首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Real-time analysis offers multiple benefits over traditional end point assays. Here, we present a method of monitoring the optimisation of the growth and differentiation of murine 3T3-L1 preadipocytes to adipocytes using the commercially available ACEA xCELLigence Real-Time Cell Analyser Single Plate (RTCA SP) system. Our findings indicate that the ACEA xCELLigence RTCA SP can reproducibly monitor the primary morphological changes in pre- and post-confluent 3T3-L1 fibroblasts induced to differentiate using insulin, dexamethasone, 3-isobutyl-1-methylxanthine and rosiglitazone; and may be a viable primary method of screening compounds for adipogenic factors.  相似文献   

2.
3T3-L1 preadipocytes, when treated with 3-isobutyl-1-methylxanthine, dexamethasone, and insulin, differentiate into cells with the morphological and biochemical properties of adipocytes; the closely related 3T3-C2 cells, under identical conditions, exhibit a low frequency of adipocyte conversion. During differentiation, 3T3-L1 preadipocytes acquire an increased responsiveness to certain agonists (e.g. isoproterenol and adrenocorticotropic hormone) that influence lipolysis and lipogenesis through activation of adenylate cyclase, whereas 3T3-C2 cells do not. It has been suggested that changes in hormone responsiveness of 3T3-L1 cells during differentiation result from increased amounts of the guanyl nucleotide-binding protein of adenylate cyclase, as demonstrated by choleragen-catalyzed [32P]ADP ribosylation of 42 and 49-50-kilodalton particulate peptides. Particulate fractions from nondifferentiating 3T3-C2 cells, like those from 3T3-L1 cells, contained choleragen substrates of 42 and 46-47 (doublet) kilodaltons. Incubation of intact 3T3-L1 or 3T3-C2 cells with choleragen prior to preparation of particulate fractions prevented the subsequent in vitro choleragen-dependent [32P]ADP ribosylation of only these peptides. Increased incorporation of radioactivity into both the 42 and 46-47-kilodalton peptides was observed during differentiation of 3T3-L1 cells. However, a similar increase was also observed in nondifferentiating 3T3-C2 cells subjected to the differentiation protocol. Therefore, increased hormone responsiveness of 3T3-L1 adipocytes cannot be explained solely on the basis of increased labeling, and perhaps increased amounts, of the guanyl nucleotide-binding protein.  相似文献   

3.
Lee  Kyeong Won  An  Young Jun  Lee  Janet  Lee  Jung-Hyun  Yim  Hyung-Soon 《Amino acids》2021,53(4):587-596

α-Poly-l-lysine (PLL) has been used for various purposes such as cell attachment, immunization, and molecular delivery, and is known to be cytotoxic to several cell lines. Here, we studied the effect of PLL on the adipogenesis of 3T3-L1 cells and investigated the underlying mechanism. Differentiation media containing PLL with a molecular weight (MW) greater than 4 kDa enhanced lipid droplet formation and increased adipogenic marker levels, indicating an increase in adipocyte differentiation. PLL with a molecular weight between 30 and 70 kDa was more effective than PLL of other sizes in 3T3-L1 cell differentiation. Moreover, PLL induced 3T3-L1 adipogenesis in insulin-free adipocyte differentiation medium. Incubation with insulin and PLL exhibited greater adipogenesis than insulin treatment only even at a high concentration. PLL stimulated insulin signaling and augmented the signaling pathway when it was added with insulin. While PLL did not activate the glucocorticoid receptor, which is phosphorylated by dexamethasone (DEX), it showed a positive effect on the cAMP signal pathway when preadipocytes were treated with PLL and 3-isobutyl-1-methylxanthine (IBMX). Consistent with these results, incubation with PLL and DEX without IBMX induced adipocyte differentiation. We also observed that the mitotic clonal expansion phase was the critical stage in adipogenesis for inducing the effects of PLL. These results suggest that PLL functions as an adipogenic inducer in 3T3-L1 preadipocytes and PLL has a direct effect on insulin signaling, one of the main regulatory pathways.

