首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
2.
Abstract The potent inhibition of the shikimate pathway enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase by the broad-spectrum herbicide glyphosate ( N -[phosphonomethyl]glycine) was confirmed for the enzymes extracted from various bacteria, a green alga and higher plants. However, 5 out of 6 species belonging to the genus Pseudomonas were found to have EPSP synthases with a 50- to 100-fold decreased sensitivity to the inhibitor. Correspondingly, growth of these 5 species was not inhibited by 5 mM glyphosate, and the organisms did not excrete shikimate-3-phosphate in the presence of the herbicide.  相似文献   

3.
Incubation of 5-enolpyruvylshikimate-3-phosphate synthase, a target for the nonselective herbicide glyphosate (N-(phosphonomethyl)glycine), with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide in the presence of glycine ethyl ester resulted in a time-dependent loss of enzyme activity. The inactivation followed pseudo-first order kinetics, with a second order rate constant of 2.2 M-1 min-1 at pH 5.5 and 25 degrees C. The inactivation is prevented by preincubation of the enzyme with a combination of the substrate shikimate 3-phosphate plus glyphosate, but not by shikimate 3-phosphate, phosphoenolpyruvate, or glyphosate alone. Increasing the concentration of glyphosate during preincubation resulted in decreasing the rate of inactivation of the enzyme. Complete inactivation of the enzyme required the modification of 4 carboxyl groups per molecule of the enzyme. However, statistical analysis of the residual activity and the extent of modification showed that among the 4 modifiable carboxyl groups, only 1 is critical for activity. Tryptic mapping of the enzyme modified in the absence of shikimate 3-phosphate and glyphosate by reverse phase chromatography resulted in the isolation of a [14C]glycine ethyl ester-containing peptide that was absent in the enzyme modified in the presence of shikimate 3-phosphate and glyphosate. By amino acid sequencing of this labeled peptide, the modified critical carboxyl group was identified as Glu-418. The above results suggest that Glu-418 is the most accessible reactive carboxyl group under these conditions and is located at or close to the glyphosate binding site.  相似文献   

4.
Cultured cells of the higher plant Corydalis sempervirens Pers. which had been adapted to growing in the presence of 5 mM glyphosate (N-[phosphonomethyl]-glycine), a herbicide and a potent specific inhibitor of the shikimate pathway enzyme 5-enol-pyruvylshikimate-3-phosphate (EPSP) synthase, had a nearly 40-fold increased level of the extractable activity of EPSP synthase. Activities of five other shikimate pathway enzymes were, however, similar in the adapted and nonadapted cells, and the concentrations of the free aromatic amino acids in the two cell lines were also similar. EPSP synthases purified from glyphosate-adapted, as well as nonadapted cells, had identical physical, kinetic, and immunological properties, which indicated that the glyphosate-sensitive enzyme was overproduced in the adapted culture. Overproduction of EPSP synthase in the adapted culture was unequivocally established by two-dimensional polyacrylamide gel electrophoresis, as well as by one-dimensional sodium dodecyl sulfate-gradient gel electrophoresis and quantitation of EPSP protein by immunoassay after transfer to nitrocellulose membranes. While about 0.06% of the total soluble protein from nonadapted cells was EPSP synthase protein, the proportion was 2.6% in the adapted cells. In vivo pulse-labeling experiments with [35S]methionine established that the adapted cells have an increased rate of EPSP synthase protein synthesis.  相似文献   

5.
The broadspectrum herbicide glyphosate (N-[phosphonomethyl]glycine), an inhibitor of the shikimate pathway enzyme 5-enolpyruvyl-shikimic acid-3-phosphate (EPSP)-synthase, inhibits the growth of Aerobacter aerogenes and causes the excretion of shikimic acid-3-phosphate. A strain of A. aerogenes, resistant to inhibition of growth by glyphosate, was isolated and found to have a glyphosate-insensitive EPSP-synthase and to no longer excrete shikimic acid-3-phosphate in the presence of glyphosate. Partial identity of EPSP-synthases from the glyphosate-sensitive and-resistant A. aerogenes strains was demonstrated by immunological procedures.Abbreviation EPSP-synthase 5-enolpyruvylshikimic acid-3-phosphate synthase (EC 2.5.1.19; 3-phosphoshikimate 1-carboxyvinyltransferase)  相似文献   

