首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Rabbit nasal olfactory and respiratory microsomes demonstrate high activity toward [3H]-(S)-nicotine, with specific activities of 22.2 and 6.5 nmol/min/mg protein, respectively. The major metabolite produced is (S)-nicotine delta 1'; 5'-iminium ion, with lesser amounts of nornicotine and the N'-oxide. Reconstitution of the rabbit nasal microsomal system with cytochromes P-450 NMa and NMb indicated that only P-450 NMa has significant activity toward nicotine, and the metabolite profile and turnover are similar to that observed with nasal microsomes. The low Km (35 microMs) and high Vmax (28 min-1) suggest that a significant portion of inhaled nicotine is metabolized by nasal tissues in the rabbit.  相似文献   

2.
Two different forms of cytochrome P-450, highly active in the omega-hydroxylation of prostaglandin A, and the omega- and (omega-1)-hydroxylation of fatty acids (P-450ka-1 and P-450ka-2), have been purified from kidney cortex microsomes of rabbits treated with di(2-ethylhexyl)-phthalate. On the basis of the peptide map patterns and NH2-terminal amino acid sequence, P-450ka-1 was determined to be a new form of omega-hydroxylase cytochrome P-450, whereas P-450ka-2 is identical to P-450ka reported earlier. The first 20 NH2-terminal amino acid sequence (ALNPTRLPGSLSGLLQVAGL) and (ALSPTRLPGSFSGFLQAAGL) of P-450ka-1 and P-450ka-2 showed 90 and 80% homology with that of the lung prostaglandin omega-hydroxylase, respectively, suggesting that these three cytochromes P-450 are members of the same omega-hydroxylase cytochrome P-450 gene family.  相似文献   

3.
4.
Polyclonal antibody has been shown previously to react identically with cytochromes P-450b and P-450e purified from Long Evans rats and a strain variant of cytochrome P-450b purified from Holtzman rats (P-450bH). In the present study, an array of 12 different monoclonal antibodies produced against cytochrome P-450b has been used to distinguish among these closely related phenobarbital-inducible rat hepatic cytochromes P-450. In immunoblots and enzyme-linked immunosorbent assays, 10 monoclonal antibodies bind to cytochromes P-450b, P-450e, and P-450bH; one monoclonal antibody (B50) recognizes cytochromes P-450b and P-450bH but not cytochrome P-450e; and one monoclonal antibody (B51) is specific for cytochrome P-450b. In addition, one monoclonal antibody (BEF29) reacts strongly with cytochrome P-450f, and another antibody (BEA33) reacts weakly with cytochrome P-450a. No cross-reactions with cytochromes P-450c, P-450d, and P-450g-P-450j were detected with any of the monoclonal antibodies in these assays. Six spatially distinct epitopes on cytochrome P-450b were identified, and differences in antibody reactivity provided evidence for three additional overlapping epitopes. Several monoclonal antibodies are potent inhibitors of testosterone and benzphetamine metabolism supported by cytochrome P-450b in a reconstituted system. B50 and BE52 do not inhibit metabolism of the two substrates by microsomes from untreated rats, but inhibit benzphetamine N-demethylation and testosterone metabolism to 16 alpha- and 16 beta-hydroxytestosterone as well as androstenedione formation 67-94% by microsomes from phenobarbital-treated rats. No other pathways of testosterone metabolism are inhibited by these monoclonal antibodies. The differential inhibition of microsomal metabolism of benzphetamine and testosterone by these monoclonal antibodies is a reflection of the content and inducibility of cytochromes P-450b and P-450e as well as other cytochrome P-450 isozymes.  相似文献   

5.
14 microsomal cytochromes P-450 were purified from the liver of untreated and phenobarbital- or 3-methylcholanthrene-treated male rats. Following solubilization of microsomes with sodium cholate, poly(ethylene glycol) fractionation and aminohexyl-Sepharose 4B chromatography, cytochromes P-450 were purified by high-performance liquid chromatography (HPLC), using a preparative DEAE-anion-exchange column. The pass-through fraction was further purified by HPLC using a cation-exchange column. Other fractions eluted on preparative DEAE-HPLC were further applied onto an HPLC using a DEAE-column. Five kinds (P-450UT-2-6), four kinds (P-450PB-1,2,4 and 5) and five kinds (P-450MC-1-5) of cytochromes P-450 were purified from untreated rats or rats treated with phenobarbital or 3-methylcholanthrene, respectively. HPLC profiles of tryptic peptides of cytochromes P-450UT-2 and P-450MC-2 were identical and the other profiles obtained from seven purified cytochromes P-450 were distinct from each other. Amino-terminal sequences of eight forms of cytochrome P-450 (UT-2, UT-5, PB-1, PB-2, PB-4, PB-5, MC-1 and MC-5) were distinct except for cytochromes P-450PB-4 and P-450PB-5.  相似文献   

