation of drug resistance in target cells of choice.  相似文献   

9.
Variations in the nuclear DNA, mainly as a result of quantitative modulations of DNA repeats belonging to different sequence families of satellite DNA and to the activity of transposable elements, have been assessed within several angiosperm species. These variations alter the amount and organization of the DNA and therefore the genotype, rather than the genome proper. They take place on an evolutionary time scale as the result of selection processes after the occurrence of uncontrolled events in the genome or may be due to direct responses of plant genomes to environmental stimuli that occur under plant-level control within a short developmental period of a single generation. These DNA changes are correlated to changes in the developmental dynamics and phenotypic characteristics of the plants, and the capability to carry out genotypic variation is an evolutionary trait that allows plant species to adapt to different environmental conditions, as well as to the variability of conditions in a given environment. The link between developmental and environmental stimuli and repetitive DNA that elicits the intraspecific diversity of plant genotypes may provide models of evolutionary change that extend beyond the conventional view of evolution by allelic substitution and take into account epigenetic effects of the genome structure.  相似文献   

10.
We have developed naked DNA vaccine candidates for foot-and-mouth disease (FMD), an important disease of domestic animals. The virus that causes this disease, FMDV, is a member of the picornavirus family, which includes many important human pathogens, such as poliovirus, hepatitis A virus, and rhinovirus. Picornaviruses are characterized by a small (7-9000 nucleotide) RNA genome that encodes capsid proteins, processing proteinases, and enzymes required for RNA replication. We have developed two different types of DNA vaccines for FMD. The first DNA vaccine, pP12X3C, encodes the viral capsid gene (P1) and the processing proteinase (3C). Cells transfected with this DNA produce processed viral antigen, and animals inoculated with this DNA using a gene gun produced detectable antiviral immune responses. Mouse inoculations with this plasmid, and with a derivative containing a mutation in the 3C proteinase, indicated that capsid assembly was essential for induction of neutralizing antibody responses. The second DNA vaccine candidate, pWRMHX, encodes the entire FMDV genome, including the RNA-dependent RNA polymerase, permitting the plasmid-encoded viral genomes to undergo amplification in susceptible cells. pWRMHX encodes a mutation at the cell binding site, preventing the replicated genomes from causing disease. Swine inoculated with this vaccine candidate produce viral particles lacking the cell binding site, and neutralizing antibodies that recognize the virus. Comparison of the immune responses elicited by pP12X3C and pWRMHX in swine indicate that the plasmid encoding the replicating genome stimulated a stronger immune response, and swine inoculated with pWRMHX by the intramuscular, intradermal, or gene gun routes were partially protected from a highly virulent FMD challenge.  相似文献   

11.
DNA double-strand breaks (DSBs) are among the most deleterious types of damage that can occur in the genome of eukaryotic cells because failure to repair them can lead to loss of genetic information and chromosome rearrangements. DSBs can arise by failures in DNA replication and by exposure to environmental factors, such as ionizing radiations and radiomimetic chemicals. Moreover, they might arise when telomeres undergo extensive erosion, leading to the activation of the DNA damage response pathways and the onset of apoptosis and/or senescence. Importantly, DSBs can also form in a programmed manner during development. For example, meiotic recombination and rearrangement of the immunoglobulin genes in lymphocytes require the generation of site- or region-specific DSBs through the action of specific endonucleases. Efficient DSB repair is crucial in safeguarding genome integrity, whose maintenance in the face of DSBs involves branched signalling networks that switch on DNA damage checkpoints, activate DNA repair, induce chromatin reorganization and modulate numerous cellular processes. Not surprisingly, defects in these networks result in a variety of diseases ranging from severe genetic disorders to cancer predisposition and accelerated ageing.  相似文献   