6.
EPSPS既是植物、微生物和真菌等生物芳香族氨基酸生物合成途径——莽草酸途径中的关键酶,也是除草剂草甘膦的靶标酶。EPSPS的克隆能为草甘膦抗性转基因作物的研发提供候选基因。该研究运用比较基因组学方法,通过对41种不同植物的43条EPSPS蛋白序列进行进化分析,取得主要结果如下:(1)不同植物EPSPS蛋白的相似性很高,且具有相同的结构域、保守基序和保守位点,但是其叶绿体转运肽序列差异显著;(2)系统发育分析表明,EPSPS基因按照双子叶植物纲和单子叶植物纲分为2个大的分支,各个小的分支又按照植物的种属亲缘关系进行分支和聚类;(3)基因结构分析表明,植物EPSPS基因基本都含有8个外显子和7个内含子,且所对应外显子的长度相当,而内含子的长度差异很大,说明在植物基因组进化过程中造成EPSPS基因结构差异的主要因素是内含子的改变。研究结果将为揭示植物EPSPS蛋白的结构功能提供参考。  相似文献   

7.
A new assay for 5-enolpyruvylshikimate-3-phosphate synthase is described. This enzyme of the shikimate pathway of aromatic amino acid biosynthesis generates 5-enolpyruvylshikimate 3-phosphate and orthophosphate from phosphoenolpyruvate and shikimate 3-phosphate. The shikimate pathway is present in bacteria and plants but not in mammals. The assay employs a paper-chromatographic separation of radiolabeled substrate from product. The method is specific, is sensitive to 50 pmol of product, and is suitable for use in crude extracts of bacteria. This enzyme appears to be the primary target site of the commercial herbicide glyphosate (N-phosphonomethyl glycine). A procedure for the enzymatic synthesis of [14C]shikimate 3-phosphate from the commercially available precursor [14C]shikimic acid is also described.  相似文献   

8.
Analysis of a Petunia hybrida cell culture (MP4-G) resistant to 1 mM glyphosate revealed a 15- to 20-fold increased level of 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase in the herbicide-tolerant strain. Immunoblotting and enzyme kinetic measurements established that the increased EPSP synthase activity resulted from overproduction of a herbicide-sensitive form of the enzyme. Homogeneous enzyme preparations were obtained from the herbicide-tolerant cell line by sequential ion-exchange, hydroxyapatite, hydrophobic-interaction, and molecular sieve chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and molecular sieve chromatography established the Petunia enzyme to be a monomeric protein with Mr 49,000-55,800. Km values for phosphoenolpyruvate and shikimate 3-phosphate were about 14 and 18 microM, respectively. Glyphosate inhibited the enzyme competitively with phosphoenolpyruvate (Ki = 0.17 microM). These experiments provide further evidence that EPSP synthase is a major site of glyphosate action in plant cells.  相似文献   

9.
Cultured carrot (Daucus carota L.) cells were adapted to growing in 25 millimolar glyphosate by transfer into progressively higher concentrations of the herbicide. Tolerance was increased 52-fold, and the adaptation was stable in the absence of glyphosate. The uptake of glyphosate was similar for adapted and nonadapted cells. Activity of the enzyme 5-enolpyruvylshikimic acid-3-phosphate synthase was 12-fold higher in the adapted line compared to nonadapted cells, while activities of shikimate dehydrogenase and anthranilate synthase were similar in the two cell types. The adapted cells had higher levels of free amino acids—especially threonine, methionine, tyrosine, phenylalanine, tryptophan, histidine, and arginine—than did nonadapted cells. Glyphosate treatment caused decreases of 50 to 65% in the levels of serine, glycine, methionine, tyrosine, phenylalanine, and tryptophan in nonadapted cells, but caused little change in free amino acid levels in adapted cells.

