首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction mechanism and regulation of cystathionine beta-synthase   总被引:3,自引:0,他引:3  
In mammals, cystathionine beta-synthase catalyzes the first step in the transsulfuration pathway which provides an avenue for the conversion of the essential amino acid, methionine, to cysteine. Cystathionine beta-synthase catalyzes a PLP-dependent condensation of serine and homocysteine to cystathionine and is unique in also having a heme cofactor. In this review, recent advances in our understanding of the kinetic mechanism of the yeast and human enzymes as well as pathogenic mutants of the human enzyme and insights into the role of heme in redox sensing are discussed from the perspective of the crystal structure of the catalytic core of the human enzyme.  相似文献   

2.
Cystathionine beta-synthase catalyzes the condensation of serine and homocysteine to give cystathionine in a pyridoxal phosphate (PLP)-dependent reaction. The human enzyme contains a single heme per monomer that is bound in an N-terminal 69 amino acid extension that is missing from the otherwise highly homologous yeast enzyme. The heme dominates the UV-visible spectrum and obscures kinetic characterization of the PLP-bound reaction intermediates. In this study, we have engineered a hemeless mutant of human cystathionine beta-synthase by deletion of the N-terminal 69 amino acids. The resulting variant displays approximately 40% of the activity seen with the wild type enzyme, binds stoichiometric amounts of PLP, and permits spectral characterization of PLP-based intermediates. The enzyme as isolated exhibits an absorption maximum at 412nm corresponding to a protonated internal aldimine. Addition of serine shifts the lambdamax to 420nm (assigned as the external aldimine) with a broad shoulder between 450 and 500nm (assigned as the aminoacrylate intermediate). Addition of the product, cystathionine, also leads to formation of an external aldimine (420nm). Homocysteine elicits a red shift (and a decrease in absorption) in the spectrum from 412 to 424nm and an increase in absorption at 330nm, presumably due to formation of a dead-end complex. Mutation of K119, the residue that forms the Schiff base, to alanine results in a approximately 10(3)-fold decrease in activity, which increases approximately 2-fold in the presence of an exogenous base, ethylamine. Spectral shifts (412 --> 420nm) consistent with the formation of external aldimines are observed in the presence of serine or cystathionine, but an aminoacrylate intermediate is not formed at detectable levels. These results are consistent with an additional role for K119 as a general base in the reaction catalyzed by human cystathionine beta-synthase.  相似文献   

3.
Taoka S  Lepore BW  Kabil O  Ojha S  Ringe D  Banerjee R 《Biochemistry》2002,41(33):10454-10461
Elevated levels of homocysteine, a sulfur-containing amino acid, are correlated with increased risk for cardiovascular diseases and Alzheimers disease and with neural tube defects. The only route for the catabolic removal of homocysteine in mammals begins with the pyridoxal phosphate- (PLP-) dependent beta-replacement reaction catalyzed by cystathionine beta-synthase. The enzyme has a b-type heme with unusual spectroscopic properties but as yet unknown function. The human enzyme has a modular organization and can be cleaved into an N-terminal catalytic core, which retains both the heme and PLP-binding sites and is highly active, and a C-terminal regulatory domain, where the allosteric activator S-adenosylmethionine is presumed to bind. Studies with the isolated recombinant enzyme and in transformed human liver cells indicate that the enzyme is approximately 2-fold more active under oxidizing conditions. In addition to heme, the enzyme contains a CXXC oxidoreductase motif that could, in principle, be involved in redox sensing. In this study, we have examined the role of heme versus the vicinal thiols in modulating the redox responsiveness of the enzyme. Deletion of the heme domain leads to loss of redox sensitivity. In contrast, substitution of either cysteine with a non-redox-active amino acid does not affect the responsiveness of the enzyme to reductants. We also report the crystal structure of the catalytic core of the enzyme in which the vicinal cysteines are reduced without any discernible differences in the remainder of the protein. The structure of the catalytic core is compared to those of other members of the fold II family of PLP-dependent enzymes and provides insights into active site residues that may be important in interacting with the substrates and intermediates.  相似文献   