12.
Genome instability contributes to cancer development and accelerates age-related pathologies as evidenced by a variety of congenital cancer susceptibility and progeroid syndromes that are caused by defects in genome maintenance mechanisms. DNA damage response (DDR) pathways that are mediated through the tumor suppressor p53 play an important role in the cell-intrinsic responses to genome instability, including a transient cell cycle arrest, senescence and apoptosis. Both senescence and apoptosis are powerful tumor-suppressive pathways preventing the uncontrolled proliferation of transformed cells. However, both pathways can potentially deplete stem and progenitor cell pools, thus promoting tissue degeneration and organ failure, which are both hallmarks of aging. p53 signaling is also involved in mediating non-cell-autonomous interactions with the innate immune system and in the systemic adjustments during the aging process. The network of p53 target genes thus functions as an important regulator of cancer prevention and aging.  相似文献   

13.
The marine environment is becoming increasingly contaminated by environmental pollutants with the potential to damage DNA, with marine sediments acting as a sink for many of these contaminants. Understanding genotoxic responses in sediment-dwelling marine organisms, such as polychaetes, is therefore of increasing importance. This study is an exploration of species-specific and cell-specific differences in cell sensitivities to DNA-damaging agents in polychaete worms, aimed at increasing fundamental knowledge of their responses to genotoxic damage. The sensitivities of coelomocytes from three polychaetes species of high ecological relevance, i.e. the lugworm Arenicola marina, the harbour ragworm Nereis diversicolor and the king ragworm Nereis virens to genotoxic damage are compared, and differences in sensitivities of their different coelomic cell types determined by use of the comet assay. A. marina was found to be the most sensitive to genotoxic damage induced by the direct-acting mutagen methyl methanesulfonate (MMS), and showed dose-dependent responses to MMS and the polycyclic aromatic hydrocarbon benzo(a)pyrene. Significant differences in sensitivity were also measured for the different types of coelomocyte. Eleocytes were more sensitive to induction of DNA damage than amoebocytes in both N. virens and N. diversicolor. Spermatozoa from A. marina showed significant DNA damage following in vitro exposure to MMS, but were less sensitive to DNA damage than coelomocytes. This investigation has clearly demonstrated that different cell types within the same species and different species within the polychaetes show significantly different responses to genotoxic insult. These findings are discussed in terms of the relationship between cell function and sensitivity and their implications for the use of polychaetes in environmental genotoxicity studies.  相似文献   

14.
This article reviews many of the complex events that occur after cutaneous ultraviolet (UV) exposure. The inflammatory changes of acute exposure of the skin include erythema (sunburn), the production of inflammatory mediators, alteration of vascular responses and an inflammatory cell infiltrate. Damage to proteins and DNA accumulates within skin cells and characteristic morphological changes occur in keratinocytes and other skin cells. When a cell becomes damaged irreparably by UV exposure, cell death follows via apoptotic mechanisms. Alterations in cutaneous and systemic immunity occur as a result of the UV-induced inflammation and damage, including changes in the production of cytokines by keratinocytes and other skin-associated cells, alteration of adhesion molecule expression and the loss of APC function within the skin. These changes lead to the generation of suppressor T cells, the induction of antigen-specific immunosuppression and a lowering of cell-mediated immunity. These events impair the immune system's capacity to reject highly antigenic skin cancers. This review gives an overview of the acute inflammatory and immunological events associated with cutaneous UV exposure, which are important to consider before dealing with the complex interactions that occur with chronic UV exposure, leading to photocarcinogenesis.  相似文献   

15.
Eight human tumor cell lines with radiosensitivities (D0) ranging from 1 to 3 Gy were analyzed for their response to radiation-induced inhibition of DNA synthesis. These cell lines differ in their sensitivity to induction of DNA double-strand breaks and in the rate at which they rejoin DNA double-strand breaks. Fifty-gray doses of gamma rays induced between 35 and 75% inhibition in rates of DNA synthesis. The magnitude of the inhibition was not related to cellular radiosensitivity, frequency of initial DNA double-strand breaks, or the rate of rejoining of DNA double-strand breaks. All the cell lines studied had similar kinetics of recovery from inhibition of DNA synthesis following radiation exposure. These results suggest that factors other than or in addition to frequency of DNA double-strand breaks are important in the control of DNA synthesis following exposure to ionizing radiation in human tumor cell lines.  相似文献   