The adaptation reported here supports the growing body of evidence linking tolerance to glyphosate with increased levels of the enzyme 5-enolpyruvylshikimic acid-3-phosphate synthase. The elevated levels of aromatic amino acids, which may confer resistance in adapted cells, suggest that control of the shikimate pathway may be altered in these cells.

  相似文献   

10.
N-(Phosphonomethyl) glycine prolongates the lag-phase and inhibits the growth rate of Escherichia coli, Salmonella typhimurium and Pseudomonas aureofaciens. The eucaryotes Saccharomyces cerevisiae and Neurospora crassa are not inhibited. The effect of growth inhibition in an E. coli culture depends on the time of the herbicide addition and no cells showing resistance against it are observed. The inhibitory effect can be overcome completely by a mixture of phenylalanine, tyrosine and tryptophan. N-(Phosphonomethyl)glycine inhibits phospho-2-oxo-3-deoxyheptonate aldolase and 3-dehydroquinate synthase. Both inhibitory effects are removed by addition of CO2. Chorismate mutase, prephenate dehydratase and prephenate dehydrogenase are not influenced by this herbicide. Anthranilate synthase is also inhibited by N-(phosphonomethyl)glycine. This inhibition is removed by addition of Mg2. Phospho-2-oxo-3-deoxyheptonate aldoase is derepressed in E. coli cells grown in minimal medium containing N-(phosphonomethyl)glycine. Under these conditions the tyrosine-sensitive isoenyme is much more strongly derepressed than the phenylalanine-sensitive isoenzyme. 3-Dehydroquinate synthase is not affected. Chorismate mutase, prephenate dehydrogenase, prephenate dehydratase, and anthranilate synthase are derepressed, but to a lesser extent.  相似文献   

11.
Reaction of 5-enolpyruvylshikimate-3-phosphate synthase of Escherichia coli with the thiol reagent 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) leads to a modification of only 2 of the 6 cysteines of the enzyme, with a significant loss of its enzymatic activity. Under denaturing conditions, however, all 6 cysteines of 5-enolpyruvylshikimate-3-phosphate synthase react with DTNB, indicating the absence of disulfide bridges in the native protein. In the presence of shikimate 3-phosphate and glyphosate, only 1 of the 2 cysteines reacts with the reagent, with no loss of activity, suggesting that only 1 of these cysteines is at or near the active site of the enzyme. Cyanolysis of the DTNB-inactivated enzyme with KCN leads to elimination of 5-thio-2-nitrobenzoate, with formation of the thiocyano-enzyme. The thiocyano-enzyme is fully active; it exhibits a small increase in its I50 for glyphosate (6-fold) and apparent Km for phosphoenolpyruvate (4-fold) compared to the unmodified enzyme. Its apparent Km for shikimate 3-phosphate is, however, unaltered. These results clearly establish the nonessentiality of the active site-reactive cysteine of E. coli 5-enolpyruvylshikimate-3-phosphate synthase for either catalysis or substrate binding. Perturbations in the kinetic constants for phosphoenolpyruvate and glyphosate suggest that the cysteine thiol is proximal to the binding site for these ligands. By N-[14C]ethylmaleimide labeling, tryptic mapping, and N-terminal sequencing, the 2 reactive cysteines have been identified as Cys408 and Cys288. The cysteine residue protected by glyphosate and shikimate 3-phosphate from its reaction with DTNB was found to be Cys408.  相似文献   

12.
Boocock MR  Coggins JR 《FEBS letters》1983,154(1):127-133
The herbicide glyphosate (N-phosphonomethyl glycine) is a potent reversible inhibitor of the 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase activity of the purified arom multienzyme complex from Neurospora crassa. Inhibition of the EPSP synthase reaction by glyphosate is competitive with respect to phosphoenolpyruvate, with K(i) 1.1 microM, and uncompetitive with respect to shikimate-3-phosphate. The kinetic patterns are consistent with a compulsory order sequential mechanism in which either PEP or glyphosate can bind to an enzyme: shikimate-3-phosphate complex.  相似文献   

