首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A kinin-directed monoclonal antibody to kininogens has been developed by the fusion of murine myeloma cells with mouse splenocytes immunized with bradykinin-conjugated hemocyanin. The hybrid cells were screened by an enzyme-linked immunosorbent assay (ELISA) and a radioimmunoassay (RIA) for the secretion of antibodies to bradykinin. Ascitic fluids were produced and purified by a bradykinin-agarose affinity column. The monoclonal antibody (IgG1) bound to bradykinin, Lys-bradykinin, Met-Lys-bradykinin, and kininogens in ELISA. Further, this target-directed monoclonal antibody recognized purified low and high molecular weight bovine, human, or rat kininogens and T-kininogen in Western blotting. After turpentine-induced acute inflammation, rat kininogen levels increased dramatically in liver and serum as well as in the perfused pituitary, heart, lung, kidney, thymus, and other tissues, as identified by the kinin-directed kininogen antibody in Western blot analyses. The results were confirmed by measuring kinin equivalents of kininogens with a kinin RIA. During an induced inflammatory response, rat kininogens were localized immunohistochemically with the kinin-directed monoclonal antibody in parenchymal cells of liver, in acinar cells and some granular convoluted tubules of submandibular gland, and in the collecting tubules of kidney. Northern and cytoplasmic dot blot analyses using a kinin oligonucleotide probe showed that kininogen mRNA levels in liver but not in other tissues increase after turpentine-induced inflammation. The results indicated that rat kininogens are distributed in various tissues in addition to liver and only liver kininogen is induced by acute inflammation. The target-directed kininogen monoclonal antibody is a useful reagent for studying the structure, localization, and function of kininogens or any protein molecule containing the kinin moiety.  相似文献   

2.
A panel of 16 monoclonal antibodies (mAb) were produced against rat T-kininogen to characterize this family of proteins. These mAbs bound 125I-T-kininogen by radioimmunoassay as well as reacting strongly with immobilized T-kininogen in an enzyme-linked immunosorbent assay (ELISA). The reactivity of these antibodies with proteolytic fragments of T-kininogen demonstrated the recognition of several different epitopes. One antibody was specific for the domain 1 of the heavy chain and/or the light chain, twelve antibodies were specific for domain 2 and three antibodies were specific for domain 3. All monoclonal antibodies recognized the two forms of T-kininogen encoded by the two different T-kininogen genes, TI and TII kininogen, except antibody TK 16-3.1 which uniquely reacted with TII kininogen. Two antibodies recognizing domain 2 cross-reacted with the high-molecular-mass kininogen (H-kininogen), whereas all the other monoclonal antibodies were specific to T-kininogen and did not recognize the heavy chain of H-kininogen. None of the antibodies tested altered the thiol protease inhibitory activity of T-kininogen, its partial proteolysis by rat mast cell chymase or the hydrolysis of H-kininogen by rat urinary kallikrein. The use of these antibodies in the development of sensitive ELISA to measure T-kininogen levels in plasma, urine, liver microsomes and hepatocytes is described. Two different forms of T-kininogen were distinguished by these monoclonal antibodies in Western blotting using rat plasma. The localization of T-kininogen was defined using these monoclonal antibodies by immunohistochemistry in rat liver hepatocytes and rat kidney.  相似文献   