6.
The purpose of this study was to purify and characterize the forms of cytochrome P-450 induced in chicken liver by acetone or ethanol. Using high performance liquid ion-exchange chromatography, we were able to isolate at least four different forms of cytochrome P-450 which were induced by acetone in chicken liver. All four forms of cytochrome P-450 proved to be distinct proteins, as indicated by their N-terminal amino acid sequences and their reconstituted catalytic activities. Two of these forms, also induced by glutethimide in chicken embryo liver, appeared to be cytochromes P450IIH1 and P450IIH2. Both of these cytochromes P-450 have identical catalytic activities towards benzphetamine demethylation. However, they differ in their abilities to hydroxylate p-nitrophenol and to convert acetaminophen into a metabolite that forms a covalent adduct with glutathione at the 3-position. Another form of cytochrome P-450 induced by acetone is highly active in the hydroxylation of p-nitrophenol and in the conversion of acetaminophen to a reactive metabolite, similar to reactions catalysed by mammalian cytochrome P450IIE. Yet the N-terminal amino acid sequence of this form has only 30-33% similarity with cytochrome P450IIE purified from rat, rabbit and human livers. A fourth form of cytochrome P-450 was identified whose N-terminal amino acid sequence and enzymic activities do not correspond to any mammalian cytochromes P-450 reported to be induced by acetone or ethanol.  相似文献   

7.
A procedure for the preparation of monospecific antibody directed against rat liver microsomal cytochrome P-45-a is described. This antibody, together with monospecific antibodies to cytochromes P-450b and P-450c, has been used to show that these three forms of cytochrome P-450 are distinct and share no common antigenic determinants. These antibodies (a) give single immunoprecipitin bands with detergent-solubilized microsomes; (b) do not cross-react with the purified heterologous antigens in Ouchterlony double diffusion analyses; (c) have no effect on catalytic activity of the heterologous antigens but completely inhibit the enzymatic activity of the homologous antigens; and (d) remove only the homologous antigen from detergent-solubilized microsomes when covalently bound to a solid support. With radial immunodiffusion assay, we have quantitated these three forms of cytochrome P-450 in liver microsomes after treatment of rats with seven different inducers of cytochrome P-450. The levels of these cytochrome P-450 isozymes vary independently and are also regulated by the age and sex of the animal. The antibodies have also been used to assess the contribution of cytochromes P-450a, P-450b, and P-450c in the metabolism of xenobiotics by rat liver microsomes. A large proportion of benzo(a)pyrene metabolism and testosterone 16 alpha-hydroxylation in microsomes from untreated rats is not catalyzed by cytochromes P-450a, P-450b, and P-450c. Epoxide hydrolase, another microsomal enzyme involved in the metabolism of xenobiotics, was also quantitated by radial immunodiffusion after prior treatment of rats with microsomal enzyme inducers. The inductions of epoxide hydrolase varies independently of the induction of cytochromes P-450a, P-450b, and P-450c.  相似文献   

8.
Two constitutive forms of cytochrome P-450 isozyme were isolated from microsomes prepared from a single bovine liver. The two highly purified isozymes were electrophoretically homogeneous on SDS-polyacrylamide gel and their apparent minimum molecular weights were estimated to be 50 000 and 55 000. The isozyme of smaller molecular weight, designated cytochrome P-450A, and the one of large molecular weight, designated cytochrome P-450B, were distinct proteins by the criteria, SDS-polyacrylamide gel electrophoresis, peptide maps, amino acid contents. To reveal the immunochemical relation between these two isozymes, antibodies to each isozyme was raised in rabbit. Antibodies to cytochrome P-450A gave a single precipitin line against its antigen in Ouchterlony double-diffusion plates, but did not cross-react against cytochrome P-450B. On the other hand, antibodies to cytochrome P-450B formed a single precipitin line with its antigen and did not show any cross-reactivity against cytochrome P-450B. These results indicate that two isozymes are immunochemically distinct. This conclusion was supported by the results from immunochemical staining of the SDS-polyacrylamide gel electrophoretogram of the purified isozymes and detergent-solubilized bovine liver microsomes transferred to the nitrocellulose sheet. Both cytochromes P-450 showed high catalytic activities toward (+)-benzphetamine and aminopyrine in reconstituted systems, indicating that both enzymes have a high turnover number for N-demethylation.  相似文献   