13.
A glyphosate (N-[phosphonomethyl]glycine)-insensitive 5-enolpyruvylshikimic acid-3-phosphate (EPSP) synthase has been purified from a strain of Klebsiella pneumoniae which is resistant to this herbicide [(1984) Arch. Microbiol. 137, 121-123] and its properties compared with those of the glyphosate-sensitive EPSP synthase of the parent strain. The apparent Km values of the insensitive enzyme for phosphoenolpyruvate (PEP) and shikimate 3-phosphate (S-3-P) were increased 15.6- and 4.3-fold, respectively, as compared to those of the sensitive enzyme, and significant differences were found for the optimal pH and temperature, as well as the isoelectric points of the two enzymes. While PEP protected both enzymes against inactivation by N-ethylmaleimide, 3-bromopyruvate, and phenylglyoxal, glyphosate protected only the sensitive enzyme.  相似文献   

14.
The 5-enolpyruvylshikimate-3-phosphate synthase catalyses the sixth step of the shikimate pathway that is responsible for synthesizing aromatic compounds and is absent in mammals, which makes it a potential target for drugs development against microbial diseases. Here, we report the phosphate binding effects at the structure of the 5-enolpyruvylshikimate-3-phosphate synthase from Mycobacterium tuberculosis. This enzyme is formed by two similar domains that close on each other induced by ligand binding, showing the occurrence of a large conformation change. We have monitored the phosphate binding effects using analytical ultracentrifugation, small angle X-ray scattering and, circular dichroism techniques. The low resolution results showed that the enzyme in the presence of phosphate clearly presented a more compact structure. Thermal-induced unfolding experiments followed by circular dichroism suggested that phosphate rigidified the enzyme. Summarizing, these data suggested that the phosphate itself is able to induce conformational change resulting in the closure movement in the M. tuberculosis 5-enolpyruvylshikimate-3-phosphate synthase.  相似文献   

15.
The active site of the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) has been probed using site-directed mutagenesis and inhibitor binding techniques. Replacement of a specific glycyl with an alanyl or a prolyl with a seryl residue in a highly conserved region confers glyphosate tolerance to several bacterial and plant EPSPS enzymes, suggesting a high degree of structural conservation between these enzymes. The glycine to alanine substitution corresponding to Escherichia coli EPSPS G96A increases the Ki(app) (glyphosate) of petunia EPSPS 5000-fold while increasing the Km(app)(phosphoenolpyruvate) about 40-fold. Substitution of this glycine with serine, however, abolishes EPSPS activity but results in the elicitation of a novel EPSP hydrolase activity whereby EPSP is converted to shikimate 3-phosphate and pyruvate. This highly conserved region is critical for the interaction of the phosphate moiety of phosphoenolpyruvate with EPSPS.  相似文献   

16.
The enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) catalyzes the penultimate step of the shikimate pathway, and is the target of the broad-spectrum herbicide glyphosate. Kinetic analysis of the cloned EPSPS from Staphylococcus aureus revealed that this enzyme exerts a high tolerance to glyphosate, while maintaining a high affinity for its substrate phosphoenolpyruvate. Enzymatic activity is markedly influenced by monovalent cations such as potassium or ammonium, which is due to an increase in catalytic turnover. However, insensitivity to glyphosate appears to be independent from the presence of cations. Therefore, we propose that the Staphylococcus aureus EPSPS should be classified as a class II EPSPS. This research illustrates a critical mechanism of glyphosate resistance naturally occurring in certain pathogenic bacteria.  相似文献   

17.
Summary 5-enolpyruvylshikimate-3-phosphate synthase (EPSPs), the target of the herbicide glyphosate, catalyzes an essential step in the shikimate pathway common to aromatic amino acid biosynthesis. We have cloned an EPSP synthase gene from Arabidopsis thaliana by hybridization with a petunia cDNA probe. The Arabidopsis gene is highly homologous to the petunia gene within the mature enzyme but is only 23% homologous in the chloroplast transit peptide portion. The Arabidopsis gene contains seven introns in exactly the same positions as those in the petunia gene. The introns are, however, significantly smaller in the Arabidopsis gene. This reduction accounts for the significantly smaller size of the gene as compared to the petunia gene. We have fused the gene to the cauliflower mosaic virus 35 S promoter and reintroduced the chimeric gene into Arabidopsis. The resultant overproduction of EPSPs leads to glyphosate tolerance in transformed callus and plants.  相似文献   