3.
Recent genome-wide association studies of pediatric inflammatory bowel disease have implicated the 17q12 loci, which contains the eosinophil-specific chemokine gene CCL11, with early-onset inflammatory bowel disease susceptibility. In the current study, we employed a murine model of experimental colitis to define the molecular pathways that regulate CCL11 expression in the chronic intestinal inflammation and pathophysiology of experimental colitis. Bone marrow chimera experiments showed that hematopoietic cell-derived CCL11 is sufficient for CCL11-mediated colonic eosinophilic inflammation. We show that dextran sodium sulfate (DSS) treatment promotes the recruitment of F4/80(+)CD11b(+)CCR2(+)Ly6C(high) inflammatory monocytes into the colon. F4/80(+)CD11b(+)CCR2(+)Ly6C(high) monocytes express CCL11, and their recruitment positively correlated with colonic eosinophilic inflammation. Phenotypic analysis of purified Ly6C(high) intestinal inflammatory macrophages revealed that these cells express both M1- and M2-associated genes, including Il6, Ccl4, Cxcl2, Arg1, Chi3l3, Ccl11, and Il10, respectively. Attenuation of DSS-induced F4/80(+)CD11b(+)CCR2(+)Ly6C(high) monocyte recruitment to the colon in CCR2(-/-) mice was associated with decreased colonic CCL11 expression, eosinophilic inflammation, and DSS-induced histopathology. These studies identify a mechanism for DSS-induced colonic eosinophilia mediated by Ly6C(high)CCR2(+) inflammatory monocyte/macrophage-derived CCL11.  相似文献   

4.
5.
 The human major histocompatibility complex (MHC) class I gene, HLA-B27, is a strong risk factor for susceptibility to a group of disorders termed spondyloarthropathies. Rodents that express HLA-B27 develop spondyloarthropathies, implicating HLA-B27 in the etiology of these disorders. To determine whether an HLA-B27-like molecule was associated with spondyloarthropathies in nonhuman primates, we analyzed the MHC class I cDNAs expressed in a cohort of rhesus macaques that developed reactive arthritis after an outbreak of shigellosis. We identified several cDNAs with only limited sequence similarity to HLA-B27. Interestingly, one of these MHC molecules had a B pocket identical to that of HLA-B39. Pool sequencing of radiolabeled peptides bound by this molecule demonstrated that, like HLA-B27 and HLA-B39, it could bind peptides with arginine at the second position. However, extensive analysis of the MHC class I molecules in this cohort revealed no statistically significant association between any particular MHC class I allele and susceptibility to reactive arthritis. Furthermore, none of the rhesus MHC class I molecules bore a strong resemblance to HLA-B27, indicating that reactive arthritis can develop in this animal model in the absence of an HLA-B27-like molecule. Surprisingly, there was a statistically significant association between the rhesus macaque MHC A locus allele, Mamu-A*12, and the absence of reactive arthritis following Shigella infection. Received: 26 July 1999 / Revised: 28 December 1999  相似文献   

6.
Spondyloarthropathies are inflammatory diseases closely associated with human leukocyte antigen (HLA)-B27 by unknown mechanisms. One of these diseases is reactive arthritis (ReA), which is typically triggered by Gram-negative bacteria, which have lipopolysaccharide as an integral component of their outer membrane. Several findings in vivo and in vitro obtained from patients with ReA and from different model systems suggest that HLA-B27 modulates the interaction between ReA-triggering bacteria and immune cells by a mechanism unrelated to the antigen presentation function of HLA-B27. In this review we piece together a jigsaw puzzle from the new information obtained from the non-antigen-presenting effects of HLA-B27.  相似文献   

7.
Rats transgenic for HLA-B27 and human β2microglobulin (B27TR) develop a multi-systemic disease resembling inflammatory bowel disease (IBD) and spondyloarthritis. TNFα has a crucial role in chronic inflammation. Our objective was to evaluate the effect of anti-TNFα treatment on spontaneous IBD in B27TR. Nine-week-old B27TR received monoclonal anti-TNFα or an isotypic IgG2a,k up to age of 18 weeks. A second group was monitored up to 18 weeks and then randomly assigned to anti-TNFα or IgG2 a,k treatment. Each rat was monitored for clinical IBD manifestations. After sacrifice, the colon was examined for pathological changes. TNFα receptors (TNF-R1, TNF-R2), Fas/Fas-L expression and apoptosis were evaluated. IgG2a,k-treated and untreated B27TR presented signs of IBD at 11 weeks, whereas in anti-TNFα-treated B27TR no IBD signs were detected. In the late treatment, IBD signs improved after 1 week. Histopathological analysis of IgG2a,k-treated B27TR colon showed inflammatory signs that were widely prevented by early anti-TNFα treatment. Late treatment did not significantly reduce inflammation. TNF-R1 was weakly expressed in intestinal epithelial cells of IgG2a,k-treated B27TR, while it was comparable to controls in anti-TNFα-treated animals. TNF-R2 immunopositivity was strongly evident in IgG2a,k-treated B27TR, whereas was absent in anti-TNFα-treated rats. RT-PCR confirmed these results. IgG2a,k-treated B27TR showed, at 18 weeks, few Fas-positive cells and an increase of Fas-L-positive cells. At 27 weeks, Fas-/Fas-L-positive cell number was significantly low. Anti-TNFα treatment increased Fas-L expression, whereas Fas increased only with the early treatment. TNFα blockade is effective in preventing inflammation in early phase of IBD, maintaining the homeostatic balance of apoptosis.  相似文献   