4.
Ojha S  Hwang J  Kabil O  Penner-Hahn JE  Banerjee R 《Biochemistry》2000,39(34):10542-10547
Human cystathionine beta-synthase is one of two key enzymes involved in intracellular metabolism of homocysteine. It catalyzes a beta-replacement reaction in which the thiolate of homocysteine replaces the hydroxyl group of serine to give the product, cystathionine. The enzyme is unusual in its dependence on two cofactors: pyridoxal phosphate and heme. The requirement for pyridoxal phosphate is expected on the basis of the nature of the condensation reaction that is catalyzed; however the function of the heme in this protein is unknown. We have examined the spectroscopic properties of the heme in order to assign the axial ligands provided by the protein. The heme Soret peak of ferric cystathionine beta-synthase is at 428 nm and shifts to approximately 395 nm upon addition of the thiol chelator, mercuric chloride. This is indicative of 6-coordinate low-spin heme converting to a 5-coordinate high-spin heme. The enzyme as isolated exhibits a rhombic EPR signal with g values of 2.5, 2.3, and 1.86, which are similar to those of heme proteins and model complexes with imidazole/thiolate ligands. Mercuric chloride treatment of the enzyme results in conversion of the rhombic EPR signal to a g = 6 signal, consistent with formation of the high-spin ferric heme. The X-ray absorption data reveal that iron in ferric cystathionine beta-synthase is 6-coordinate, with 1 high-Z scatterer and 5 low-Z scatterers. This is consistent with the presence of 5 nitrogens and 1 sulfur ligand. Together, these data support assignment of the axial ligands as cysteinate and imidazole in ferric cystathionine beta-synthase.  相似文献   

5.
Evande R  Blom H  Boers GH  Banerjee R 《Biochemistry》2002,41(39):11832-11837
Human cystathionine beta-synthase is a heme protein that catalyzes the condensation of serine and homocysteine to form cystathionine in a pyridoxal phosphate-dependent reaction. Mutations in this enzyme are the leading cause of hereditary hyperhomocysteinemia with attendant cardiovascular and other complications. The enzyme is activated approximately 2-fold by the allosteric regulator S-adenosylmethionine (AdoMet), which is presumed to bind to the C-terminal regulatory domain. The regulatory domain exerts an inhibitory effect on the enzyme, and its deletion is correlated with a 2-fold increase in catalytic activity and loss of responsiveness to AdoMet. A mutation in the C-terminal regulatory domain, D444N, displays high levels of enzyme activity, yet is pathogenic. In this study, we have characterized the biochemical penalties associated with this mutation and demonstrate that it is associated with a 4-fold lower steady-state level of cystathionine beta-synthase in a fibroblast cell line that is homozygous for the D444N mutation. The activity of the recombinant D444N enzyme mimics the activity of the wild-type enzyme seen in the presence of AdoMet and can be further activated approximately 2-fold in the presence of supraphysiolgical concentrations of the allosteric regulator. The mutation increases the K(act) for AdoMet from 7.4 +/- 0.2 to 460 +/- 130 microM, thus rendering the enzyme functionally unresponsive to AdoMet under physiological concentrations. These results indicate that the D444N mutation partially abrogates the intrasteric inhibition imposed by the C-terminal domain. We propose a model that takes into account the three kinetically distinguishable states that are observed with human cystathionine beta-synthase: "basal" (i.e., wild-type enzyme as isolated), "activated" (wild-type enzyme + AdoMet or the D444N mutant as isolated), and superactivated (D444N mutant + AdoMet or wild-type enzyme lacking the C-terminal regulatory domain).  相似文献   

6.
Cystathionine beta-synthase found in yeast catalyzes a pyridoxal phosphate-dependent condensation of homocysteine and serine to form cystathionine. Unlike the homologous mammalian enzymes, yeast cystathionine beta-synthase lacks a second cofactor, heme, which facilitates detailed kinetic studies of the enzyme because the different pyridoxal phosphate-bound intermediates can be followed by their characteristic absorption spectra. We conducted a rapid reaction kinetic analysis of the full-length yeast enzyme in the forward and reverse directions. In the forward direction, we observed formation of the external aldimine of serine (14 mm(-1) s(-1)) and the aminoacrylate intermediate (15 s(-1)). Homocysteine binds to the aminoacrylate with a bimolecular rate constant of 35 mm(-1) s(-1) and rapidly converts to cystathionine (180 s(-1)), leading to the accumulation of a 420 nm absorbing species, which has been assigned as the external aldimine of cystathionine. Release of cystathionine is slow (k = 2.3 s(-1)), which is similar to k(cat) (1.7 s(-1)) at 15 degrees C, consistent with this being a rate-determining step. In the reverse direction, cystathionine binds to the enzyme with a bimolecular rate constant of 1.5 mm(-1) s(-1) and is rapidly converted to the aminoacrylate without accumulation of the external aldimine. The kinetic behavior of the full-length enzyme shows notable differences from that reported for a truncated form of the enzyme lacking the C-terminal third of the protein (Jhee, K. H., Niks, D., McPhie, P., Dunn, M. F., and Miles, E. W. (2001) Biochemistry 40, 10873-10880).  相似文献   

