首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human alpha satellite repetitive DNA family is organized as distinct chromosome-specific subsets localized to the centromeric region of each chromosome. Here, we report he isolation and characterization of cloned repeat units which define a hierarchical subset of alpha satellite on human chromosome 1. This subset is characterized by a 1.9-kb higher-order repeat unit which consists of 11 tandem approximately 171-bp alpha satellite monomer repeat units. The higher-order repeat unit is itself tandemly repeated, present in at least 100 copies at the centromeric region of chromosome 1. Using pulsed-field gel electrophoresis we estimate the total array length of these tandem sequences at the centromere of chromosome 1 to be several hundred kilobase pairs. Under conditions of high stringency, the higher-order repeat probe hybridizes specifically to chromosome 1 and can be used to detect several associated restriction fragment length DNA polymorphisms. As such, this probe may be useful for molecular and genetic analyses of the centromeric region of human chromosome 1.  相似文献   

2.
Summary We used a mouse-human somatic cell hybrid to construct a chromosome 21-enriched library in phage vector EMBL4. In all, 35 phage clones containing human inserts were identified by differential screening with total human and mouse DNA. Whole recombinant phages were regionally mapped on chromosome 21 by Southern blot analysis using competitive hybridisation conditions to block repetitive sequences. Ten phage clones mapped proximal to a translocation breakpoint in band 21q21.2, while 25 mapped distal to this point. Three of the phage clones identify restriction fragment length polymorphisms. Polymorphic chromosome 21 markers may be useful in the genetic analysis of Alzheimer's dementia and Down syndrome.  相似文献   

3.
P Charmley  J Nguyen  S Wei  R A Gatti 《Genomics》1991,10(3):608-617
We have used DNA polymorphisms detected by probes for 11q to order 16 genes and to determine the genetic distances between them. Our map includes the genes for CD20, tyrosinase, progesterone receptor, stromelysin, collagenase, N-CAM, dopamine-D2 receptor, apolipoproteins AI-CIII-AIV, CD3-epsilon, -delta, and -gamma, porphobilinogen deaminase, thy-1, and ets-1. These genes have previously been sequenced as well as placed on the 11q cytogenetic map, which now makes them anchor points between the cytogenetic, genetic, and physical maps of this region. The ordering and distances between these genes are of immediate use in testing hypotheses of candidate genes for human genetic diseases associated with chromosome 11q. A comparison between our genetic map and similar maps from other species defines regions of homologous synteny that may be useful in mapping human genetic disease genes localized to the 11q region. Analysis of such homology provides additional bases for speculation of the evolutionary histories of gene families in this region.  相似文献   

4.
Interspersed repetitive element (IRE)-PCR is a useful method for identification of novel human or mouse sequence tagged sites (STSs) from contigs of genomic clones. We describe the use of IRE-PCR with mouse B1 repetitive element primers to generate novel, PCR amplifiable, simple sequence length polymorphisms (SSLPs) from yeast artificial chromosome (YAC) clones containing regions of mouse chromosomes 13 and 14. Forty-two IRE-PCR products were cloned and sequenced from eight YACs. Of these, 29 clones contained multiple simple sequence repeat units. PCR analysis with primers derived from unique sequences flanking the simple sequence repeat units in seven clones showed all to be polymorphic between various mouse strains. This novel approach to SSLP identification represents an efficient method for saturating a genomic interval with polymorphic genetic markers that may expedite the positional cloning of genes for traits and diseases.  相似文献   

5.
A strategy is described that allows the development of polymorphic genetic markers to be characterized in individual genes. Segments of the 3' untranslated regions are amplified, and polymorphisms are detected by digestion with frequently cutting enzymes and with the detection of single-stranded conformation polymorphisms. This allows these genes, or DNA segments, to be placed on the linkage maps of human chromosomes. Polymorphisms in two genes have been identified using this approach. A HaeIII polymorphism was detected in the KIT proto-oncogene, physically assigned to chromosome 4q11-12. This polymorphism is linked to other chromosome 4p markers and is in linkage disequilibrium with a HindIII polymorphism previously described at this locus. We have also identified in the insulin-like growth factor1 receptor gene (IGF1R) a 2-bp deletion that is present at a frequency of .25 in the Caucasian population. Pedigree analysis with this insertion/deletion polymorphism placed the IGF1R gene at the end of the current linkage map of chromosome 15q, consistent with the physical assignment of 15q2526. Thus, polymorphisms in specific genes can be used to related the physical, genetic, and comparative maps of mammalian genomes and to simplify the testing of candidate genes for human diseases.  相似文献   