16.
The concept of a threshold of activity of a genotoxic agent is primarily based upon considerations of protective mechanisms and multiple cellular targets, which require inactivation before a toxic response is produced. In this paper, we have considered and evaluated the influences of compound metabolism, DNA lesion formation, mutation induction and sequence content, aneuploidy induction and the influence of repair enzymes upon genetic endpoints produced by both DNA reactive chemicals and by those chemicals which modify non-DNA cellular targets. Thresholds of activity have been evaluated by critical analysis of the published literature and original data analysing both the role of sequence context upon point mutation induction and DNA repair mechanisms upon the sensitivity of cultured cells to the induction of aneuploidy. In the case of DNA reactive chemicals, the presence of a threshold of chemical activity will be dependent upon cellular activities such as those of the Phase II enzymes reducing the activity of chemicals before lesion formation takes place and/or those of the DNA repair enzymes which reduce the proportion of DNA lesions which are processed into DNA sequence changes. Under such conditions, a given exposure of a DNA reactive chemical does not produce a linear or semi-linear increase in DNA lesions or in mutation frequency. However, even when these protective mechanisms are overwhelmed by the high exposures of genotoxic chemicals the biological effects of a genotoxin may be influenced by the sequence context of the gene under consideration. Here, we demonstrate that point mutations are detected at relatively higher frequencies in the non-coding introns compared with the coding exons. Many of the base changes detected in the exons do not produce amino acid changes in the proteins coded for by the genes being monitored for mutation induction. Both sequence context and the types of base changes induced may provide a "buffering" effect reducing the biological consequences of mutation induction. Spindle damaging chemicals, such as colcemid and vinblastine, induce aneuploidy by modifying the numbers of spindle fibres which regulate the segregation of chromosomes during mitosis and meiosis. The redundancy of spindle fibres in the dividing mammalian cell leads to the prediction that only chemical exposures which damage most, if not all, of the fibres will lead to the induction of polyploidy and/or aneuploidy. Such predicted thresholds of chemical activity can be observed when both chromosome loss and non-disjunction are measured in wild type cultures. However, we observed a substantial increase in sensitivity to aneugenic chemicals when measurements were made in primary cell cultures derived from xerodoma pigmentosum and trichothiodystrophy patients. Further studies are necessary to evaluate the consequences of the genetic background of tester strains upon the nature of the dose-response curve of aneugenic chemicals.  相似文献   

17.
The US Environmental Protection Agency recently released its new guidelines for carcinogen risk assessment together with supplemental guidance for assessing susceptibility from early-life exposure to carcinogens. In particular, these guidelines encourage the use of mechanistic data in support of dose-response characterization at doses below those at which an increase in tumor frequency over background levels might be detected. In this context of the utility of mechanistic data for human cancer risk assessment, the International Life Sciences Institute (ILSI) has developed a human relevance framework (HRF) that can be used to assess the plausibility of a mode of action (MoA) described for animal models operating in humans. The MoA is described as a sequence of key events and processes that result in an adverse outcome. A key event is a measurable precursor step that is in itself a necessary element of the MoA or is a bioindicator for such an element. A number of cellular and molecular perturbations have been identified as key events whereby DNA-reactive chemicals can produce tumors. These include DNA adducts in target tissues, gene mutations and/or chromosomal alterations in target tissues and enhanced cell proliferation in target tissues. This type of data integration approach to quantitative cancer risk assessment can be applied to 1,3-butadiene, for example, using data on biomarkers in exposed Czech workers [1]. For this study, an extensive range of biomarkers of exposure and response was assessed, including: polymorphisms in metabolizing enzymes; urinary concentrations of several metabolites of 1,3-butadiene; hemoglobin adducts; HPRT mutations in T-lymphocytes; chromosomal aberrations by FISH and conventional staining procedures; sister chromatid exchanges. Exposure levels were monitored in a comprehensive fashion. For risk assessment purposes, these data need to be considered in the context of how they inform the MoA for leukemia, the tumor type reported to be increased in synthetic rubber workers exposed to 1,3-butadiene. Also, for the HRF it is necessary to establish key events for a MoA in rodents for the induction of tumors by 1,3-butadiene. There is clearly a species difference in sensitivity to tumor induction, with mice being much more sensitive than rats; key events need to explain this difference. For butadiene, the MoA is DNA-reactivity and subsequent mutagenicity and so following the EPA's cancer guidelines, a linear extrapolation is used from the point of departure (POD), unless additional data support a non-linear extrapolation. For the present case, the human bioindicator data are not informative as far as dose-response characterization is concerned. Mouse chromosome aberration data for in vivo exposures might be used for establishing a POD, with linear extrapolation from this POD. The available cytogenetic data from rodent studies appear to be sufficiently extensive and consistent for this to be a viable approach. This approach of using MoA and key events to establish the human relevance can lead to the development of specific informative bioindicators of response that can be used as surrogates to predict the shape of the tumor dose response curve at low doses. Truly informative predictors of tumor responses should be able to provide estimates of human tumor frequencies at low, environmental exposures to 1,3-butadiene.  相似文献   