7.
Human cystathionine beta-synthase (CBS) is a unique pyridoxal-5'-phosphate-dependent enzyme in which heme is also present as a cofactor. Because the function of heme in this enzyme has yet to be elucidated, the study presented herein investigated possible relationships between the chemistry of the heme and the strong pH dependence of CBS activity. This study revealed, via study of a truncation variant, that the catalytic core of the enzyme governs the pH dependence of the activity. The heme moiety was found to play no discernible role in regulating CBS enzyme activity by sensing changes in pH, because the coordination sphere of the heme is not altered by changes in pH over a range of pH 6-9. Instead, pH was found to control the equilibrium amount of ferric and ferrous heme present after reaction of CBS with one-electron reducing agents. A variety of spectroscopic techniques, including resonance Raman, magnetic circular dichroism, and electron paramagnetic resonance, demonstrated that at pH 9 Fe(II) CBS is dominant while at pH 6 Fe(III) CBS is favored. At low pH, Fe(II) CBS forms transiently but reoxidizes by an apparent proton-gated electron-transfer mechanism. Regulation of CBS activity by the iron redox state has been proposed as the role of the heme moiety in this enzyme. Given that the redox behavior of the CBS heme appears to be controlled by pH, interplay of pH and oxidation state effects must occur if CBS activity is redox regulated.  相似文献   

8.
Jhee KH  Niks D  McPhie P  Dunn MF  Miles EW 《Biochemistry》2002,41(6):1828-1835
Our studies of the reaction mechanism of cystathionine beta-synthase from yeast (Saccharomyces cerevisiae) are facilitated by the spectroscopic properties of the pyridoxal phosphate coenzyme. The enzyme catalyzes the reaction of L-serine with L-homocysteine to form L-cystathionine through a series of pyridoxal phosphate intermediates. In this work, we explore the substrate specificity of the enzyme by use of substrate analogues combined with kinetic measurements under pre-steady-state conditions and with circular dichroism and fluorescence spectroscopy under steady-state conditions. Our results show that L-allothreonine, but not L-threonine, serves as an effective substrate. L-Allothreonine reacts with the pyridoxal phosphate cofactor to form a stable 3-methyl aminoacrylate intermediate that absorbs maximally at 446 nm. The rapid-scanning stopped-flow results show that the binding of L-allothreonine as the external aldimine is faster than formation of the 3-methyl aminoacrylate intermediate. The 3-methyl aminoacrylate intermediate reacts with L-homocysteine to form a new amino acid, 3-methyl-L-cystathionine, which was characterized by nuclear magnetic resonance spectroscopy. This new amino acid may be a useful analogue of L-cystathionine.  相似文献   

9.
Two classes of cystathionine beta-synthases have been identified in eukaryotes, the heme-independent enzyme found in yeast and the heme-dependent form found in mammals. Both classes of enzymes catalyze a pyridoxal phosphate (PLP)-dependent condensation of serine and homocysteine to produce cystathionine. The role of the heme in the human enzyme and its location relative to the PLP in the active site are unknown. (31)P NMR spectroscopy revealed that spin-lattice relaxation rates of the phosphorus nucleus in PLP are similar in both the paramagnetic ferric (T(1) = 6.34 +/- 0.01 s) and the diamagnetic ferrous (T(1) = 5.04 +/- 0.06 s) enzyme, suggesting that the two cofactors are not proximal to each other. This is also supported by pulsed EPR studies that do not provide any evidence for strong or weak coupling between the phosphorus nucleus and the ferric iron. However, the (31)P signal in the reduced enzyme moved from 5.4 to 2.2 ppm, and the line width decreased from 73 to 16 Hz, providing the first structural evidence for transmission to the active site of an oxidation state change in the heme pocket. These results are consistent with a regulatory role for the heme as suggested by previous biochemical studies from our laboratory. The (31)P chemical shifts of the resting forms of the yeast and human enzymes are similar, suggesting that despite the difference in their heme content, the microenvironment of the PLP is similar in the two enzymes. The addition of the substrate, serine, resulted in an upfield shift of the phosphorus resonance in both enzymes, signaling formation of reaction intermediates. The resting enzyme spectra were recovered following addition of excess homocysteine, indicating that both enzymes retained catalytic activity during the course of the NMR experiment.  相似文献   