6.
Summary We have screened a human genomic DNA library with an immunoglobulin (Ig) derived switch (S) region specific probe for homologous sequences. Five Ig independent phage clones were isolated and characterized. The S sequence homologous DNA fragments are short compared to the S region sequences. Ig independent S sequences are flanked by highly repetitive DNA elements and perfect inverted repeats can be demonstrated in their close vicinity. Using subclones of S homologous sequences restriction fragment length polymorphisms were shown within DNA of different T cell leukemias. Burkitt lyphhomas, lymphoblastoid cell lines, and DNA of healthy individuals. One of the five clones isolated with the S region probe was evidently localized to chromosome 2 and/or 40 and showed a complex hybridisation pattern with several different human DNAs. S homologous sequences of another clone are most likely localized on chromosome 1. It is possible that these Ig indenpendent S sequences have arisen by amplification and transposition and that they are involved in genetic recombination.  相似文献   

7.
Isolation of polymorphic DNA segments from human chromosome 21.   总被引:23,自引:2,他引:21       下载免费PDF全文
A somatic cell hybrid line containing only human chromosome 21 on a mouse background has been used as the source of DNA for construction of a recombinant phage library. Individual phages containing human inserts have been identified. Repeat-free human DNA subclones have been prepared and used to screen for restriction fragment length polymorphisms to provide genetic markers on chromosome 21. Nine independently isolated clones used as probes identified a total of 11 new RFLPs. Four of the DNA probes recovered from the library have been mapped unequivocally to chromosome 21 using a panel of somatic cell hybrid lines. A fifth probe detected an RFLP on chromosome 21 as well as sequences on other chromosomes. This set of RFLPs may now form the basis for construction of a genetic linkage map of human chromosome 21.  相似文献   

8.
The DNA at human centromeric regions was characterized by using a repetitive sequence, 308, which localizes in situ exclusively to centromeres of all chromosomes. We previously noted that this sequence is enriched on chromosome 6 and has chromosome-specific organization on 6, 3, 7, 14, X, and Y. In addition to this basic organization, sequences homologous to 308 are polymorphic among normal individuals. The variants are transmitted in a Mendelian manner within a family. To determine the chromosome origin of the variants, we studied their linkage to markers of various chromosomes. Linkage analysis of one pedigree segregating two polymorphisms shows that the 2.6-kilobase (kb) BamHI and 2.6-kb TaqI fragments are linked to each other and to the HLA loci on chromosome 6. Data from another family shows that 2.8-kb TaqI, 4.0-kb TaqI, and 1.3-kb BamHI polymorphic fragments are linked and are probably near the Fy locus on chromosome 1. By dot blot analysis, we determined that the relative amount of these sequences in the genome is not measurably different between unrelated individuals. Thus, the polymorphisms represent changes in homologous 308 sequences on specific chromosomes and can be used as chromosome-specific markers. Linkage studies using polymorphisms of repeated sequences will be most useful within a kindred, especially from an inbred population, because polymorphic repeats of the same restriction size may be heterogeneous in origin.  相似文献   