18.
5-enolpyruvylshikimate-3-phosphate synthase (EPSP synthase, EC 2.5.1.19) is the sixth enzyme in the shikimate pathway which is essential for the synthesis of aromatic amino acids and many secondary metabolites. The enzyme is widely involved in glyphosate tolerant transgenic plants because it is the primary target of the nonselective herbicide glyphosate. In this study, the Dunaliella salina EPSP synthase gene was cloned by RT-PCR approach. It contains an open reading frame encoding a protein of 514 amino acids with a calculated molecular weight of 54.6 KDa. The derived amino acid sequence showed high homology with other EPSP synthases. The Dunaliella salina EPSP synthase gene was expressed in Escherichia coli and the recombinant EPSP synthase were identified by functional complementation assay.  相似文献   

19.
Cao G  Liu Y  Zhang S  Yang X  Chen R  Zhang Y  Lu W  Liu Y  Wang J  Lin M  Wang G 《PloS one》2012,7(6):e38718
A key enzyme in the shikimate pathway, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is the primary target of the broad-spectrum herbicide glyphosate. Identification of new aroA genes coding for EPSPS with a high level of glyphosate tolerance is essential for the development of glyphosate-tolerant crops. In the present study, the glyphosate tolerance of five bacterial aroA genes was evaluated in the E. coli aroA-defective strain ER2799 and in transgenic tobacco plants. All five aroA genes could complement the aroA-defective strain ER2799, and AM79 aroA showed the highest glyphosate tolerance. Although glyphosate treatment inhibited the growth of both WT and transgenic tobacco plants, transgenic plants expressing AM79 aroA tolerated higher concentration of glyphosate and had a higher fresh weight and survival rate than plants expressing other aroA genes. When treated with high concentration of glyphosate, lower shikimate content was detected in the leaves of transgenic plants expressing AM79 aroA than transgenic plants expressing other aroA genes. These results suggest that AM79 aroA could be a good candidate for the development of transgenic glyphosate-tolerant crops.  相似文献   

20.
Summary CAR and C1, two carrot (Daucus carota L.) suspension cultures of different genotypes, were subjected to stepwise selection for tolerance to the herbicide glyphosate [(N-phosphonomethyl)glycine]. The specific activity of the target enzyme, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), as well as the mRNA level and copy number of the structural gene increased with each glyphosate selection step. Therefore, the tolerance to glyphosate is due to stepwise amplification of the EPSPS genes. During the amplification process, DNA rearrangement did not occur within the EPSPS gene of the CAR cell line but did occur during the selection step from 28 to 35 mM glyphosate for the C1 cell line, as determined by Southern hybridization of selected cell DNA following EcoRI restriction endonuclease digestion. Two cell lines derived from a previously selected glyphosate-tolerant cell line (PR), which also had undergone EPSPS gene amplification but have been maintained in glyphosate-free medium for 2 and 5 years, have lost 36 and 100% of the increased EPSPS activity, respectively. Southern blot analysis of these lines confirms that the amplified DNA is relatively stable in the absence of selection. These studies demonstrate that stepwise selection for glyphosate resistance reproducibly produces stepwise amplification of the EPSPS genes. The relative stability of this amplification indicates that the amplified genes are not extrachromosomal.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - DTT dithiothreitol - EPSPS 5-enolpyruvylshikimate-3-phosphate synthase - I50 50% inhibitory concentration - Kb Kilobase (pairs) - PEP phosphoenolpyruvate - PMSF phenylmethylsulfonyl fluoride - PVPP polyvinylpolypyrrolidone - S-3-P shikimate-3-phosphate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号