10.
Jhee KH  McPhie P  Miles EW 《Biochemistry》2000,39(34):10548-10556
Cystathionine beta-synthase from yeast (Saccharomyces cerevisiae) provides a model system for understanding some of the effects of disease-causing mutations in the human enzyme. The mutations, which lead to accumulation of L-homocysteine, are linked to homocystinuria and cardiovascular diseases. Here we characterize the domain architecture of the heme-independent yeast cystathionine beta-synthase. Our finding that the homogeneous recombinant truncated enzyme (residues 1-353) is catalytically active and binds pyridoxal phosphate stoichiometrically establishes that the N-terminal residues 1-353 compose a catalytic domain. Removal of the C-terminal residues 354-507 increases the specific activity and alters the steady-state kinetic parameters including the K(d) for pyridoxal phosphate, suggesting that the C-terminal residues 354-507 compose a regulatory domain. The yeast enzyme, unlike the human enzyme, is not activated by S-adenosyl-L-methionine. The truncated yeast enzyme is a dimer, whereas the full-length enzyme is a mixture of tetramer and octamer, suggesting that the C-terminal domain plays a role in the interaction of the subunits to form higher oligomeric structures. The N-terminal catalytic domain is more stable and less prone to aggregate than full-length enzyme and is thus potentially more suitable for structure determination by X-ray crystallography. Comparisons of the yeast and human enzymes reveal significant differences in catalytic and regulatory properties.  相似文献   

11.
Cystathionine beta-synthase in mammals lies at a pivotal crossroad in methionine metabolism directing flux toward cysteine synthesis and catabolism. The enzyme exhibits a modular organization and complex regulation. It catalyzes the beta-replacement of the hydroxyl group of serine with the thiolate of homocysteine and is unique in being the only known pyridoxal phosphate-dependent enzyme that also contains heme b as a cofactor. The heme functions as a sensor and modulates enzyme activity in response to redox change and to CO binding. Mutations in this enzyme are the single most common cause of hereditary hyperhomocysteinemia. Elucidation of the crystal structure of a truncated and highly active form of the human enzyme containing the heme- and pyridoxal phosphate binding domains has afforded a structural perspective on mechanistic and mutation analysis studies. The C-terminal regulatory domain containing two CBS motifs exerts intrasteric regulation and binds the allosteric activator, S-adenosylmethionine. Studies with mammalian cells in culture as well as with animal models have unraveled multiple layers of regulation of cystathionine beta-synthase in response to redox perturbations and reveal the important role of this enzyme in glutathione-dependent redox homestasis. This review discusses the recent advances in our understanding of the structure, mechanism, and regulation of cystathionine beta-synthase from the perspective of its physiological function, focusing on the clinically relevant human enzyme.  相似文献   

12.
Ojha S  Wu J  LoBrutto R  Banerjee R 《Biochemistry》2002,41(14):4649-4654
Human cystathionine beta-synthase is a hemeprotein that catalyzes a pyridoxal phosphate (PLP)-dependent condensation of serine and homocysteine into cystathionine. Biophysical characterization of this enzyme has led to the assignment of the heme ligands as histidine and cysteinate, respectively, which has recently been confirmed by crystal structure determination of the catalytic core of the protein. Using site-directed mutagenesis, we confirm that C52 and H65 represent the thiolate and histidine ligands to the heme. Conversion of C52 to alanine or serine results in spectral properties of the resulting hemeprotein that are consistent with the loss of a thiolate ligand. Thus, the Soret peak blue-shifts from 428 to 415 and 417 nm in the ferric forms of the C52S and C52A mutants, respectively, and from 450 to 423 nm in the ferrous states of both mutants. Addition of CO to the dithionite-reduced ferrous C52 mutants results in spectra with Soret peaks at 420 nm. EPR spectroscopy of the ferric C52 variants reveals the predominance of a high-spin species. The H65R mutant, a variant described in a homocystinuric patient, has Soret peaks at 424, 421, and 420 nm in the ferric, ferrous, and ferrous CO states, respectively. EPR spectroscopy reveals predominance of the low-spin species. Both C52A and C52S mutations lead to protein with substoichiometric heme (19% with respect to wild type); however, the PLP content is comparable to that of wild-type enzyme. The heme and PLP contents of the H65R mutant are 40% and 75% that of wild-type enzyme. These results indicate that heme saturation does not dictate PLP saturation in these mutant enzymes. Both H65 and C52 variants display low catalytic activity, revealing that changes in the heme binding domain modulate activity, consistent with a regulatory role for this cofactor.  相似文献   

