共查询到20条相似文献,搜索用时 15 毫秒
1.
. Suhajda J. Hegczki B. Janzs I. Pais G. Vereczkey 《Journal of trace elements in medicine and biology》2000,14(1)
Selenium (Se) is an essential micronutrient for human and animal organisms. Organic selenium complexes and selenium-containing amino acids are considered the most bioavailable.Under appropriate conditions yeasts are capable of accumulating large amounts of trace elements, such as selenium, and incorporating them into organic compounds. It has been found that introduction of water-soluble selenium salt as a component of the culture medium for yeasts produced by conventional batch processing results in a substantial amount of selenium being absorbed by the yeast.Using a culture medium supplemented with 30 μg/mL sodium-selenite added during the exponential growth phase results in selenium-accumulation in the range of 1200–1400 μg/g dried baker's yeast (Saccharomyces cerevisiae) measured by ICP-AES method. In our previous studies it was shown that higher amounts of sodium-selenite in the culture medium have a strong inhibitory effect on the growth of this yeast. As a consequence of variations in cultivation conditions we obtained selenium yeast with different inorganic selenium content. The most important parameters influencing incorporated forms of selenium are pH value and dissolved oxygen level in the culture medium, and depending on these the selenium consumption rate of the yeast. A 0.40–0.50 mg/g h-1 specific selenium consumption rate was found to be appropriate to obtain selenium-enriched bakers' yeast of a high quality. Under suitable conditions the undesirable inorganic selenium content of the yeast could be suppressed to as low as 5–6% at the expense, however, of approximately a 20% decrease in the final biomass. 相似文献
2.
Kaliuzhin VA 《Zhurnal obshche? biologii》2011,72(2):140-149
Under natural conditions, yeast Saccharomyces cerevisiae reproduce, as a rule, on the surface of solid or liquid medium. Thus, life cycle of yeast populations is substantially influenced by diurnal changes in ambient temperature. The pattern in the response of unrestricted yeast S. cerevisiae culture to changes in the temperature of cultivation is revealed experimentally. Yeast population, in the absence of environmental constraints on the functioning of cell chemosmotic bioenergetic system, demonstrates the ability of thermoresistance when the temperature of cultivation switches from the range of 12-36 degrees C to 37.5-40 degrees C. During the transient period that is associated with the temperature switching and lasts from 1 to 4 turnover cycles, yeast reproduction rate remains 1.5-2 times higher than under stationary conditions. This is due to evolutionary acquired adaptive activity of cell chemosmotic system. After the adaptive resources exhausting, yeast thermoresistance fully recovers at the temperature range of 12-36 degrees C within one generation time under conditions of both restricted and unrestricted nourishment. Adaptive significance of such thermoresistance seems obvious enough--it allows maintaining high reproduction rate in yeast when ambient temperature is reaching a brief maximum shortly after noon. 相似文献
3.
J M Gasent-Ramírez F Castrejón A Querol D Ramón T Benítez 《Systematic and applied microbiology》1999,22(3):329-340
The objective of this study has been to gather data on genomic stability of baker's yeast strains during long-term mitotic growth under restrictive conditions so that comparisons could be made to other studies indicating genomic instability during meiosis. The work describes the analysis of mitotic stability of the nuclear and mitochondrial genomes in the baker's yeast strain V1 during incubation in continuous culture for 190 generations (300 days). The cells were cultured in complete medium containing 2% glucose and 8 to 12% ethanol, as a mutagenic agent specific for mtDNA. The high concentration of ethanol severely limited the growth rate of the cells. DNA samples were monitored for chromosomal pattern, polymorphisms in selected nuclear genes (SUC2, MALIT, ADH1) and mobile genetic elements (Ty1 and Y'), and for RFLPs in mtDNA. The results show that both the nuclear and mitochondrial genomes of grande cells were very stable. However, the frequency of petite mutants in the population varied dramatically during the course of the experiment, reaching as high as 87% petite during the first 27 days of the experiment and declining to 5.8% petite at the end. This decline can be attributed to selection against petite mutants in media containing high concentrations of ethanol. Moreover, when samples and the parental strain were compared at the end of the experiment, no change could be observed in parameters such as their growth rate in different media, capacity to leave doughs, viability in ethanol or frequency of petite mutants. Results therefore indicated that the majority of the cells in the population were very similar to the parental throughout the experiments, with no apparent molecular or phenotypical changes. 相似文献
4.