9.
We describe the resolution and partial purification of two minor forms of cytochrome P-450 from liver microsomes of rabbits treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Both forms have different electrophoretic mobilities when compared to the major form of cytochrome P-450 isolated from this source. The two cytochromes show different activities with several substrates. One form is very active in the hydroxylation of benzo(a)pyrene when reconstituted with highly purified NADPH-cytochrome P-450 reductase.  相似文献   

10.
Procedures are described for the isolation of two forms of rabbit liver microsomal liver microsomal cytochrome P-450 (P-450LM) in homogeneous state. They are designated by their relative electrophoretic mobilities on polyacrylamide gel in the presence of sodium dodecyl sulfate as P-450LM2 and P-450LM4. P-450LM2, which was isolated from phenobarbital-induced animals, has a subunit molecular weight of 48,700. The best preparations contain 20 nmol of the cytochrome per mg of protein and 1 molecule of heme per polypeptide chain. P-450LM4, which is induced by beta-naphthoflavone but is also present in phenobarbital-induced and untreated animals, was isolated from all three sources and found to have a subunit molecular weight of 55,300. The best preparations contain 17nmol of the cytochrome per mg of protein and 1 molecule of heme per polypeptide chain. Some of the purified preparations of the cytochromes, although electrophoretically homogeneous, contain apoenzyme due to heme loss during purification. The purified proteins contain no detectable NADPH-cytochrome P-450 reductase, cytochrome b5, or NADH-cytochrome b5 reductase, and only low levels of phospholipid (about 1 molecule per subunit). Amino acid analysis indicated that P-450LM2 and P-450LM4 are similar in composition, but the latter protein has about 60 additional residues. The COOH-terminal amino acid of P-450LM2 is arginine, as shown by carboxypeptidase treatment, whereas that of P-450LM4 is lysine. NH2-terminal amino acid residues could not be detected. Carbohydrate analysis indicated that both cytochromes contain 1 residue of glucosamine and 2 of mannose per polypeptide subunit. The optical spectra of the oxidized and reduced cytochromes and carbon monoxide complexes were determined. Oxidized P-450LM2 has maxima at 568, 535, and 418 nm characteristic of a low spin hemeprotein, and P450LM4 from beta-naphthoflavone-induced, phenobarbital-induced, or control microsomes has maxima at 645 and 394 nm, characteristic of the high spin state. The spectrum of -450lm4 becomes similar to that of P-450LM2 at high protein concentrations or upon the addition of detergent (Renex), whereas the spectrum of P-450LM2 is unaffected by the protein concentration or the presence of detergent. Electron paramagnetic resonance spectrometry of the purified cytochromes indicated that oxidized -450lm2 is in the low spin state, whereas P-450LM4 is largely, but not entirely, in the high spin state.  相似文献   

11.
Cytochromes P-450 and epoxide hydrolase in hamsters were studied by using two-dimensional gel electrophoresis of hepatic microsomes from untreated animals and those treated with phenobarbital, 3-methylcholanthrene, beta-naphthoflavone, trans-stilbene oxide, and pregnenolone-16 alpha-carbonitrile. Coelectrophoresis with corresponding microsomes from rats and in situ peptide mapping were used to identify resolved microsomal polypeptides as cytochromes P-450 or epoxide hydrolase. Two forms of hepatic microsomal epoxide hydrolase were shown to exist in hamsters; these evidenced extensive structural homology with the corresponding enzyme in rats and were induced by the same xenobiotics. At least eight inducible polypeptides in microsomes from hamsters were tentatively identified as cytochromes P-450. Two of these were electrophoretically identical and structurally related with previously characterized forms of the enzyme in rats. Homologues of several major cytochromes P-450 induced by pregnenolone-16 alpha-carbonitrile and/or phenobarbital in the rat were apparently not present in the hamster. In most cases, putative forms of inducible cytochrome P-450 in the hamster existed at significant levels in microsomes from untreated animals whereas in rats the levels of most inducible forms of the enzyme were low in control microsomes, being more strictly dependent on xenobiotic pretreatment. In contrast with epoxide hydrolase, the molecular complexity of hepatic cytochrome P-450 seems to be comparable for rats and hamsters, but the structure and control of these hemoproteins appear to have markedly diverged.  相似文献   