  相似文献   

4.
5.
In 3T3-L1 fibroblasts, Ras proteins mediate both insulin-induced differentiation to adipocytes and its activation of cytosolic serine/threonine kinases, including Raf-1 kinase, mitogen-activated protein kinase (MAPK), and Rsk. Here, we report that insulin- and Ras-induced activation of MAPK is not required for the differentiation process and in fact antagonizes it. The treatment of 3T3-L1 preadipocytes with MEK-specific inhibitor PD98059 blocked insulin- and Ras-induced MAPK activation but had no effect on or slightly enhanced adipocytic differentiation. Tumor necrosis factor alpha (TNF-alpha), an inhibitor of insulin-stimulated adipogenesis, activated MAPK in 3T3-L1 cells. PD98059 treatment blocked MAPK activation by TNF-alpha and reversed the blockade of adipogenesis mediated by low (1 ng/ml) TNF-alpha concentrations. 3T3-L1 transfectants containing hyperactivated MEK1 or overexpressed MAPK displayed impaired adipocytic differentiation. PD98059 treatment also reversed the blockade of differentiation in MEK1 transfectants. These results indicate that MAPK does not promote but can contribute to inhibition of the process of adipocytic differentiation of 3T3-L1 cells.  相似文献   

6.
Until now, the low efficiency of current protocols or kits for the differentiation of 3T3-L1 preadipocytes makes it difficult to continue the studies of the cellular and molecular mechanisms in adipocytes. Here we present a productive and highly efficient protocol for the differentiation of 3T3-L1 cells that uses a prolonged treatment with 3-isobutyl-1-methylxanthine (IBMX) during the differentiated process. 3T3-L1 cells of unknown passage +3 and unknown passage +7 treated with a prolonged exposure to IBMX showed significantly increased differentiation efficiency by day 15, in contrast to low levels of differentiation seen with protocols that lacked additional IBMX.  相似文献   

7.
Mouse or human fibroblasts are commonly used as feeder cells to prevent differentiation in stem or primary cell culture. In the present study, we addressed whether fibroblasts can affect the differentiation of adipocytes. We found that the differentiation of 3T3-L1 preadipocytes was strongly suppressed when the cells were cocultured with human fibroblast (BJ) cells. BrdU incorporation analysis indicated that mitotic clonal expansion, an early event required for 3T3-L1 cell adipogenesis, was not affected by BJ cells. The 3T3-L1 cell expression levels of peroxisome proliferator-activated receptor γ2, CCAAT/enhancer-binding protein alpha (C/EBPα), sterol regulatory element binding protein-1c, and Krüppel-like factor 15, but not those of C/EBPβ or C/EBPδ, were decreased by coculture with BJ cells. When mature 3T3-L1 adipocytes were cocultured with BJ cells, their lipid contents were significantly reduced, with decreased fatty acid synthase expression and increased phosphorylated form of acetyl-CoA carboxylase 1. Our data indicate that coculture with BJ fibroblast cells inhibits the adipogenesis of 3T3-L1 preadipocytes and decreases the lipogenesis of mature 3T3-L1 adipocytes.  相似文献   

8.
Adipose tissue expresses a variety of genes including tumor necrosis factor alpha and type-1 plasminogen activator inhibitor (PAI-1); and these factors, produced by adipocytes, may be associated with the risk of coronary events in obesity. In this study, we characterized the production of fibrinolytic factors including tissue-type plasminogen activator (tPA), urokinase-type PA (uPA), and PAI-1 in the differentiation of preadipocytes, and examined the hormonal regulation of these fibrinolytic factors in mature adipocytes. Mouse 3T3-L1 preadipocytes were employed as a model of adipocytes. Adipocyte differentiation was induced by insulin, dexamethasone, and 3-isobutyl-1-methyl xanthine (IBMX). alpha-Glycerophosphate dehydrogenase (GPDH) activity and glucose transporter 4 (GLUT4) mRNA, indices for adipocyte maturation, were induced on Day 4, and gradually increased. GPDH activity reached its maximum level on Day 14. The level of tPA, a major PA in preadipocytes, dramatically decreased with differentiation. On the other hand, that of uPA reciprocally increased. PAI-1 production was also dramatically induced concomitant with differentiation. In mature adipocytes, uPA production was dominant (25 microg/ml/24 h vs. 0.8 microg/ml/24 h for tPA). Total PA activity in the mature adipocytes was reduced by insulin or dexamethasone, but not by glucagon. Insulin, IBMX, and dexamethasone significantly decreased both uPA and tPA production, and increased PAI-1 production. Glucagon had no effect on the production of these fibrinolytic factors. Our results reveal that uPA is one of the markers for the differentiation of 3T3-L1 cells and that insulin, IBMX, and dexamethasone are potent regulators of the fibrinolytic activity in differentiated 3T3-L1 cells, reciprocally affecting PA and PAI-1 levels in them.  相似文献   