G F Nesterova 《Genetika》1988,24(7):1141-1152
The killer systems of Saccharomyces cerevisiae are a peculiar group of cytoplasmic symbionts of primitive eukaryotes. The genetic material of these symbionts is double-stranded RNA. Their basic properties are linearity of genome, its fragmentation, resulting in two separately replicating major and minor segments, and the ability to control the synthesis of secretory proteins--mycocins which can kill the taxonomically related strains. Secretion of mycocins also confers immunity to their action. The strains containing killer symbionts are toxigenic and resistant to their own toxins, while those with no killer double-stranded RNA are sensitive to mycocins. The killer systems of Saccharomyces cerevisiae possess some properties relevant to viruses and evidently are evolved during the evolution of infectious viruses. Occurrence of such systems in monocellular eucaryotic organisms is an example of genome complication in the course of putting together the virus-like components. The peculiarities of replication and expression of killer systems and their utilization for the construction of vector molecules are discussed. 相似文献
5.
6.
Acetaldehyde production in Saccharomyces cerevisiae wine yeasts 总被引:1,自引:0,他引:1
Patrizia Romano Giovanna Suzzi Luca Turbanti Mario Polsinelli 《FEMS microbiology letters》1994,118(3):213-218
Abstract Eighty-six strains of Saccharomyces cerevisiae were investigated for their ability to produce acetaldehyde in synthetic medium and in grape must. Acetaldehyde production did not differ significantly between the two media, ranging from a few mg/l to about 60 mg/l, and was found to be a strain characteristic. The fermentation temperature of 30°C considerably increased the acetaldehyde produced. This study allowed us to assign the strains to different phenotypes: low, medium and high acetaldehyde producers. The low and high phenotypes differed considerably also in the production of acetic acid, acetoin and higher alcohols and can be useful for studying acetaldehyde production in S. cerevisiae , both from the technological and genetic point of view. 相似文献
7.
Acetoin production in Saccharomyces cerevisiae wine yeasts 总被引:4,自引:0,他引:4
Abstract One hundred strains of Saccharomyces cerevisiae were examined for the capacity to produce acetoin in synthetic medium and in grape must. The low production of acetoin was found to be the more common pattern in this species. Most strains exhibited a similar distribution in both media, production ranging from non-detectable amounts to 12 mg 1−1 . Only four strains produced high quantities of acetoin, up to 29.5 mg l−1 in synthetic medium and up to 194.6 mg l−1 in grape must. This biometric study showed the existence of two phenotypes, "low and high acetoin production", that could be selected for conferring a desirable flavour of the final product. 相似文献
8.
Molecular genetic study of the yeast Saccharomyces cerevisiae isolated at various stages of sherry making (young wine, solera, and criadera) in various winemaking regions of Spain demonstrated that sherry yeasts diverged from the primary winemaking yeasts according to several physiological and molecular markers. All sherry strains independently of the place and time of their isolation carry a 24-bp deletion in the ITS 1 region of ribosomal DNA, whereas the yeasts of the primary winemaking lack this deletion. Molecular karyotypes of the sherry yeast from different populations were found very similar. 相似文献
9.
A FITC-dextran internalization assay with Saccharomyces cerevisiae as positive control was used to determine whether fluid-phase endocytosis is a general characteristic of yeasts. Schizosaccharomyces pombe, Pichia polymorpha, Kluyveromyces phaseolosporus, Yarrowia lipolytica and Candida albicans were clearly positive, whereas results obtained with Debaryomyces marama were inconclusive. In all cases internalized FITC-dextran was found to be localized in the vacuoles and the process was always time- and temperature-dependent. Lower eucaryotes, particularly yeasts, appear to have the ability to incorporate substances from the extracellular medium through fluid-phase endocytosis. 相似文献
10.