13.
Taoka S  West M  Banerjee R 《Biochemistry》1999,38(9):2738-2744
Cystathionine beta-synthase is an unusual enzyme that requires the cofactors heme and pyridoxal phosphate (PLP) to catalyze the condensation of homocysteine and serine to generate cystathionine. This transsulfuration reaction represents one of two major cellular routes for detoxification of homocysteine, which is a risk factor for atherosclerosis. While the beta-replacement reaction catalyzed by this enzyme suggests a role for the pyridoxal phosphate, the role of the heme is uncertain. In this study we have examined the effect of changing one of the ligands to the heme on the activity of the enzyme. Binding of carbon monooxide results in the displacement of a thiolate ligand to the ferrous heme, and is accompanied by complete loss of cystathionine beta-synthase activity. Furthermore, inhibition by CO is competitive with respect to homocysteine, providing the first indication that the homocysteine binding site is in the proximity of heme. Binding of both CO and cyanide to ferrous cystathionine beta-synthase occurs in two distinct isotherms and indicates that the hemes are nonequivalent. We have employed fluorescence spectroscopy to characterize the bound PLP and its interaction with serine. PLP bound to cystathionine beta-synthase is weakly fluorescent and exists as a mixture of the protonated and unprotonated tautomers. Reaction with hydroxylamine releases the oxime and greatly enhances the associated fluorescence. Binding of serine is accompanied by a shift to the unprotonated tautomer of the external aldimine as well as the appearance of a new fluorescent species at approximately 400 nm that could be due to the aminoacrylate or to a gemdiamine intermediate. These data provide the first characterization of the PLP bound to cystathionine beta-synthase. Treatment of cystathionine beta-synthase with hydroxylamine releases two PLPs after 1 day and results in complete loss of activity. Incubation for an additional 3-4 days results in the release of two more PLPs. These data lead us to revise the PLP stoichiometry to 4 per tetramer, and to the conclusion that the heme and PLP sites in cystathionine beta-synthase are nonequivalent.  相似文献   

14.
Cystathionine beta-synthase (CBS) is a pyridoxal-5'-dependent enzyme that catalyzes the condensation of homocysteine and serine to form cystathionine. Human CBS is unique in that heme is also required for maximal activity, although the function of heme in this enzyme is presently unclear. The study presented herein reveals that the heme of human CBS undergoes a coordination change upon reduction at elevated temperatures. We have termed this new species "CBS424" and demonstrate that its formation is likely irreversible when pH 9 Fe(III) CBS is reduced at moderately elevated temperatures (approximately 40 degrees C and higher) or when pH 9 Fe(II) CBS is heated to similar temperatures. Spectroscopic techniques, including resonance Raman, electronic absorption, and variable temperature/variable field magnetic circular dichroism spectroscopy, provide strong evidence that CBS424 is coordinated by two neutral donor ligands. It appears likely that the native cysteine(thiolate) heme ligand is displaced by an endogenous neutral donor upon conversion to CBS424. This behavior is consistent with other six-coordinate, cysteine(thiolate)-ligated heme centers, which seek to avoid this coordination structure in the Fe(II) state. Functional assays show that CBS424 is inactive and suggest that the ligand switch is responsible for eliminating enzyme activity. When this investigation is taken together with other functional studies of CBS, it provides strong evidence that coordination of Cys52 to the heme iron is crucial for full activity in this enzyme. We hypothesize that cysteine displacement may serve as a mechanism for CBS inactivation and that second-sphere interactions of the Cys52 thiolate with surrounding residues are responsible for communicating the heme ligand displacement to the CBS active site.  相似文献   