9.
Chromosome-specific DNA markers provide a powerful approach for studying complex problems in human genetics and offer an opportunity to begin understanding the human genome at the molecular level. The approach described here for isolating and characterizing DNA markers specific to human chromosome 15 involved construction of a partial chromosome-15 phage library from a human/Chinese hamster cell hybrid with a single human chromosome 15. Restriction fragments that identified unique- and low-copy loci on chromosome 15 were isolated from the phage inserts. These fragments were regionally mapped to the chromosome by three methods, including Southern analysis with a mapping panel of cell hybrids, in situ hybridization to metaphase chromosomes, and quantitative hybridization or dosage analysis. A total of 42 restriction fragments of unique- and low-copy sequences were identified in 14 phage. The majority of the fragments that have been characterized so far exhibited the hybridization pattern of a unique locus on chromosome 15. Regional mapping assigned these markers to specific locations on chromosome 15, including q24-25, q21-23, q13-14, q11-12, and q11. RFLP analysis revealed that several markers displayed polymorphisms at frequencies useful for genetic linkage analysis. The markers mapped to the proximal long arm of chromosome 15 are particularly valuable for the molecular analysis of Prader-Willi syndrome, which maps to this region. Polymorphic markers in this region may also be useful for definitively establishing linkage with one form of dyslexia. DNA probes in this chromosomal region should facilitate molecular structural analysis for elucidation of the nature of instability in this region, which is frequently associated with chromosomal aberrations.  相似文献   

10.
Alpha satellite DNA is a tandemly repetitive DNA family found at the centromere of every human chromosome. Chromosome-specific subsets have been isolated for over half the chromosomes and have prove useful as markers for both genetic and physical mapping. We have developed specific oligonucleotide primer sets for polymerase chain reaction (PCR) amplification of alpha satellite DNA from chromosomes 3, 7, 13/21, 17, X, and Y. For each set of primers, PCR products amplified from human genomic DNA are specific for the centromere of the target chromosome(s), as shown by somatic cell hybrid mapping and by fluorescence in situ hybridization. These six subsets represent several evolutionarily related alpha satellite subfamilies, suggesting that specific primer pairs can be designed for most or all chromosomal subsets in the genome. The PCR products from chromosome 17 directly reveal the polymorphic nature of this subset, and a new DraI polymorphism is described. The PCR products from chromosome 13 are also polymorphic, allowing in informative cases genetic analysis of this centromeric subset distinguished from the highly homologous chromosome 21 subset. These primer sets should allow placement of individual centromeres on the proposed STS map of the human genome and may be useful for somatic cell hybrid characterization and for making in situ probes. In addition, the ability to amplify chromosome-specific repetitive DNA families directly will contribute to the structural and functional analysis of these abundant classes of DNA.  相似文献   

11.
Summary The genes coding for apolipoproteins A1, C3, and A4 (APOA1, APOC3, APOA4) are closely linked and tandemly organized within a 15-kilobase (kb) DNA segment on the long arm of human chromosome 11. The nucleotide variability of a 61-kb DNA segment containing these genes and their flanking sequences was studied by restriction analysis of a sample of 18 unrelated Northern Europeans using seven different genomic DNA probes. Eleven restriction site polymorphisms located within this DNA segment were used for haplotype analysis of 129 Mediterranean and 67 American black chromosomes. Estimation of the extent of nonrandom association between these polymorphisms indicated considerable linkage disequilibrium within the APOA1-APOC3-APOA4 gene cluster. Several haplotypes arose by recombination, and the rate of recombination within this gene cluster was estimated to be at least 4 times greater than that expected based on uniform recombination. The polymorphism information content of each of these polymorphisms, taken individually, ranges between 0.053 and 0.375, while that of their haplotypes ranges between 0.858 and 0.862. Therefore, DNA polymorphism haplotypes in the APOA1-APOC3-APOA4 gene cluster constitute a highly informative genetic marker on the long arm of human chromosome 11.  相似文献   

12.
Heterochromatin is a significant component of the human genome and the genomes of most model organisms. Although heterochromatin is thought to be largely non-coding, it is clear that it plays an important role in chromosome structure and gene regulation. Despite a growing awareness of its functional significance, the repetitive sequences underlying some heterochromatin remain relatively uncharacterized. We have developed a real-time quantitative PCR-based method for quantifying simple repetitive satellite sequences and have used this technique to characterize the heterochromatic Y chromosome of Drosophila melanogaster. In this report, we validate the approach, identify previously unknown satellite sequence copy number polymorphisms in Y chromosomes from different geographic sources, and show that a defect in heterochromatin formation can induce similar copy number polymorphisms in a laboratory strain. These findings provide a simple method to investigate the dynamic nature of repetitive sequences and characterize conditions which might give rise to long-lasting alterations in DNA sequence.  相似文献   