An isolation procedure for phosphoribosyl succinocarboxamideaminoimidazole synthetase (SAICAR synthetase) (EC 6.3.2.6) has been developed. Pure SAICAR synthetase was found to be a monomeric protein with the apparent molecular weight of 36 kDa. The Michaelis constant for the three substrates of the reaction are 1.6 microM for CAIR, 14 microM for ATP and 960 microM for aspartic acid. The structural analogs of CAIR, 5-aminoimidazole ribotide and 5-aminoimidazole-4-carboxamide ribotide, act as competitive inhibitors of SAICAR synthetase. GTP and 2'-dATP can substitute for ATP in the reaction, while CTP and UTP inhibit the enzyme. No structural analogs of the aspartic acid were found to have affinity for SAICAR synthetase. The optimal reaction conditions for the enzyme were established to be at pH 8.0 and magnesium chloride concentration around 5 mM. 相似文献
11.
The possible mechanism of synchronization of NADH oscillations in yeasts were studied. It was shown that the synchronization time depends on cell concentration in suspension. Synchronization of oscillations after acetaldehyde addition was found in Saccharomyces carlsbergensis whereas in S. cerevisiae oscillations were synchronized after adding potassium cyanide. It is possible, that synchronization of oscillations in S. cerevisiae requires low concentration of acetaldehyde and the high acetaldehyde concentration synchronizes oscillations in S. carlsbergensis. In addition, a possible mechanism of synchronization by acetaldehyde in proposed. 相似文献
12.
13.
Competition for glucose between the yeasts Saccharomyces cerevisiae and Candida utilis. 总被引:1,自引:0,他引:1 下载免费PDF全文
E Postma A Kuiper W F Tomasouw W A Scheffers J P van Dijken 《Applied microbiology》1989,55(12):3214-3220
The competition between the yeasts Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621 for glucose was studied in sugar-limited chemostat cultures. Under aerobic conditions, C. utilis always successfully completed against S. cerevisiae. Only under anaerobic conditions did S. cerevisiae become the dominant species. The rationale behind these observations probably is that under aerobic glucose-limited conditions, high-affinity glucose/proton symporters are present in C. utilis, whereas in S. cerevisiae, glucose transport occurs via facilitated diffusion with low-affinity carriers. Our results explain the frequent occurrence of infections by Crabtree-negative yeasts during bakers' yeast production. 相似文献
14.
15.
Characterization of genetically transformed Saccharomyces cerevisiae baker's yeasts able to metabolize melibiose. 总被引:2,自引:0,他引:2 下载免费PDF全文
Three transformant (Mel+) Saccharomyces cerevisiae baker's yeast strains, CT-Mel, VS-Mel, and DADI-Mel, have been characterized. The strains, which originally lacked alpha-galactosidase activity (Mel-), had been transformed with a DNA fragment which possessed an ILV1-SMR1 allele of the ILV2 gene and a MEL1 gene. The three transformed strains showed growth rates similar to those of the untransformed controls in both minimal and semi-industrial (molasses) media. The alpha-galactosidase specific activity of strain CT-Mel was twice that of VS-Mel and DADI-Mel. The yield, YX/S (milligrams of protein per milligram of substrate), in minimal medium with raffinose as the carbon source was 2.5 times higher in the transformed strains than in the controls and was 1.5 times higher in CT-Mel than in VS-Mel and DADI-Mel. When molasses was used, YX/S (milligrams of protein per milliliter of culture) increased 8% when the transformed strains CT-Mel and DADI-Mel were used instead of the controls. Whereas no viable spores were recovered from either DADI-Mel or VS-Mel tetrads, genetic analysis carried out with CT-Mel indicated that the MEL1 gene has been integrated in two of three homologous loci. Analysis of the DNA content by flow cytometry indicated that strain CT-Mel was 3n, whereas VS-Mel was 2n and DADI-Mel was 1.5n. Electrophoretic karyotype and Southern blot analyses of the transformed strains showed that the MEL1 gene has been integrated in the same chromosomic band, probably chromosome XIII, in the three strains.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
16.
17.