8.
A characteristic feature of human inflammatory bowel disease, particularly Crohn's disease, is the presence of activated CD4(+) T cells. Recently, we have shown that colonic epithelial cell production of macrophage inflammatory protein (MIP)-3alpha, a CD4 T cell-directed chemokine, is elevated in inflammatory bowel disease. However, the functional relevance of MIP-3alpha production during intestinal inflammation is poorly understood. The aim of this study was to determine whether MIP-3alpha production is increased during murine 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis and to examine the effect of anti-MIP-3alpha neutralizing monoclonal antibody administration in this model. We found that the administration of TNBS significantly increased colonic MIP-3alpha protein levels in Balb/c mice. Consistent with this, a marked increase in the number of CCR6-bearing lamina propria CD4(+) and CD8(+) T cells was also observed in TNBS-treated animals. Treatment of mice with an anti-MIP-3alpha neutralizing monoclonal antibody significantly reduced TNBS-mediated increases in colonic weight-to-length ratio, mucosal ulceration, histological damage, and myeloperoxidase activity. TNBS-mediated increases in the number of CCR6-bearing lamina propria T cells were also substantially reduced by anti-MIP-3alpha neutralizing monoclonal antibody treatment. Taken together, our findings indicate that blockade of MIP-3alpha bioactivity can significantly reduce TNBS-mediated colonic injury and T cell recruitment, suggesting a role for this chemokine in the pathophysiology of intestinal inflammation.  相似文献   

9.
Plasma and inflammatory fluid kininogen levels, and blood and inflammatory fluid free kinin levels were determined in rats 24 h after the injection of carrageenin into an air pouch. Plasma T-kininogen levels increased 7-fold. In the inflammatory fluid levels reached 8 μg/ml. Blood levels of free kinin showed a 5-fold increase. The kinins were identified on HPLC as T-kinin (Ile-Ser-bradykinin) and bradykinin, 63 and 37%, respectively. These results indicate for the first time that free T-kinin as well as bradykinin is released during an inflammatory response in rat and confirms our previous finding that T-kininogen may be a major acutephase protein in inflammation.

T-kinin T-kininogen Bradykinin Inflammation Acute-phase protein Carrageenin  相似文献   


10.

Objectives

HLA-B27 is a common genetic risk factor for the development of Spondyloarthritides (SpA). HLA-B27 can misfold to form cell-surface heavy chain homodimers (B272) and induce pro-inflammatory responses that may lead to SpA pathogenesis. The presence of B272 can be detected on leukocytes of HLA-B27+ Ankylosing spondylitis (AS) patients and HLA-B27 transgenic rats. We characterized a novel B272–specific monoclonal antibody to study its therapeutic use in HLA-B27 associated disorders.

Methods

The monoclonal HD5 antibody was selected from a phage library to target cell-surface B272 homodimers and characterized for affinity, specificity and ligand binding. The immune modulating effect of HD5 was tested in HLA-B27 transgenic rats. Onset and progression of disease profiles were monitored during therapy. Cell-surface B272 and expansion of pro-inflammatory cells from blood, spleen and draining lymph nodes were assessed by flow cytometry.

