首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Three cases of 45,X/46,XYnf mosaicism   总被引:1,自引:1,他引:0  
Summary Three patients with 45,X/46,XYnf mosaicism were investigated by Southern hybridization using both X- and Y-specific DNa probes. Our patients seem to be hemizygous for the X chromosomal loci tested. Single-copy and low-copy repeated Y chromosomal sequences assigned to the short arm, centromere, and euchromatin of the long arm have been detected in our patients, suggesting the Y chromosomal origin of the marker chromosome both in male and female cases studied. Densitometry of autoradiographs revealed a double dose of Yp-specific fragments of the DXYS1 locus. None of the patients tested showed either the 3.4- or the 2.1-kb Hae III malespecific repeated DNa sequences. It seems likely that the Ynf is a pseudodicentric chromosome with duplication of Yp and euchromatic Yq sequences, the Yq heterochromatin being lost. Our findings indicate structural heterogeneity of the marker chromosome and in addition provide further information on the relative position of DNa sequences detectected by DNA probes 50f2, M1A, and pDP105.  相似文献   

2.
A specific cloned DNA sequence (Y-367) detects at least four loci in the euchromatic long arm and in the short arm of the human Y chromosome. Deletion mapping assigns one locus to the distal euchromatic long arm, another to a region close to the centromere on either Yq or Yp, and two additional loci to the Y short arm. Y-367 may thus be used for the rapid screening of even complex Y chromosome aberrations. This is exemplified in a 45,X male with Y chromosome material on the long arm of chromosome 10 by the detection of an inversion of a portion of Yp and by the confirmation of duplications and deletions in two individuals with duplications of part of the Y chromosome.  相似文献   

3.
A young male with a karyotype of 46,X,+ mar is described. Physical mapping of the marker chromosome by using Y-specific single-copy or moderately repeated DNA sequences as molecular probes showed that, in addition to the heterochromatic part of the Yq, a considerable portion of the euchromatin in both Yp and Yq had been lost. These findings suggest that the marker chromosome is a ring Y, for the generally accepted model of ring formation implies breakages in both chromosome arms. The clinical features of the patient correlated well with the phenotypic changes expected from the loss of genetic material from the Y.  相似文献   

4.
A 45,X male with Y-specific DNA translocated onto chromosome 15.   总被引:6,自引:1,他引:5       下载免费PDF全文
A 20-year-old male patient with chromosomal constitution 45,X, testes and normal external genitalia was examined. Neither mosaicism nor a structurally aberrant Y chromosome was observed when routine cytogenetic analysis was performed on both lymphocytes and skin fibroblasts. Y chromosome-specific single-copy and repeated DNA sequences were detected in the patient's genome by means of 11 different recombinant-DNA probes of known regional assignment on the human Y chromosome. Data indicated that the short arm, the centromere, and part of the long-arm euchromatin of the Y chromosome have been retained and that the patient lacks deletion intervals 6 and 7 of Yq. High-resolution analysis of prometaphase chromosomes revealed additional euchromatic material on the short arm of one of the patient's chromosomes 15. After in situ hybridization with the Y chromosome-specific probe pDP105, a significant grain accumulation was observed distal to 15p11.2, suggesting a Y/15 chromosomal translocation. We conclude that some 45,X males originate from Y-chromosome/autosome translocations following a break in the proximal long arm of the Y chromosome.  相似文献   

5.
Summary In situ hybridization experiments were carried out with two clones, YACG 35 and 2.8, which had been selected from two genomic libraries strongly enriched for the human Y chromosome. Besides the human Y chromosome, both sequences strongly hybridized to the human X chromosome, with few minor binding sites on autosomes. In particular, on the X chromosome DNA from clone YACG 35 hybridized to the centromeric region and the distal part of the short arm (Xp2.2). On the Y chromosome, the sequence was assigned to one site situated in the border region between Yq1.1 and Yq1.2. DNA from clone 2.8 also hybridized to the centromeric region of the X and the distal part of the short arm (Xq2.2). On the Y, however, two binding sites were observed (Yp1.1 and Yq1.2). The findings indicate that sex chromosomal sequences may be localized in homologous regions (as suggested from meiotic pairing) but also at ectopic sites.  相似文献   