9.
Alkaline phosphatase (ALP) is expressed in 3T3-L1 preadipocytes, and its activity increases during adipogenesis. The purpose of this study was to determine whether ALP activity could be used as a measure of intracellular lipid accumulation in human preadipocytes and 3T3-L1 cells and which of the factors that induce adipogenesis are responsible for stimulating ALP activity. Adipogenesis was initiated in 3T3-L1 cells by incubation with differentiation medium containing insulin, dexamethasone, and 3-isobutyl-1-methylxanthine. The effect of leaving out each of the differentiation medium components was studied. Adipogenesis was also assessed in human preadipocytes and 3T3-L1 cells in the presence of the ALP inhibitor histidine. ALP activity was measured using an automated colorimetric assay and intracellular lipid accumulation was measured using the lipid-specific dye oil red O. Removal of insulin or dexamethasone from the differentiation medium had little effect on either ALP activity or lipid accumulation in 3T3-L1 cells, while removal of IBMX blocked both. Histidine inhibited ALP activity and adipogenesis in human preadipocytes and 3T3-L1 cells. Pearson univariate correlation analysis demonstrated strong correlations between ALP activity and lipid accumulation in human preadipocytes (r=0.78, n=69) and in 3T3-L1 cells (r=0.92, n=27). These data suggest that ALP and fat storage are tightly linked during preadipocyte maturation and that the measurement of ALP activity may be a novel technique for the quantification of intracellular lipid accumulation that is more sensitive and rapid than currently used methods.  相似文献   

10.
The adenylyl cyclase system of preadipocytes derived from the stromal vascular fraction of perirenal rat fat pads was characterized. Unlike mature adipocytes, preadipocyte adenylyl cyclase was only weakly stimulated by catecholamines and adrenocorticotrophic hormone, but was stimulated by guanine nucleotides. Parathyroid hormone and 2-chloroadenosine also stimulated preadipocyte adenylyl cyclase. The adenylyl cyclase system of preadipocytes resembled that of undifferentiated 3T3-L1 cells. However, agents which induced the differentiation of the 3T3-L1 cell adenylyl cyclase system did not have a similar effect on preadipocytes. A medium (CDM6) which induced some differentiation of preadipocyte adenylyl cyclase was developed. The observations that the adenylyl cyclase system of preadipocytes and undifferentiated 3T3-L1 cells are similar, that preadipocyte adenylyl cyclase can be induced to develop along lines similar to early differentiation of 3T3-L1 cells, and that the adenylyl cyclase system of fully-differentiated 3T3-L1 cells has characteristics intermediate between preadipocytes and adipocytes, suggest that the differentiation of preadipocyte and 3T3-L1 adenyly cyclase in vitro mimics adipose adenylyl cyclase development in vivo. The increased catecholamine and ACTH stimulation, and reduced GTP and adenosine sensitivities of adipocytes compared to preadipocytes suggest that a number of genes affecting adenylyl cyclase-associated regulatory and receptor proteins are coordinately repressed and derepressed during development.  相似文献   