Results

HD5 bound B272 with high specificity and affinity (Kd = 0.32 nM). HD5 blocked cell-surface interaction of B272 with immune regulatory receptors KIR3DL2, LILRB2 and Pirb. In addition, HD5 modulated the production of TNF from CD4+ T-cells by limiting B272 interactions in vitro. In an HLA-B27 transgenic rat model repetitive dosing of HD5 reduced the expansion of pro-inflammatory CD4+ T-cells, and decreased the levels of soluble TNF and number of cell-surface B272 molecules.

Conclusion

HD5 predominantly inhibits early TNF production and expansion of pro-inflammatory CD4+ T-cells in HLA-B27 transgenic rats. Monoclonal antibodies targeting cell-surface B272 propose a new concept for the modulation of inflammatory responses in HLA-B27 related disorders.  相似文献   

11.
Ankylosing spondylitis (AS) is a rhematoid arthritis, which is a common autoimmune disease with a complex genetic etiology. Although HLA-B27 has been identified to be associated with AS, a number of other genes may also be involved in the disease. Fc receptor-like 3 (FCRL3) gene has been shown to be associated with rheumatoid arthritis in Japanese population. Here we aim to explore the association FCRL3 gene and susceptibility to human leukocyte antigen (HLA)-B27-positive AS in Han Chinese population. Among 169 AS patients, the frequencies of C and T (rs7522061) in FCRL3 gene were 38.7 and 61.3%, respectively; in 184 controls (HLA-B27-positive), the frequencies of C and T were 38.6 and 61.4%, respectively. The frequencies of alleles and genotype are not of statistically significant difference in two groups (χ2 = 0.000, P = 0.983; χ2 = 0.099, P = 0.952, respectively),but the distribution of HLA-B27 subtypes are statistically significant difference between cases and controls (χ2 = 8.214, P = 0.042). Our data reveal that the FCRL3 gene does not appear associated with susceptibility to HLA-B27-positive AS in Han Chinese population.  相似文献   

12.
A tissue-protective effect of interleukin-11 (IL-11) for the intestinal mucosa has been postulated from animal models of inflammatory bowel disease (IBD). Despite the fact that the clinical usefulness of the anti-inflammatory effects of this cytokine is presently investigated in patients with IBD, there are no data available regarding the target cells of IL-11 action and the mechanisms of tissue protection within the human colonic mucosa. IL-11 responsiveness is restricted to cells that express the interleukin-11 receptor alpha-chain (IL-11Ralpha) and an additional signal-transducing subunit (gp130). In this study, we identified the target cells for IL-11 within the human colon with a new IL-11Ralpha monoclonal antibody and investigated the functional expression of the receptor and downstream effects of IL-11-induced signaling. Immunohistochemistry revealed expression of the IL-11Ralpha selectively on colonic epithelial cells. HT-29 and colonic epithelial cells (CEC) constitutively expressed IL-11Ralpha mRNA and protein. Co-expression of the signal-transducing subunit gp130 was also demonstrated. IL-11 induced signaling through triggering activation of the Jak-STAT pathway without inducing anti-inflammatory or proliferative effects in colonic epithelial cells. However, IL-11 stimulation resulted in a dose-dependent tyrosine phosphorylation of Akt, a decreased activation of caspase-9, and a reduced induction of apoptosis in cultured CEC. In HLA-B27 transgenic rats treated with IL-11, a reduction of apoptotic cell numbers was found. This study demonstrates functional expression of the IL-11Ralpha restricted on CEC within the human colonic mucosa. IL-11 induced signaling through triggering activation of the Jak-STAT pathway, without inducing anti-inflammatory or proliferative effects. The beneficial effects of IL-11 therapy are likely to be mediated by CEC via activation of the Akt-survival pathway, mediating antiapoptotic effects to support mucosal integrity.  相似文献   

13.

Introduction

Ankylosing spondylitis (AS) is a severe, chronic inflammatory arthritis, with a strong association to the human major histocompatibilty complex (MHC) class I allele human leucocyte antigen (HLA) B27. Disulfide-linked HLA-B27 heavy-chain homodimers have been implicated as novel structures involved in the aetiology of AS. We have studied the formation of HLA-B27 heavy-chain homodimers in human dendritic cells, which are key antigen-presenting cells and regulators of mammalian immune responses.