6.
Summary Chromosome preparations from seven subjects with aberrations of sex chromosomes were utilized for in situ hybridization studies with the tritium-labeled Y-derived probe p50f. Two subjects had a pseudodicentric chromosome consisting of two copies of Yp and a portion of Y long arm; two were XX males [46,XX,t(Xp;Yp)], one was missing part of the Y short arm, and another had t(5p;Yq); in addition cells from an XYY male as well as a normal 46,XY male, and a 46,XX female, were hybridized with the same probe. The hybridization technique of Harper and Saunders (1981) was used. There was excess labeling of the Yp/paracentromeric regions in the cases with the normal Y, the XYY, the pseudodicentric Y, and the 5/Y translocation. No significant label was seen on metaphases from the normal 46,XX female or the female with the partially missing Y short arm. Excess label was present on the X short arm in the cases of the XX males; there were 8% and 9.5% of cells with label. The combined cytogenetic and hybridization data indicate that one X short arm in these XX males has undergone a translocation with Yp, and that genes for sex determination probably reside on the distal half of the Y short arm.  相似文献   

7.
Nine newly described single-copy and lowcopy-number genomic DNA sequences isolated from a flow-sorted human Y chromosome library were mapped to regions of the human Y chromosome and were hybridized to Southern blots of male and female great ape genomic DNAs (Gorilla gorilla, Pan troglodytes, Pongo pygmaeus). Eight of the nine sequences mapped to the euchromatic Y long arm (Yq) in humans, and the ninth mapped to the short arm or pericentromeric region. All nine of the newly identified sequences and two additional human Yq sequences hybridized to restriction fragments in male but not female genomic DNA from the great apes, indicating Y chromosome localization. Seven of these 11 human Yq sequences hybridized to similarly-sized restriction endonuclease fragments in all the great ape species analyzed. The five human sequences that mapped to the most distal subregion of Yq (deletion of which region is associated with spermatogenic failure in humans) were hybridized to Southern blots generated by pulsed-field gel electrophoresis. These sequences define a region of approximately 1 Mb on human Yq in which HpaII tiny fragment (HTF) islands appear to be absent. The conservation of these human Yq sequences on great ape Y chromosomes indicates a greater stability in this region of the Y than has been previously described for most anonymous human Y chromosomal sequences. The stability of these sequences on great ape Y chromosomes seems remarkable given that this region of the Y does not undergo meiotic recombination and the sequences do not appear to encode genes for which positive selection might occur. Correspondence to: B. Steele Allen  相似文献   

8.
Summary A DNA probe (Y-190) is described that specifically hybridizes with repeated DNA sequences in the short arm of the human Y chromosome. The suitability of Y-190 to detect Y-derived DNA is shown in two patients with a 45,X/46,X+marker earyotype and in a third patient previously described as having a 45,X karyotype.  相似文献   

9.
Summary The syndrome of 46,XX true hermaphroditism is a clinical condition in which both ovarian and testicular tissue are found in one individual. Both Mullerian and Wolffian structures are usually present, and external genitalia are often ambiguous. Two alternative mechanisms have been proposed to explain the development of testicular tissue in these subjects: (1) translocation of chromosomal material encoding the testicular determination factor (TDF) from the Y to the X chromosome or to an autosome, or (2) an autosomal dominant mutation that permits testicular determination in the absence of TDF. We have investigated five subjects with 46,XX true hermaphroditism. Four individuals had a normal 46,XX karyotype; one subject (307) had an apparent terminal deletion of the short arm of one X chromosome. Genomic DNA was isolated from these individuals and subjected to Southern blot analysis. Only subject 307 had Y chromosomal sequences that included the pseudoautosomal boundary, SRY (sex-determining region of Y), ZFY (Y gene encoding a zinc finger protein), and DXYS5 (an anonymous locus on the distal short arm of Y) but lacked sequences for DYZ5 (proximal short arm of Y) and for the long arm probes DYZ1 and DYZ2. The genomic DNA of the other four subjects lacked detectable Y chromosomal sequences when assayed either by Southern blotting or after polymerase chain reaction amplification. Our data demonstrate that 46,XX true hermaphroditism is a genetically heterogeneous condition, some subjects having TDF sequences but most not. The 46,XX subjects without SRY may have a mutation of an autosomal gene that permits testicular determination in the absence of TDF.  相似文献   

10.
Summary DNA analyses of 41 individuals with stigmata of Turner syndrome and a 45,X/46,X+mar or 46,X+mar karyotype were carried out. Southern-blot analysis employing 17 Y-specific probes was used to determine whether the marker chromosome was Y-chromosomal in origin. Of the 41 DNA samples from these patients, 23 contained detectable Y-chromosomal DNA. Points of chromosome breakage were distributed over the entire length of the Y long arm. Three individuals, who carry different portions of the Y chromosome, had developed gonadoblastoma. GBY (the gonadoblastoma locus on the Y chromosome) is mapped proximal to DYS132, midway between the 13 Yq loci that we have studied. We also used a polymerase chain reaction technique that could detect 7 loci over the length of the Y chromosome. This technique may be useful for the rapid assessment of marker chromosomes, especially for evaluating the risk of gonadoblastoma.  相似文献   