12.
Two new cytochrome P-450 forms were purified from liver microsomes of the marine fish Stenotomus chrysops (scup). Cytochrome P-450A (Mr = 52.5K) had a CO-ligated, reduced difference spectrum lambda max at 447.5 nm, and reconstituted modest benzo[a]pyrene hydroxylase activity (0.16 nmol/min/nmol P-450) and ethoxycoumarin O-deethylase activity (0.42 nmol/min/nmol P-450). Cytochrome P-450A reconstituted under optimal conditions catalyzed hydroxylation of testosterone almost exclusively at the 6 beta position (0.8 nmol/min/nmol P-450) and also catalyzed 2-hydroxylation of estradiol. Cytochrome P-450A is active toward steroid substrates and we propose that it is a major contributor to microsomal testosterone 6 beta-hydroxylase activity. Cytochrome P-450A had a requirement for conspecific (scup) NADPH-cytochrome P-450 reductase and all reconstituted activities examined were stimulated by the addition of purified scup cytochrome b5. Cytochrome P-450B (Mr = 45.9K) had a CO-ligated, reduced difference spectrum lambda max at 449.5 nm and displayed low rates of reconstituted catalytic activities. However, cytochrome P-450B oxidized testosterone at several different sites including the 15 alpha position (0.07 nmol/min/nmol P-450). Both cytochromes P-450A and P-450B were distinct from the major benzo[a]pyrene hydroxylating form, cytochrome P-450E, by the criteria of spectroscopic properties, substrate profiles, minimum molecular weights on NaDodSO4-polyacrylamide gels, peptide mapping and lack of cross-reaction with antibody raised against cytochrome P-450E. Cytochrome P-450E shares epitopes with rat cytochrome P-450c indicating it is the equivalent enzyme, but possible homology between scup cytochromes P-450A or P-450B and known P-450 isozymes in other vertebrate groups is uncertain, although functional analogs exist.  相似文献   

13.
The aim of this study was to determine the effects of ionic strength and pH on the different pathways of testosterone oxidation catalyzed by rat liver microsomes. The catalytic activity of cytochromes P-450a (IIA1), P-450b (IIB1), P-450h (IIC11) and P-450p (IIIA1) was measured in liver microsomes from mature male rats and phenobarbital-treated rats as testosterone 7 alpha-, 16 beta-, 2 alpha- and 6 beta-hydroxylase activity, respectively. An increase in the concentration of potassium phosphate (from 25 to 250 mM) caused a marked decrease in the catalytic activity of cytochromes P-450a (to 8%), P-450b (to 22%) and P-450h (to 23%), but caused a pronounced increase in the catalytic activity of cytochrome P-450p (up to 4.2-fold). These effects were attributed to changes in ionic strength, because similar but less pronounced effects were observed with Tris-HCl (which has approximately 1/3 the ionic strength of phosphate buffer at pH 7.4). Testosterone oxidation by microsomal cytochromes P-450a, P-450b, P-450h and P-450p was also differentially affected by pH (over the range 6.8-8.0). The pH optima ranged from 7.1 (for P-450a and P-450h) to 8.0 (for P-450p), with an intermediate value of 7.4 for cytochrome P-450b. Increasing the pH from 6.8 to 8.0 unexpectedly altered the relative amounts of the 3 major metabolites produced by cytochrome P-450h. The decline in testosterone oxidation by cytochromes P-450a, P-450b and P-450h that accompanied an increase in ionic strength or pH could be duplicated in reconstitution systems containing purified P-450a, P-450b or P-450h, equimolar amounts of NADPH-cytochrome P-450 reductase and optimal amounts of dilauroylphosphatidylcholine. This result indicated that the decline in testosterone oxidation by cytochromes P-450a, P-450b and P-450h was a direct effect of ionic strength and pH on these enzymes, rather than a secondary effect related to the increase in testosterone oxidation by cytochrome P-450p. Similar studies with purified cytochrome P-450p were complicated by the atypical conditions needed to reconstitute this enzyme. However, studies on the conversion of digitoxin to digitoxigenin bisdigitoxoside by liver microsomes, which is catalyzed specifically by cytochrome P-450p, provided indirect evidence that the increase in catalytic activity of cytochrome P-450p was also a direct effect of ionic strength and pH on this enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Four cytochromes P-450 induced by phenobarbital (PB-1--PB-4) and two cytochromes P-450 induced by S-methylcholanthrene (MC-1, MC-2) were purified to electrophoretic homogeneity from rat liver microsomes. The purification procedure involved sequential chromatography on n-aminooctyl-Sepharose 4B, DEAE-Sephacel and hydroxylapatite columns. The spectral and immunochemical properties of the cytochromes P-450 were estimated. All, but MC-1, cytochromes P-450 were found to exist in a low spin state. Using the Ouchterlony double diffusion method, it was shown that all cytochromes P-450 under study can be divided into two groups, i. e., PB-1--PB-2 and PB-3--PB-4, sharing common antigenic determinants inside the groups. High performance liquid chromatography of PB-3 and MC-2 on anion-exchangers yielded two additional peaks from the PB-induced major cytochrome P-450 PB-3 and three peaks from the MC-induced major cytochrome P-450 MC-2. The multiplicity of cytochrome P-450 forms is discussed.  相似文献   