Method

Both an in vitro dendritic-like cell line and monocyte-derived dendritic cells from peripheral blood were studied. The KG-1 dendritic-like cell line was transfected with HLA-B27 cDNA constructs, and the cellular distribution, intracellular assembly and ability of HLA-B27 to form heavy-chain homodimers was compared with human monocyte-derived dendritic cells after stimulation with bacterial lipopolysaccharide (LPS).

Results

Immature KG-1 cells expressing HLA-B27 display an intracellular source of MHC class I heavy-chain homodimers partially overlapping with the Golgi bodies, but not the endoplasmic reticulum, which is lost at cell maturation with phorbyl-12-myristate-13-acetate (PMA) and ionomycin. Significantly, the formation of HLA-B27 homodimers in transfected KG-1 cells is induced by maturation, with a transient induction also seen in LPS-stimulated human monocyte-derived dendritic cells expressing HLA-B27. The weak association of wildtype HLA-B*2705 with the transporter associated with antigen processing could also be enhanced by mutation of residues at position 114 and 116 in the peptide-binding groove to those present in the HLA-B*2706 allele.

Conclusion

We have demonstrated that HLA-B27 heavy-chain homodimer formation can be induced by dendritic cell activation, implying that these novel structures may not be displayed to the immune system at all times. Our data suggests that the behaviour of HLA-B27 on dendritic cells may be important in the study of inflammatory arthritis.  相似文献   

14.
Wong PK  Campbell IK  Robb L  Wicks IP 《Cytokine》2005,29(2):72-76
OBJECTIVE: To evaluate the role of interleukin-11 (IL-11) in acute mBSA/IL-1-induced inflammatory arthritis. METHODS: IL-11 was administered via intra-articular (IA) injection into knee joints of C57BL/6 mice and joint histology was assessed. The mitogenic response to IL-11 was measured in wild-type (WT) synovial fibroblasts. IL-1 was used as a comparator in both the studies. The severity of acute methylated bovine serum albumin (mBSA)/IL-1 arthritis was determined in WT and IL-11 receptor null (IL-11Ra1-/-) mice. In parallel experiments, a neutralising antibody to IL-11 was administered to WT mice throughout this model. RESULTS: IA injections of IL-11 resulted in mild-to-moderate joint inflammation which was less than that due to IA IL-1. IL-11 had a dose-dependent mitogenic effect on WT synovial fibroblasts (P<0.01). mBSA/IL-1 acute arthritis was reduced in IL-11Ra1-/- versus WT mice (histological arthritis score: 10.1+/-0.5 versus 12.8+/-0.7, respectively; P=0.01). Administration of an IL-11 neutralising antibody to WT mice reduced mBSA/IL-1 acute arthritis scores compared to control antibody (10.6+/-0.7 versus 13.3+/-0.6, respectively; P=0.02). CONCLUSIONS: These data demonstrate that endogenous IL-11 exerts relatively mild but consistent pro-inflammatory effects in acute inflammatory arthritis.  相似文献   

15.
16.
In normal human plasma two forms of kininogen exist, low molecular weight kininogen (LMWK) and high molecular weight kininogen (HMWK). When these proteins are cleaved they are found to have a common heavy chain and bradykinin, but each has a unique light chain. Monoclonal antibodies to the heavy and light chains of HMWK have been developed, and the effects of each on the function of this protein are defined. Initial studies showed that an antibody, C11C1, completely neutralized the coagulant activity of plasma HMWK whereas another antibody, 2B5, did not. On a competitive enzyme-linked immunosorbent assay (CELISA) the C11C1 antibody was consumed by kininogen antigen in normal plasma but not by kininogen antigen in HMWK-deficient plasma. On immunoblot, the C11C1 antibody recognized one kininogen protein in normal plasma and did not recognize any kininogen antigen in HMWK-deficient plasma. These combined studies indicated that the C11C1 antibody was directed to an epitope on the unique 46-kDa light chain of HMWK. In contrast, the 2B5 antibody on a CELISA was consumed by kininogen antigen in both normal plasma and HMWK-deficient plasma but not by total kininogen-deficient plasma. On immunoblot, the 2B5 antibody recognized both kininogens in normal plasma but only LMWK in HMWK-deficient plasma. These combined studies indicated that the 2B5 antibody was directed to the common 64-kDa heavy chain of the plasma kininogens. Utilizing direct binding studies or competition kinetic experiments, the 2B5 and C11C1 antibodies bound with high affinity (1.71 and 0.77 nM, respectively) to their antigenic determinants on the HMWK molecule. The 2B5 antibody did neutralize the ability of HMWK to inhibit platelet calpain. These studies with monoclonal antibodies directed to each of the HMWK chains indicate that HMWK is a bifunctional molecule that can serve as a cofactor for serine zymogen activation and an inhibitor of cysteine proteases.  相似文献   