Selenium (Se) is an essential trace element for humans, animals and some bacteria which is important for many cellular processes. Se's bio-activity is mainly influenced by its chemical form and dose. The use of Se supplements in the human diet emphasizes the need to establish both the beneficial and detrimental doses of each Se compound. We have evaluated three different Se compounds, sodium selenite (SeL), selenomethionine (SeM) and Se-methylselenocysteine (SeMC), with respect to their potential DNA damaging effects. The budding yeast Saccharomyces cerevisiae was used as a model system to test the toxic and mutagenic effects as well as the DNA double-strand breakage potency of these Se compounds in both exponentially growing and stationary yeast cells. Only SeL manifested any significant toxic effects in the yeast which were more pronounced in the exponentially growing cells than in those cells in the stationary phase of growth. The toxic effects of SeL were however accompanied with the pro-mutagenic effects in the stationary cell phase of growth. The toxic and mutagenic effects of SeL are likely associated with the ability of this compound to generate DNA double-strand breaks (DSB). We also show that SeL significantly increased frame-shift mutations, especially 1-4 bp deletions, in the CAN1 mutational spectrum of the yeast genome when compared to untreated control. We propose that SeL is acting as an oxidizing agent in S. cerevisiae producing superoxide and oxidative damage to DNA accounting for the observed DSB and cell death. 相似文献
18.
S J Silverman 《Analytical biochemistry》1987,164(2):271-277
Interest in the study of yeast biology has increased dramatically in the past few years. Since these organisms are eukaryotic, some phenomena observed in yeast may provide a useful model for similar phenomena in multicellular organisms. Yeast has several advantages as an experimental organism and many methods used for bacteria can be adapted to them. Yeast is simple to grow, cultures are easily maintained, and classical and molecular genetic techniques can be used. The ability to approach problems genetically and biochemically has lead to substantive progess with this group of organisms in areas such as cell biology (1) and gene expression (2). This review is intended to introduce investigators to practical techniques for the growth and radioactive labeling of yeast, primarily of Saccharomyces cerevisiae. For genetic techniques, readers are referred to a recent laboratory manual (3) and reviews (4,5). 相似文献
19.
The so far largely uncharacterized central carbon metabolism of the yeast Pichia stipitis was explored in batch and glucose-limited chemostat cultures using metabolic-flux ratio analysis by nuclear magnetic resonance. The concomitantly characterized network of active metabolic pathways was compared to those identified in Saccharomyces cerevisiae, which led to the following conclusions. (i) There is a remarkably low use of the non-oxidative pentose phosphate (PP) pathway for glucose catabolism in S. cerevisiae when compared to P. stipitis batch cultures. (ii) Metabolism of P. stipitis batch cultures is fully respirative, which contrasts with the predominantly respiro-fermentative metabolic state of S. cerevisiae. (iii) Glucose catabolism in chemostat cultures of both yeasts is primarily oxidative. (iv) In both yeasts there is significant in vivo malic enzyme activity during growth on glucose. (v) The amino acid biosynthesis pathways are identical in both yeasts. The present investigation thus demonstrates the power of metabolic-flux ratio analysis for comparative profiling of central carbon metabolism in lower eukaryotes. Although not used for glucose catabolism in batch culture, we demonstrate that the PP pathway in S. cerevisiae has a generally high catabolic capacity by overexpressing the Escherichia coli transhydrogenase UdhA in phosphoglucose isomerase-deficient S. cerevisiae. 相似文献
20.
Carrau FM Medina K Boido E Farina L Gaggero C Dellacassa E Versini G Henschke PA 《FEMS microbiology letters》2005,243(1):107-115
This paper reports the production of monoterpenes, which elicit a floral aroma in wine, by strains of the yeast Saccharomyces cerevisiae. Terpenes, which are typical components of the essential oils of flowers and fruits, are also present as free and glycosylated conjugates amongst the secondary metabolites of certain wine grape varieties of Vitis vinifera. Hence, when these compounds are present in wine they are considered to originate from grape and not fermentation. However, the biosynthesis of monoterpenes by S. cerevisiae in the absence of grape derived precursors is shown here to be of de novo origin in wine yeast strains. Higher concentration of assimilable nitrogen increased accumulation of linalool and citronellol. Microaerobic compared with anaerobic conditions favored terpene accumulation in the ferment. The amount of linalool produced by some strains of S. cerevisiae could be of sensory importance in wine production. These unexpected results are discussed in relation to the known sterol biosynthetic pathway and to an alternative pathway for terpene biosynthesis not previously described in yeast. 相似文献