13.
M M Mahtani  H F Willard 《Genomics》1990,7(4):607-613
Using pulsed-field gel analysis (PFGE), we have characterized the large array of alpha-satellite DNA located in the centromeric region of the human X chromosome. The tandem repetitive nature of this DNA family lends itself to examination by PFGE using restriction enzymes that cleave frequently in unique sequence DNA but which cut only rarely within the repetitive alpha-satellite array. Several such restriction enzymes (BglI, BglII, KpnI, ScaI) have proven highly informative in sizing the alpha-satellite array and in following the segregation of individual X-chromosome centromeres using PFGE polymorphisms. Among 29 different X chromosomes, alpha-satellite array length varied between 1380 and 3730 kb (mean = 2895 kb; SD = 537). In three large CEPH families comprising 24 meioses, inheritance of these PFGE polymorphisms was strictly Mendelian, with no indication of intraarray recombination. Such DXZ1 alpha-satellite polymorphisms, therefore, may prove useful in the study of pericentromeric X-linked disorders.  相似文献   

14.
Although alphoid DNA sequences shared among acrocentric chromosomes have been identified, no human chromosome 21-specific sequence has been isolated from the centromeric region. To identify alphoid DNA restriction fragment length polymorphisms (RFLPs) specific for chromosome 21, we hybridized human genomic DNA with alphoid DNA probes [L1.26; aRI(680),21-208] shared by chromosomes 13 and 21. We detected RFLPs with restriction enzymes ECoRI, HaeIII, MboI,StuI, and TaqI. The segregation of these RFLPs was analyzed in the 40 CEPH families. Linkage analysis between these RFLPs and loci previously mapped to either chromosome 13 or 21 revealed RFLPs that appear to be specific to chromosome 21. These polymorphisms may be useful as genetic markers of the centromeric region of chromosome 21. Different alphoid loci within the centromeric region of chromosome 13 were identified.  相似文献   

15.
Summary Genetic markers with high degrees of polymorphisms are of vital importance in the construction of high resolution (2–4 cM) linkage maps of human chromosomes as specified in the short-term goals of the Human Genome Initiative. In this paper, we report on molecular and genetic characterization and physical localization of 11 new multiallele restriction fragment length polymorphism markers on human chromosome 3p. Ten of these represent three- and four-allele polymorphisms of the base substitution type probably at two adjacent restriction sites. One has been identified as a novel minisatellite sequence comprising a variable copy number tandem repeat array of a G/T-rich 79-bp sequence. This collection of multiallele polymorphic (PIC values: 0.40–0.60) markers should prove valuable and increase the resolution power of the available chromosome 3p genetic markers.  相似文献   

16.
We present restriction maps for chromosomes 1 and 2 of six cloned lines of P. falciparum. These delineate the locations of eight genetic markers, including genes for five antigens. In parasites from diverse areas, chromosome structure is conserved in central regions but is polymorphic both in length and sequence near the telomeres. The telomeres and adjacent sequences comprise a conserved structure at the ends of most P. falciparum chromosomes. However, the subtelomeric zones are polymorphic and coincide with the locations of a repetitive element (rep20). Deletions of rep20 generate clones of P. falciparum that lack rep20 on one or both ends of chromosomes 1 or 2, and larger deletions remove telomere-proximal genes as well. The chromosome length polymorphisms can therefore be largely explained by recombination within these blocks of repeats, a mechanism that is also important in the generation of diversity in genes for repetitive antigens of P. falciparum.  相似文献   