17.
Reports of the use of HLA-B27/peptide tetrameric complexes to study peptide-specific CD8+ T cells in HLA-B27+-related diseases are rare. To establish HLA-B27 tetramers we first compared the function of HLA-B27 tetramers with HLA-A2 tetramers by using viral epitopes. HLA-B27 and HLA-A2 tetramers loaded with immunodominant peptides from Epstein–Barr virus were generated with comparable yields and both molecules detected antigen-specific CD8+ T cells. The application of HLA-B27 tetramers in HLA-B27-related diseases was performed with nine recently described Chlamydia-derived peptides in synovial fluid and peripheral blood, to examine the CD8+ T cell response against Chlamydia trachomatis antigens in nine patients with Chlamydia-triggered reactive arthritis (Ct-ReA). Four of six HLA-B27+ Ct-ReA patients had specific synovial T cell binding to at least one HLA-B27/Chlamydia peptide tetramer. The HLA-B27/Chlamydia peptide 195 tetramer bound to synovial T cells from three of six patients and HLA-B27/Chlamydia peptide 133 tetramer to synovial T cells from two patients. However, the frequency of these cells was low (0.02–0.09%). Moreover, we demonstrate two methods to generate HLA-B27-restricted T cell lines. First, HLA-B27 tetramers and magnetic beads were used to sort antigen-specific CD8+ T cells. Second, Chlamydia-infected dendritic cells were used to stimulate CD8+ T cells ex vivo. Highly pure CD8 T cell lines could be generated ex vivo by magnetic sorting by using HLA-B27 tetramers loaded with an EBV peptide. The frequency of Chlamydia-specific, HLA-B27 tetramer-binding CD8+ T cells could be increased by stimulating CD8+ T cells ex vivo with Chlamydia-infected dendritic cells. We conclude that HLA-B27 tetramers are a useful tool for the detection and expansion of HLA-B27-restricted CD8+ T cells. T cells specific for one or more of three Chlamydia-derived peptides were found at low frequency in synovial fluid from HLA-B27+ patients with Ct-ReA. These cells can be expanded ex vivo, suggesting that they are immunologically functional.  相似文献   

18.

Introduction

It is known that anticitrullinated peptide antibody (ACPA)–positive rheumatoid arthritis (RA) has a preclinical phase. Whether this phase is also present in ACPA-negative RA is unknown. To determine this, we studied ACPA-negative arthralgia patients who were considered prone to progress to RA for local subclinical inflammation observed on hand and foot magnetic resonance imaging (MRI) scans.

Methods

We studied a total of 64 ACPA-negative patients without clinically detectable arthritis and with arthralgia of the small joints within the previous 1 year. Because of the character of the patients’ symptoms, the rheumatologists considered these patients to be prone to progress to RA. For comparisons, we evaluated 19 healthy, symptom-free controls and 20 ACPA-negative RA patients, who were identified according to the 1987 American Rheumatism Association criteria. All participants underwent MRI of unilateral wrist, metacarpophalangeal and metatarsophalangeal joints. Synovitis and bone marrow oedema (BME) were scored according to the OMERACT rheumatoid arthritis magnetic resonance imaging scoring system, and the scores were summed to yield the ‘MRI inflammation score’. Scores were compared between groups. Among the ACPA-negative arthralgia patients, MRI inflammation scores were related to C-reactive protein (CRP) levels and the tenderness of scanned joints.