15.
I Reubi  K J Griffin  J Raucy  E F Johnson 《Biochemistry》1984,23(20):4598-4603
A monoclonal antibody was developed that is specific for the 3b electrophoretic class of rabbit liver microsomal cytochrome P-450 as judged by immunoprecipitation and subsequent electrophoretic analysis. The antibody is inhibitory of catalytically distinct, variant forms of P-450 3b prepared from New Zealand White or IIIVO/J rabbits, respectively. Peptide mapping of the immunopurified P-450 3b from NZW and IIIVO/J microsomes indicates that a characteristic difference between the variant forms is exhibited by the antigen. In addition, a competitive assay indicates that the binding properties of the antibody do not differ substantially toward the variant forms of P-450 3b. The inhibitory antibody was used to examine the contribution of P-450 3b to the microsomal 16 alpha- and 6 beta-hydroxylation of progesterone. The antibody inhibits 40-70% of the 16 alpha-hydroxylase activity of microsomes from either New Zealand White or IIIVO/J rabbits. In contrast, it does not inhibit 6 beta-hydroxylation catalyzed by microsomes prepared from strain IIIVO/J but does inhibit this reaction as catalyzed by microsomes from most New Zealand White rabbits. The antibody also inhibits the increased 16 alpha-hydroxylase activity of IIIVO/J microsomes observed in the presence of 5 beta-pregnane-3 beta,20 alpha-diol, an allosteric effector of this variant form of P-450 3b. Use of this monoclonal antibody provides a link between the observed properties of the purified, variant forms of P-450 3b and microsomal metabolism. These results indicate that the antibody can be used to phenotype variant forms of P-450 3b in microsomal fractions.  相似文献   

16.
Induction of perfluorodecalin (PFD) of the liver microsomal system of metabolism of xenobiotics has been studied and compared with the inductions by phenobarbital (PB) and 3-methylcholanthrene (MC). It has been shown that PFD increases the content of cytochrome P-450, NADPH-cytochrome c reductase activity. Like PB, PFD induces the activities of benzphetamine-N-demethylase, aldrine-epoxidase, 16 beta-androstendion-hydroxylase. Using specific antibodies against cytochromes P-450b and P-450c (which are the main isoenzymes of cytochrome P-450 in the PB- and MC-microsomes respectively), an immunological identity of the cytochrome P-450 isoforms during PFD and PB induction has been found. According to the rocket immunoelectrophoresis the content of cytochrome P-450 in PFD-microsomes, which is immunologically indistinguishable from P-450b, was approximately 70% of the total cytochrome P-450. Two forms of cytochrome P-450 were isolated from the liver microsomes of PFD-induced rats and purified to homogeneity. A comparison of these forms with cytochromes P-450b and P-450e obtained from the PB-induced rat liver microsomes revealed their similarity in a number of properties, e.g., chromotographic behavior on DEAE-Sephacel column, molecular weight determined by sodium dodecyl sulphate (SDS) electrophoresis in polyacrylamide gel, immunoreactivity, peptide mapping, catalytic activity. The data presented demonstrate that PFD induced in rat liver microsomes the cytochrome P-450 forms whose immunological properties and substrate specificity correspond to those of the PB-type cytochrome P-450. These findings suggest that PFD and PB, which differ in their chemical structure, induce in the rat liver microsomes identical forms of cytochrome P-450.  相似文献   