11.
A derivative Y chromosome was found in a 55-year-old man with Lambert-Eaton paraneoplasic pseudomyastheniform disease. Small testicles, azoospermia were noticed and hormonal level values were as in the Klinefelter syndrome. A 45,X/46,XYp+ mosa?cism was described on peripheral blood lymphocytes. Cytogenetic investigations with R-G-C- and Q-banding have been performed. In situ hybridization with the GMGY 10 DNA probe showed two copies of proximal Yp sequences. Southern blot analyses were performed using the Y DNA probes 27a, 47z, 64a7, 50f2 disclosing specific Yp and Yq sequences from the pseudoautosomal boundary to the Yq proximal portion. The der(Y) has been defined as a dicentric isochromosome for the long arm with one active and one apparently suppressed centromere. The breakpoint leading to the der(Y), has been located in the pairing segment of the Y short arm (i.e. Yp11.32). So the der(Y) was interpreted as a psu dic(Y) (qter-->cen-->p11.32 ::p11.32-->qter). There was thus an almost complete duplication of the Y chromosome.  相似文献   

12.
Summary Three 45,X males have been studied with Y-DNA probes by Southern blotting and in situ hybridization. Southern blotting studies with a panel of mapped Y-DNA probes showed that in all three individuals contiguous portions of the Y chromosome including all of the short arm, the centromere, and part of the euchromatic portion of the long arm were present. The breakpoint was different in each case. The individual with the largest portion (intervals 1–6) is a fertile male belonging to a family in which the translocation is inherited in four generations. The second adult patient, who has intervals 1–5, is an azoospermic, sterile male. These phenotypic findings suggest the existence of a gene involved in spermatogenesis in interval 6 in distal Yq11. The third case, a boy with penoscrotal hypospadias, has intervals 1–4B. In situ hybridization with the pseudoautosomal probe pDP230 and the Y chromosome specific probe pDP105 showed that Y-derived DNA was translocated onto the short arm of a chromosome 15, 14, and 14, respectively. One of the patients was a mosaic for the 14p+ translocation chromosome. Our data and those reported by others suggest the following conclusions based on molecular studies in eight 45,X males: The predominant aetiological factor is Y;autosome translocation observed in seven of the eight cases. As the remaining case was a low-grade mosaic involving a normal Y chromosome, the maleness in all cases was due to the effect of the testis determing factor, TDF. There is preferential involvement of the short arm of an acrocentric chromosome (five out of seven translocations) but other autosomal regions can also be involved. The reason why one of the derivative translocation chromosomes becomes lost may be that it has no centromere.  相似文献   

13.
14.
Different chromosome Y abnormalities in Turner syndrome.   总被引:2,自引:0,他引:2  
A 17-year-old phenotypically female girl was referred for evaluation because of short stature and primary amenorrhea. Cytogenetic analysis showed a mosaic 46,XY/45,X/47,XYY/46,X,idic(Yq)/47,XY,idic(Yq)/48,XXY,idic(Yq)/46,X,t(C;Y) karyotype. Conventional cytogenetic results were supplemented with fluorescence in situ hybridization (FISH) techniques to ensure a better characterization of abnormalities. By using FISH, a supernumerary marker chromosome derived from chromosome Y which could not be detected by conventional cytogenetics was revealed. Furthermore, additional abnormalities and their frequencies were highlighted by the application of DNA probes specific for X and Y chromosomes. Thus, FISH proved useful in determining low frequency cell lines which would need analysis of a large number of good quality metaphase spreads by conventional cytogenetic techniques: it helped in identifying the nature and the origin of unknown markers and rearrangements which have important implication in sexual differentiation and development of gonadal tumours.  相似文献   

15.
It has been proposed that sequence homology should exist between the short arms of the human sex chromosomes, in the regions pairing at meiosis. Out of 40 clones picked at random from a collection of non-repetitive DNA sequences derived from the human Y chromosome, we have found nine sequences which show very high homology with sequences located on the X chromosome. All nine probes originate from the euchromatic part of the Y chromosome. All the homologous sequences are located within the Xq12-Xq22-24 region. None of them map to the short arm of the X chromosome. We conclude that an important part of the euchromatic region of the Y chromosome is homologous to the middle of the X chromosome long arm, possibly as a result of recent translation event(s).  相似文献   