17.
Y chromosome haplotyping based on microsatellites and single nucleotide polymorphisms (SNPs) has proved to be a powerful tool for population genetic studies of humans. However, the promise of the approach is hampered in the majority of nonhuman mammals by the lack of Y-specific polymorphic markers. We were able to identify new male-specific polymorphisms in the domestic cat Felis catus and 6 additional Felidae species with a combination of molecular genetic and cytogenetic approaches including 1) identifying domestic cat male-specific microsatellites from markers generated from a male cat microsatellite-enriched genomic library, a flow-sorted Y cosmid library, or a Y-specific cat bacteria artificial chromosome (BAC) clone, (2) constructing microsatellite-enriched libraries from flow-sorted Y chromosomes isolated directly from focal wildcat species, and (3) screening Y chromosome conserved anchored tagged sequences primers in Felidae species. Forty-one male-specific microsatellites were identified, but only 6 were single-copy loci, consistent with the repetitive nature of the Y chromosome. Nucleotide diversity (pi) of Y-linked intron sequences (2.1 kbp) was in the range of 0 (tiger) to 9.95 x 10(-4) (marbled cat), and the number of SNPs ranged from none in the tiger to 7 in the Asian leopard cat. The Y haplotyping system described here, consisting of 4 introns (SMCY3, SMCY7, UTY11, and DBY7) and 1 polymorphic microsatellite (SMCY-STR), represents the first available markers for tracking intraspecific male lineage polymorphisms in Felidae species and promises to provide significant insights to evolutionary and population genetic studies of the species.  相似文献   

18.
19.
T Glaser  E Rose  H Morse  D Housman  C Jones 《Genomics》1990,6(1):48-64
The irradiation-fusion technique offers a means to isolate intact subchromosomal fragments of one mammalian species in the genetic background of another. Irradiation-reduced somatic cell hybrids can be used to construct detailed genetic and physical maps of individual chromosome bands and to systematically clone genes responsible for hereditary diseases on the basis of their chromosomal position. To assess this strategy, we constructed a panel of hybrids that selectively retain the portion of human chromosome band 11p13 that includes genes responsible for Wilms tumor, aniridia, genitourinary anomalies, and mental retardation (constituting the WAGR syndrome). A hamster-human hybrid containing the short arm of chromosome 11 as its only human DNA (J1-11) was gamma-irradiated and fused to a Chinese hamster cell line (CHO-K1). We selected secondary hybrid clones that express MIC1 but not MER2, cell-surface antigens encoded by bands 11p13 and 11p15, respectively. These clones were characterized cytogenetically by in situ hybridization with human repetitive DNA and were tested for their retention of 56 DNA, isozyme, and antigen markers whose order on chromosome 11p is known. These cell lines appear to carry single, coherent segments of 11p spanning MIC1, which range in size from 3000 kb to more than 50,000 kb and which are generally stable in the absence of selection. In addition to the selected region of 11p13, two cell lines carry extra fragments of the human centromere and two harbor small, unstable segments of 11p15. As a first step to determine the size and molecular organization of the WAGR gene complex, we analyzed a subset of reduced hybrids by pulsed-field gel electrophoresis. A small group of NotI restriction fragments comprising the WAGR complex was detected in Southern blots with a cloned Alu repetitive probe. One of the cell lines (GH3A) was found to carry a stable approximately 3000-kb segment of 11p13 as its only human DNA. The segment encompasses MIC1, a recurrent translocation breakpoint in acute T-cell leukemia (TCL2), and most or all of the WAGR gene complex, but does not include the close flanking markers D11S16 and delta J. This hybrid forms an ideal source of molecular clones for the developmentally fascinating genes underlying the WAGR syndrome.  相似文献   

20.
Closely linked restriction fragment length polymorphisms (RFLPs) are potentially useful as diagnostic markers of genetic defects, and, in principle, RFLPs can be employed to construct a complete linkage map of the human genome. On the X chromosome, linkage studies are particularly rewarding because in man more than 120 X-linked genes are known. Thus, it is probable that each X-specific RFLP will be of use as a genetic marker of one or several X-linked disorders. To facilitate the search for closely linked RFLPs, we have regionally assigned 16 cloned DNA sequences to various portions of the human X chromosome, employing a large panel of somatic cell hybrids. These probes have been used to correlate genetic and physical distances on Xp, and it can be extrapolated from these data that the number and distribution of available Xq sequences will also suffice to span the long arm of the X chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号