17.
An anti-peptide antibody has been produced which binds to and specifically inhibits the activity of cytochrome P-450IA2 in rat hepatic microsomes. This was achieved by raising an antibody against a synthetic peptide (Ser-Glu-Asn-Tyr-Lys-Asp-Asn), the sequence of which occurs in cytochrome P-450IA2 at positions 290-296. The selection of this region of cytochrome P-450IA2 was based on several criteria, including prediction of surface and loop areas, identification of variable regions between cytochromes P-450IA2 and P-450IA1, and consideration of a site on cytochrome P-450IA1 where chemical modification has been shown to cause substantial enzyme inactivation. The specificity of antibody binding was determined by enzyme-linked immunosorbent assay and by immunoblotting using hepatic microsomal preparations and purified cytochrome P-450 isoenzymes. This showed that the antibody binds specifically to rat and mouse cytochrome P-450IA2 and to no other cytochrome P-450, as was predicted from the amino acid sequences of the peptide and the cytochromes P-450. The effect of the antibody upon enzyme activity was studied in hepatic microsomes from rats treated with 3-methylcholanthrene. The antibody was shown to inhibit specifically the activity of reactions catalysed by cytochrome P-450IA2 (phenacetin O-de-ethylase and 2-acetylaminofluorene activation), but had no effect on aryl hydrocarbon hydroxylase activity, which is catalysed by cytochrome P-450IA1, or on aflatoxin B1 activation.  相似文献   

18.
Cytochromes P-450f, P-450g, P-450h, and P-450i are four hepatic microsomal hemoproteins that have been purified from adult rats. Whereas cytochromes P-450g and P-450h appear to be male-specific hemoproteins, cytochrome P-450i is apparently a female-specific enzyme purified from untreated adult female rats. Cytochrome P-450f has been purified from adult male and female rats with equivalent recoveries. Amino-terminal sequence analyses of the first 15-20 amino acid residues of each of these cytochromes P-450 has been accomplished in the current investigation. Each protein possesses a hydrophobic leader sequence consisting of 65-87% hydrophobic amino acids, and only one charged amino acid (Asp) in the amino-terminal region. Although differences in the amino-terminal sequences of cytochromes P-450f, P-450g, P-450h, and P-450i are identified, these hemoproteins all begin with Met-Asp, and marked structural homology is observed among certain of these enzymes. Cytochromes P-450g and P-450h, two male-specific proteins, have 11-12/15 identical residues with cytochrome P-450i, a female-specific isozyme. Cytochromes P-450f and P-450h have 16/20 identical amino-terminal residues. Only limited sequence homology is observed between the amino-terminal sequences of cytochromes P-450f-i compared to rat liver cytochromes P-450a-e. The results demonstrate that cytochromes P-450f, P-450g, P-450h, and P-450i are isozymic to each other and five additional rat hepatic microsomal cytochrome P-450 isozymes (P-450a-e).  相似文献   

19.
Three forms of cytochrome P-450 were purified to homogeneity from liver microsomes of Wistar-strain rats treated with phenobarbital. They had minimum mol.wts. of 52 000, 53 000 and 54 000 as determined by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and are designated as P-450(L), P-450(M) and P-450(H) respectively. They were shown to be immunoidentical by Ouchterlony double-diffusion analysis. Several criteria, such as isoelectric points, substrate specificities and sensitivities to tryptic digestion, however, indicated that these cytochromes are distinct isoenzymes of cytochrome P-450. Whereas P-450(L) was highly active on various substrates, P-450(H) had generally low catalytic activities, except on aminopyrine. The cytochromes purified by immunoaffinity chromatography using anti-P-450(L) showed a marked variation in their distribution depending on the strain and colony of rat. Limited tryptic digestion of P-450(H) gave one tryptic peptide showing the same mobility as P-450(L) by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and their primary structures were very similar. The result suggests a possibility that such limited proteolysis is involved in the post-translational modification of the cytochrome or its destruction.  相似文献   

20.
Two forms of cytochrome P-450 were isolated from liver microsomes of perfluorodecalin-induced rats and purified to homogeneity. A comparison of these forms with cytochromes P-450b and P-450e obtained from phenobarbital-induced rat liver microsomes revealed their similarity in a number of properties, e.g., chromatographic behaviour on 1.8-diaminooctyl-Sepharose 4B and DEAE-Sephacel columns, molecular mass determined by SDS polyacrylamide gel electrophoresis, spectral properties, immunoreactivity, peptide mapping, catalytic activity. These findings suggest that in rat liver microsomes perfluorodecalin and phenobarbital which differ in their chemical structure induce identical forms of cytochrome P-450.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号