16.
A number of Xp22;Yq11 translocations involving the transposition of Yq material to the distal short arm of the X chromosome have been described. The reciprocal product, i.e. the derivative Y chromosome resulting from the translocation of a portion of Xp to Yq, has never been recovered. We searched for this reciprocal product by performing dosage analysis of Xp22-pter loci in 9 individuals carrying a non-fluorescent Y chromosome. In three mentally retarded and dysmorphic patients, dosage analysis indicated the duplication of Xp22 loci. Use of the highly polymorphic probe CRI-S232 demonstrated the inheritance of paternal Xp-specific alleles in the probands. In situ hybridization, performed in one case, confirmed that 29CL pseudoautosomal sequences were present, in addition to Xpter and Ypter, in the telomeric portion of Yq. To our knowledge, these are the first cases in which the translocation of Xp material to Yq has been demonstrated. The X and Y breakpoints were mapped in the three patients by dosage and deletion analysis. The X breakpoint falls, in the three cases, in a region of Xp22 that is not recognized as sharing sequence similarities with the Y chromosome, thus suggesting that these translocations are not the result of a homologous recombination event.  相似文献   

17.
Diagnostic possibilities of CGH and M-FISH techniques for detection of submicroscopic chromosomal imbalancies were compared on the basis of two cases of t(X;Y) and one case of marker chromosome. In cases with t(X;Y), the sequences specific for chromosome Y were detected by PCR and CGH, but the localisation of these sequences on the short arm of chromosome X was confirmed by the FISH technique, employing two Yp-specific probes for SRY and TSPY genes. Significant differences between above cases were revealed in the size of Yp chromosome fragments translocated on chromosome X. An extra material of chromosome marker could not be identified by classical banding and FISH techniques and it was only CGH and M-FISH techniques that enabled detecting the chromosomal origin of the marker. The applied CGH technique enabled finding subtle chromosomal imbalancies in the presented cases with a resolution of approximately 3 Mbp.  相似文献   

18.
We report the clinical and molecular investigations in a girl with 46,X,-X,+der(X)t(X;Y)(p22;q11) de novo karyotype who presented an intricate phenotype characterized by mental retardation and facial dysmorphisms in combination with short stature. The structure of the derivative X chromosome was studied using BAC array-CGH which disclosed the Xp22 breakpoint between the STS and the VCX3A gene and the presence of the Yq11.1qter chromosome. It is common that females with Xp;Yq translocations present only short stature and are normal in every other aspect. Thus, this would be the first case in which a girl with Xp;Yq translocation presents an unusual phenotype with intermediate male clinical features with Xp;Yq translocations. The risk of developing gonadoblastoma in females with Y chromosome material is also discussed and, to this effect, different explanations related to this apparent variation are also presented.  相似文献   

19.
Human and mouse amelogenin gene loci are on the sex chromosomes   总被引:19,自引:0,他引:19  
Enamel is the outermost covering of teeth and is the hardest tissue in the vertebrate body. The enamel matrix is composed of enamelin and amelogenin classes of protein. We have determined the chromosomal locations for the human and mouse amelogenin (AMEL) loci using Southern blot analyses of DNA from human, mouse, or somatic cell hybrids by hybridization to a characterized mouse amelogenin cDNA. We have determined that human AMEL sequences are located on the distal short arm of the X chromosome in the p22.1----p22.3 region and near the centromere on the Y chromosome, possibly at the proximal long arm (Yq11) region. These chromosomal assignments are consistent with the hypothesis that perturbation of the amelogenin gene is involved in X-linked types of amelogenesis imperfecta, as well as with the Y-chromosomal locations for genes that participate in regulating tooth size and shape. Unlike the locus in humans, the mouse AMEL locus appears to be assigned solely to the X chromosome. Finally, together with the data on other X and Y chromosome sequences, these data for AMEL mapping support the notion of a pericentric inversion occurring in the human Y chromosome during primate evolution.  相似文献   

20.
A new procedure for determining the chromosomal origin of marker chromosomes has been carried out. The origin of marker chromosomes that were unidentifiable by standard banding techniques could be verified by reverse chromosome painting. This technique includes microdissection, followed by in vitro DNA amplification and fluorescence in situ hybridization (FISH). A number of marker chromosomes prepared from unbanded and from GTG-banded lymphocyte chromosomes were collected with microneedles and transferred to a collection drop. The chromosomal material was amplified by a degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR). The resulting PCR products were labelled by nick-translation with biotin-11-dUTP and used as probes for FISH. They were hybridized onto normal metaphase spreads in order to determine the precise regional chromosomal origin of the markers. Following this approach, we tested 2–14 marker chromosomes in order to determine how many are necessary for reverse chromosome painting. As few as two marker chromosomes provided sufficient material to paint the appropriate chromosome of origin, regardless of whether the marker contained heterochromatic or mainly euchromatic material. With this method, it was possible to identify two marker chromosomes of a healthy proband [karyotype: 48,XY, +mar1,+mar2] and an aberrant Y chromosome of a mentally retarded boy [karyotype: 46,X, der(Y)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号