18.
Genotoxic stress is a threat to our cells' genome integrity. Failure to repair DNA lesions properly after the induction of cell proliferation arrest can lead to mutations or large-scale genomic instability. Because such changes may have tumorigenic potential, damaged cells are often eliminated via apoptosis. Loss of this apoptotic response is actually one of the hallmarks of cancer. Towards the effort to elucidate the DNA damage-induced signaling steps leading to these biological events, an easily accessible model system is required, where the acquired knowledge can reveal the mechanisms underlying more complex organisms. Accumulating evidence coming from studies in Caenorhabditis elegans point to its usefulness as such. In the worm's germline, DNA damage can induce both cell cycle arrest and apoptosis, two responses that are spatially separated. The latter is a tightly controlled process that is genetically indistinguishable from developmental programmed cell death. Upstream of the central death machinery, components of the DNA damage signaling cascade lie and act either as sensors of the lesion or as transducers of the initial signal detected. This review summarizes the findings of several studies that specify the elements of the DNA damage-induced responses, as components of the cell cycle control machinery, the repairing process or the apoptotic outcome. The validity of C. elegans as a tool to further dissect the complex signaling network of these responses and the high potential for it to reveal important links to cancer and other genetic abnormalities are addressed.  相似文献   

19.
ABSTRACT

Bacteria spend their lives buffeted by changing environmental conditions. To adapt to and survive these stresses, bacteria have global response systems that result in sweeping changes in gene expression and cellular metabolism. These responses are controlled by master regulators, which include: alternative sigma factors, such as RpoS and RpoH; small molecule effectors, such as ppGpp; gene repressors such as LexA; and, inorganic molecules, such as polyphosphate. The response pathways extensively overlap and are induced to various extents by the same environmental stresses. These stresses include nutritional deprivation, DNA damage, temperature shift, and exposure to antibiotics. All of these global stress responses include functions that can increase genetic variability. In particular, up-regulation and activation of error-prone DNA polymerases, down-regulation of error-correcting enzymes, and movement of mobile genetic elements are common features of several stress responses. The result is that under a variety of stressful conditions, bacteria are induced for genetic change. This transient mutator state may be important for adaptive evolution.  相似文献   

20.
Stress-induced mutagenesis in bacteria   总被引:8,自引:0,他引:8  
Bacteria spend their lives buffeted by changing environmental conditions. To adapt to and survive these stresses, bacteria have global response systems that result in sweeping changes in gene expression and cellular metabolism. These responses are controlled by master regulators, which include: alternative sigma factors, such as RpoS and RpoH; small molecule effectors, such as ppGpp; gene repressors such as LexA; and, inorganic molecules, such as polyphosphate. The response pathways extensively overlap and are induced to various extents by the same environmental stresses. These stresses include nutritional deprivation, DNA damage, temperature shift, and exposure to antibiotics. All of these global stress responses include functions that can increase genetic variability. In particular, up-regulation and activation of error-prone DNA polymerases, down-regulation of error-correcting enzymes, and movement of mobile genetic elements are common features of several stress responses. The result is that under a variety of stressful conditions, bacteria are induced for genetic change. This transient mutator state may be important for adaptive evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号