Results

MRI inflammation scores increased progressively among the groups of controls and ACPA-negative arthralgia and RA patients (median scores = 0, 1 and 10, respectively; P < 0.001). The MRI inflammation scores of ACPA-negative arthralgia patients were significantly higher than those of controls (P = 0.018). In particular, the synovitis scores were higher in ACPA-negative arthralgia patients (P = 0.046). Among the ACPA-negative arthralgia patients, inflammation was observed predominantly in the wrist (53%). The synovitis scores were associated with CRP levels (P = 0.007) and joint tenderness (P = 0.026). Despite the limited follow-up duration, five patients developed clinically detectable arthritis. These five patients had higher scores for MRI inflammation (P = 0.001), synovitis (P = 0.002) and BME (P = 0.003) compared to the other patients.

Conclusion

Subclinical synovitis was observed in the small joints of ACPA-negative arthralgia patients, and especially in patients whose conditions progressed to clinically detectable arthritis. This finding suggests the presence of a preclinical phase in ACPA-negative RA. Further longitudinal studies of these lesions and patients are required to confirm this hypothesis.  相似文献   

19.

Objectives

To develop and validate a recombinant vaccine to attenuate inflammation in arthritis by sustained neutralization of the anaphylatoxin C5a.

Methods

We constructed and expressed fusion protein of C5a and maltose binding protein. Efficacy of specific C5a neutralization was tested using the fusion protein as vaccine in three different arthritis mouse models: collagen induced arthritis (CIA), chronic relapsing CIA and collagen antibody induced arthritis (CAIA). Levels of anti-C5a antibodies and anti-collagen type II were measured by ELISA. C5a neutralization assay was done using a rat basophilic leukemia cell-line transfected with the human C5aR. Complement activity was determined using a hemolytic assay and joint morphology was assessed by histology.

Results

Vaccination of mice with MBP-C5a led to significant reduction of arthritis incidence and severity but not anti-collagen antibody synthesis. Histology of the MBP-C5a and control (MBP or PBS) vaccinated mice paws confirmed the vaccination effect. Sera from the vaccinated mice developed C5a-specific neutralizing antibodies, however C5 activation and formation of the membrane attack complex by C5b were not significantly altered.

Conclusions

Exploitation of host immune response to generate sustained C5a neutralizing antibodies without significantly compromising C5/C5b activity is a useful strategy for developing an effective vaccine for antibody mediated and C5a dependent inflammatory diseases. Further developing of such a therapeutic vaccine would be more optimal and cost effective to attenuate inflammation without affecting host immunity.  相似文献   

20.
The purpose of this work was twofold: 1 to learn whether rats transgenic for HLA-B27 and the human 2-microglobulin gene HB2M can mount B27-restricted cytolytic T lymphocyte (CTL) responses to the male H-Y antigen, and 2 to learn whether such CTLs would recognize both rat and mouse H-Y in the context of HLA-B27. Female rats of the B27/HB2M transgenic line 21-4L were primed in vivo with cells from males of the same line. CTL effectors were generated from lymph node cells of these females following culture with irradiated antigen-presenting cells from either male 21-4L rats or male mice of the B27/HB2M transgenic 56-3 line. The CTLs showed male-specific, B27-specific lysis of both rat and mouse targets. Lysis of B27 targets was inhibitable by monoclonal antibodies specific for B27 or rat CD8. Specific lysis of male B27 rat and mouse targets was inhibitable equally by either rat or mouse male B27 cold targets, but not significantly by female or nontransgenic cold targets. The B27-restricted CTLs neither recognized nor were inhibited by B27+ or B27- male or female human targets. These results demonstrate that CD8+, B27-restricted, anti-H-Y CTLs recognize and evolutionarily conserved H-Y peptide antigen in both rats and mice. In addition, they establish the transgenic rat as a model system for examining the T-cell response to antigen presented by class I HLA molecules. Correspondence to: J. D. Taurog.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号