11.
12.
M S Patel  C Raefsky  C W Hu    L Ho 《The Biochemical journal》1985,226(2):607-611
Chronic exposure of 3T3-L1 pre-adipocytes to dexamethasone plus 3-isobutyl-1-methylxanthine (IBMX) with or without insulin caused a significant increase in the specific activity of 'total' pyruvate dehydrogenase complex (PDC) and in the percentage of the 'active' form of the complex compared with cells exposed to a chronic insulin treatment or an acute treatment (2 days) with dexamethasone plus IBMX. In acute-drug-switch-over experiments, dexamethasone also caused an increase in the percentage of 'active' PDC in 3T3-L1 adipocytes. The results show that, in 3T3-L1 adipocytes, dexamethasone, even in the absence of insulin, increases the proportion of PDC in its 'active' form. The mechanism of the dexamethasone effect remains to be investigated.  相似文献   

13.
14.
Differentiation of preadipocytes into functional adipocytes depends on early proliferative events (mitotic clonal expansion) and extracellular matrix interactions. We report that discoidin domain receptor (DDR) 2, a novel adhesion receptor, is expressed in 3T3-L1 preadipocytes and is downregulated during the early phase of adipogenesis. DDR2 overexpression (DDR2-L1 preadipocytes) reduced subconfluent proliferation by 56% (p<0.001) and insulin-stimulated tyrosine phosphorylation of insulin receptor substrate (IRS)-1 by 34% (p<0.05). The mitotic clonal expansion phase of differentiating confluent DDR2-L1 preadipocytes was impaired by approximately 25% (p<0.05). Although induction of peroxisome proliferator-activated receptor gamma, fatty acid synthase, and adiponectin was not altered, the resulting adipocytes were 55% larger (p<0.05), and contained 66% more triacylglycerol (p<0.01). The induction of CCAAT/enhancer binding protein alpha was reduced by 37% (p<0.05), correlating with a similar reduction in insulin-stimulated IRS-1 tyrosine phosphorylation and glucose transport in DDR2-L1 adipocytes (decreases of 22% and 27%, respectively; p<0.05 for both). Our data show that DDR2 is expressed in adipose cells and that its overexpression leads to insulin resistance.  相似文献   

15.
16.
Differentiation of 3T3-L1 preadipocytes into adipocytes is induced by a combination of inducers, including a glucocorticoid, an agent that elevates cellular cAMP, and a ligand of the insulin-like growth factor-1 receptor. Previous studies have implicated protein-tyrosine phosphatase (PTPase) HA2, a homologue of PTPase 1B, in the signaling cascade initiated by the differentiation inducers. Vanadate, a potent PTPase inhibitor, blocks adipocyte differentiation at an early stage in the program, but has no effect on the mitotic clonal expansion required for differentiation. Exposure of preadipocytes to vanadate along with the inducing agents led to the accumulation of pp35, a phosphotyrosyl protein that is a substrate for PTPase HA2. pp35 was purified to homogeneity and shown by amino acid sequence and mass analyses of tryptic peptides to be c-Crk, a known cytoplasmic target of the insulin-like growth factor-1 receptor tyrosine kinase. Transfection of 3T3-L1 preadipocytes with a c-Crk antisense RNA expression vector markedly reduced c-Crk levels and prevented differentiation into adipocytes. Studies with C3G, a protein that binds to the SH3 domain in c-Crk, showed that phosphorylation of c-Crk rendered the SH3 domain inaccessible to C3G. Taken together, these findings indicate that locking c-Crk in the phosphorylated state with vanadate prevents its participation in the signaling system that initiates adipocyte differentiation.  相似文献   

17.
18.
Within the first 24 h of hormonally stimulated adipocyte differentiation, murine 3T3-L1 preadipocytes undergo a mitotic expansion phase prior to terminal differentiation. During this time, the cell cycle regulatory proteins, p130 and p107 undergo dramatic differential expression and the transient increase in expression of p107 appears to be required for terminal differentiation. Recently, human adipose-derived human stem cells (hASC) of mesenchymal origin have been used as a model of human adipocyte differentiation and we sought to determine if differentiating hASC undergo clonal expansion and if the regulated expression of p130/p107 was similar to that observed during 3T3-L1 adipogenesis. Results indicate that differentiating hASC, unlike 3T3-L1 cells do not undergo clonal expansion and p130 expression gradually diminishes across differentiation. However, p107 expression is transiently increased during hASC differentiation in a manner analogous to 3T3-L1 cells suggesting a similar role for p107 in terminal differentiation in human adipocytes.  相似文献   