15.
Human cystathionine beta-synthase is a pyridoxal 5'-phosphate enzyme containing a heme binding domain and an S-adenosyl-l-methionine regulatory site. We have investigated by single crystal microspectrophotometry the functional properties of a mutant lacking the S-adenosylmethionine binding domain. Polarized absorption spectra indicate that oxidized and reduced hemes are reversibly formed. Exposure of the reduced form of enzyme crystals to carbon monoxide led to the complete release of the heme moiety. This process, which takes place reversibly and without apparent crystal damage, facilitates the preparation of a heme-free human enzyme. The heme-free enzyme crystals exhibited polarized absorption spectra typical of a pyridoxal 5'-phosphate-dependent protein. The exposure of these crystals to increasing concentrations of the natural substrate l-serine readily led to the formation of the key catalytic intermediate alpha-aminoacrylate. The dissociation constant of l-serine was found to be 6 mm, close to that determined in solution. The amount of the alpha-aminoacrylate Schiff base formed in the presence of l-serine was pH independent between 6 and 9. However, the rate of the disappearance of the alpha-aminoacrylate, likely forming pyruvate and ammonia, was found to increase at pH values higher than 8. Finally, in the presence of homocysteine the alpha-aminoacrylate-enzyme absorption band readily disappears with the concomitant formation of the absorption band of the internal aldimine, indicating that cystathionine beta-synthase crystals catalyze both beta-elimination and beta-replacement reactions. Taken together, these findings demonstrate that the heme moiety is not directly involved in the condensation reaction catalyzed by cystathionine beta-synthase.  相似文献   

16.
Cystathionine beta-synthase [CBS; L-serine hydro-lyase (adding homocysteine), EC 4.2.1.22] catalyzes the first committed step of transsulfuration in both yeast and humans. It has been established previously that human CBS is a hemeprotein but although the heme group appears to be essential for CBS activity, the exact function of the heme group is unknown. CBS activity is absent in heme deficient strains of Saccharomyces cerevisiae grown without heme supplementation. CBS activity can be restored by supplementing these strains with heme, implying that there is a heme requirement for yeast CBS. We subcloned, overexpressed and purified yeast CBS. The yeast enzyme shows absolute pyridoxal 5'-phosphate (PLP) dependence for activity but we could find no evidence for the presence of a heme group. Given the degree of sequence and mechanistic similarity between yeast and human CBS, this result indicates that heme is unlikely to play a direct catalytic role in the human CBS reaction mechanism. Further characterization revealed that, in contrast to human CBS, S-adenosylmethionine (AdoMet) does not activate yeast CBS. Yeast CBS was found to be coordinately regulated with proliferation in S. cerevisiae. This finding is the most likely explanation of the observed apparent heme dependence of transsulfuration in vivo.  相似文献   

17.
The most common cause of severely elevated homocysteine or homocystinuria is inherited disorders in cystathionine beta-synthase. The latter enzyme is a unique hemeprotein that catalyzes pyridoxal phosphate (PLP)-dependent condensation of serine and homocysteine to give cystathionine, thus committing homocysteine to catabolism. A point mutation, V168M, has been described in a homocystinuric cell line and is associated with a B(6)-responsive phenotype. In this study, we have examined the kinetic properties of this mutant and demonstrate that the mutation affects the PLP but not the heme content. The approximately 13-fold diminution in activity because of the mutation corresponds to an approximately 7-fold decrease in the level of bound PLP. This may be explained by half of the sites activity associated with cystathionine beta-synthase. The addition of PLP results in partial but not full restoration of activity to wild type levels. Elimination of the C-terminal quarter of the mutant protein results in alleviation of the catalytic penalty imposed by the V168M mutation. The resulting truncated protein is very similar to the corresponding truncated enzyme with wild type sequence and is now able to bind the full complement of both heme and PLP cofactors. These results indicate that the V168M mutation per se does not affect binding of PLP directly and that interactions between the regulatory C terminus and the catalytic N terminus are important in modulating the cofactor content and therefore the activity of the full-length enzyme. These studies provide the first biochemical explanation for the B(6)-responsive phenotype associated with a cystathionine beta-synthase-impaired homocystinuric genotype.  相似文献   