19.
Berberine, a hypoglycemic agent, has been shown to decrease plasma free fatty acids (FFAs) level in insulin-resistant rats. In the present study, we explored the mechanism responsible for the antilipolytic effect of berberine in 3T3-L1 adipocytes. It was shown that berberine attenuated lipolysis induced by catecholamines, cAMP-raising agents, and a hydrolyzable cAMP analog, but not by tumor necrosis factor α and a nonhydrolyzable cAMP analog. Unlike insulin, the inhibitory effect of berberine on lipolysis in response to isoproterenol was not abrogated by wortmannin, an inhibitor of phosphatidylinositol 3-kinase, but additive to that of PD98059, an extracellular signal-regulated kinase kinase inhibitor. Prior exposure of adipocytes to berberine decreased the intracellular cAMP production induced by isoproterenol, forskolin, and 3-isobutyl-1-methylxanthine (IBMX), along with hormone-sensitive lipase (HSL) Ser-563 and Ser-660 dephosphorylation, but had no effect on perilipin phosphorylation. Berberine stimulated HSL Ser-565 as well as adenosine monophosphate-activated protein kinase (AMPK) phosphorylation. However, compound C, an AMPK inhibitor, did not reverse the regulatory effect of berberine on HSL Ser-563, Ser-660, and Ser-565 phosphorylation, nor the antilipolytic effect of berberine. Knockdown of AMPK using RNA interference also failed to restore berberine-suppressed lipolysis. cAMP-raising agents increased AMPK activity, which was not additive to that of berberine. Stimulation of adipocytes with berberine increased phosphodiesterase (PDE) 3B and PDE4 activity measured by hydrolysis of 3[H]cAMP. These results suggest that berberine exerts an antilipolytic effect mainly by reducing the inhibition of PDE, leading to a decrease in cAMP and HSL phosphorylation independent of AMPK pathway.  相似文献   

20.
Insulin-like growth factor-I (IGF-I) stimulates mitogenesis in proliferating preadipocytes, but when cells reach confluence and become growth arrested, IGF-I stimulates differentiation into adipocytes. IGF-I induces signaling pathways that involve IGF-I receptor-mediated tyrosine phosphorylation of Shc and insulin receptor substrate 1 (IRS-1). Either of these adaptor proteins can lead to activation of the three-kinase cascade ending in activation of the extracellular signal-regulated kinase 1 and -2 (ERK-1 and -2) mitogen-activated protein kinases (MAPKs). Several lines of evidence suggest that activation of MAPK inhibits 3T3-L1 preadipocyte differentiation. We have shown that IGF-I stimulation of MAPK activity is lost as 3T3-L1 preadipocytes begin to differentiate. This change in MAPK signaling coincides with loss of IGF-I-mediated Shc, but not IRS-1, tyrosine phosphorylation. We hypothesized that down-regulation of MAPK via loss of proximal signaling through Shc is an early component in the IGF-I switch from mitogenesis to differentiation in 3T3-L1 preadipocytes. Treatment of subconfluent cells with the MEK inhibitor PD098059 inhibited both IGF-I-activation of MAPK as well as 3H-thymidine incorporation. PD098059, in the presence of differentiation-inducing media, accelerated differentiation in subconfluent cells as measured by expression of adipocyte protein-2 (aP-2), peroxisome proliferator-activated receptor gamma (PPARgamma) and lipoprotein lipase (LPL). Transient transfection of subconfluent cells with Shc-Y317F, a dominant-negative mutant, attenuated IGF-I-mediated MAPK activation, inhibited DNA synthesis, and accelerated expression of differentiation markers aP-2, PPARgamma, and LPL. We conclude that signaling through Shc to MAPK plays a critical role in mediating IGF-I-stimulated 3T3-L1 mitogenesis. Our results suggest that loss of the ability of IGF-I to activate Shc signaling to MAPK may be an early component of adipogenesis in 3T3-L1 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号