18.
Human cystathionine beta-synthase (CBS) is an essential enzyme for the removal of the toxic metabolite homocysteine. Heme and pyridoxal phosphate (PLP) cofactors are necessary to catalyze the condensation of homocysteine and serine to generate cystathionine. While the role for the PLP cofactor is thought to be similar to that in other PLP-dependent enzymes that catalyze beta-replacement reactions, the exact role for the heme remains unclear. In this study, we have characterized the heme cofactor of CBS in both the ferric and ferrous states using resonance Raman spectroscopy. Positive identification of a cysteine ligand was achieved by global (34)S isotopic substitution which allowed us to assign the nu(Fe-S) for the six-coordinate low-spin ferric heme at 312 cm(-1). In addition, the CO adduct of ferrous CBS has vibrational frequencies characteristic of a histidine-heme-CO complex in a hydrophobic environment, and indicates that the Fe-S(Cys) bond is labile. We have also found that addition of HgCl(2) to the ferric heme causes conversion of the low-spin heme to a five-coordinate high-spin heme with loss of the cysteine ligand. The present spectroscopic studies do not support a reaction mechanism in which homocysteine binds directly to the heme via displacement of the Cys ligand in the binary enzyme complex, as had been previously proposed.  相似文献   

19.
Cystathionine beta-synthase (CBS) is a pyridoxal-5'-phosphate-dependent enzyme that catalyzes the condensation of serine and homocysteine to form cystathionine. Mammalian CBS also contains a heme cofactor that has been proposed to allosterically regulate enzyme activity via the heme redox state, with FeII CBS displaying approximately half the activity of FeIII CBS in vitro. The results of this study show that human FeII CBS spontaneously loses enzyme activity over the course of a 20 min enzyme assay. Both the full-length 63-kDa and truncated 45-kDa form of CBS slowly and irreversibly lose activity upon reduction to the FeII form. Additionally, electronic absorption spectroscopy reveals that FeII CBS undergoes a heme ligand exchange to FeII CBS424 when the enzyme is incubated at 37 degrees C and pH 8.6. The addition of enzyme substrates or imidazole has a moderate effect on the rate of the ligand switch, but does not prevent conversion to the inactive species. Time-dependent spectroscopic data describing the conversion of FeII CBS to FeII CBS424 were fitted to a three-state kinetic model. The resultant rate constants were used to fit assay data and to estimate the activity of FeII CBS prior to the ligand switch. Based on this fit it appears that FeII CBS initially has the same enzyme activity as FeIII CBS, but FeII CBS loses activity as the ligand switch proceeds. The slow and irreversible loss of FeII CBS enzyme activity in vitro resembles protein denaturation, and suggests that a simple regulatory mechanism based on the heme redox state is unlikely.  相似文献   

20.
Jhee KH  Niks D  McPhie P  Dunn MF  Miles EW 《Biochemistry》2001,40(36):10873-10880
Our studies of the reaction mechanism of cystathionine beta-synthase from Saccharomyces cerevisiae (yeast) are facilitated by the spectroscopic properties of the pyridoxal phosphate coenzyme that forms a series of intermediates in the reaction of L-serine and L-homocysteine to form L-cystathionine. To characterize these reaction intermediates, we have carried out rapid-scanning stopped-flow and single-wavelength stopped-flow kinetic measurements under pre-steady-state conditions, as well as circular dichroism and fluorescence spectroscopy under steady-state conditions. We find that the gem-diamine and external aldimine of aminoacrylate are the primary intermediates in the forward half-reaction with L-serine and that the external aldimine of aminoacrylate or its complex with L-homocysteine is the primary intermediate in the reverse half-reaction with L-cystathionine. The second forward half-reaction of aminoacrylate with L-homocysteine is rapid. No primary kinetic isotope effect was obtained in the forward half-reaction with L-serine. The results provide evidence (1) that the formation of the external aldimine of L-serine is faster than the formation of the aminoacrylate intermediate, (2) that aminoacrylate is formed by the concerted removal of the alpha-proton and the hydroxyl group of L-serine, and (3) that the rate of the overall reaction is rate-limited by the conversion of aminoacrylate to L-cystathionine. We compare our results with cystathionine beta-synthase with those of related investigations of tryptophan synthase and O-acetylserine sulfhydrylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号