首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nerve growth cones (GCs) are chemical sensors that convert graded extracellular cues into oriented axonal motion. To ensure a sensitive and robust response to directional signals in complex and dynamic chemical landscapes, GCs are presumably able to amplify and filter external information. How these processing tasks are performed remains however poorly known. Here, we probe the signal-processing capabilities of single GCs during γ-Aminobutyric acid (GABA) directional sensing with a shear-free microfluidic assay that enables systematic measurements of the GC output response to variable input gradients. By measuring at the single molecule level the polarization of GABAA chemoreceptors at the GC membrane, as a function of the external GABA gradient, we find that GCs act as i), signal amplifiers over a narrow range of concentrations, and ii), low-pass temporal filters with a cutoff frequency independent of stimuli conditions. With computational modeling, we determine that these systems-level properties arise at a molecular level from the saturable occupancy response and the lateral dynamics of GABAA receptors.  相似文献   

2.
Lee S  Zhou ZJ 《Neuron》2006,51(6):787-799
Patch-clamp recordings revealed that distal processes of starburst amacrine cells (SACs) received largely excitatory synaptic input from the receptive field center and nearly purely inhibitory inputs from the surround during both stationary and moving light stimulations. The direct surround inhibition was mediated mainly by reciprocal GABA(A) synapses between opposing SACs, which provided leading and prolonged inhibition during centripetal stimulus motion. Simultaneous Ca(2+) imaging and current-clamp recording during apparent-motion stimulation further demonstrated the contributions of both centrifugal excitation and GABA(A/C)-receptor-mediated centripetal inhibition to the direction-selective Ca(2+) responses in SAC distal processes. Thus, by placing GABA release sites in electrotonically semi-isolated distal processes and endowing these sites with reciprocal GABA(A) synapses, SACs use a radial-symmetric center-surround receptive field structure to build a polar-asymmetric circuitry. This circuitry may integrate at least three levels of interactions--center excitation, surround inhibition, and reciprocal inhibitions that amplify the center--surround antagonism-to generate robust direction selectivity in the distal processes.  相似文献   

3.
A pair of antagonistic motoneurons, one excitatory and one inhibitory, innervates the distal accessory flexor muscle in the walking limb of the crayfish Procambarus clarkii. The number and size of synapses formed by these two axons on the muscle fibers (neuromuscular synapses) and on each other (axo-axonal synapses) were estimated using thin-section electron microscopy. Although profiles of nerve terminals of the two axons occur in roughly equal proportions, the frequency of occurrence of neuromuscular synapses differed markedly: 73% were excitatory and 27% were inhibitory. However, inhibitory synapses were 4–5 times larger than excitatory ones, and consequently, the total contact areas devoted to neuromuscular synapses were similar for both axons. Axo-axonal synapses were predominantly from the inhibitory axon to the excitatory axon (86%), and a few were from the excitatory axon to the inhibitory axon (14%). The role of the inhibitory axo-axonal synapse is presynaptic inhibition, but that of the excitatory axo-axonal synapse is not known. The differences in size of neuromuscular synapses between the two axons may reflect intrinsic determinants of the neuron, while the similarity in total synaptic area may reflect retrograde influences from the muscle for regulating synapse number.  相似文献   

4.
Gephyrin is a scaffold protein essential for stabilizing glycine and GABA(A) receptors at inhibitory synapses. Here, recombinant intrabodies against gephyrin (scFv-gephyrin) were used to assess whether this protein exerts a transynaptic action on GABA and glutamate release. Pair recordings from interconnected hippocampal cells in culture revealed a reduced probability of GABA release in scFv-gephyrin-transfected neurons compared with controls. This effect was associated with a significant decrease in VGAT, the vesicular GABA transporter, and in neuroligin 2 (NLG2), a protein that, interacting with neurexins, ensures the cross-talk between the post- and presynaptic sites. Interestingly, hampering gephyrin function also produced a significant reduction in VGLUT, the vesicular glutamate transporter, an effect accompanied by a significant decrease in frequency of miniature excitatory postsynaptic currents. Overexpressing NLG2 in gephyrin-deprived neurons rescued GABAergic but not glutamatergic innervation, suggesting that the observed changes in the latter were not due to a homeostatic compensatory mechanism. Pulldown experiments demonstrated that gephyrin interacts not only with NLG2 but also with NLG1, the isoform enriched at excitatory synapses. These results suggest a key role of gephyrin in regulating transynaptic signaling at both inhibitory and excitatory synapses.  相似文献   

5.
The biophysical mechanisms that give rise to direction selectivity in the retina remain uncertain. Current evidence suggests that the directional signal first arises within the dendrites of starburst amacrine cells (SBACs). Two models have been proposed to explain this phenomenon, one based on mutual inhibitory interactions between SBACs, and the other positing an intrinsic dendritic mechanism requiring a voltage-gradient depolarizing towards the dendritic tips. We tested these models by recording current and voltage responses to visual stimuli in SBACs. In agreement with previous work, we found that the excitatory currents in the SBACs were directional, and remained directional when GABA receptors were blocked. Contrary to the mutual-inhibitory model, stimuli that produce strong directional signals in ganglion cells failed to reveal a significant inhibitory input to SBACs. Suppression of the tonic excitatory conductance, proposed to generate the dendritic voltage-gradient required for the dendrite autonomous model, failed to eliminate the directional signal in SBACs. However, selective block of tetrodotoxin-resistant sodium channels did reduce the strength of the directional excitatory signal in the SBACs. These results indicate that current models of direction-selectivity in the SBACs are inadequate, and suggest that voltage-gated excitatory channels, specifically tetrodotoxin-resistant sodium channels, are important elements in directional signaling. This is the first physiological evidence that tetrodotoxin-resistant sodium channels play a role in retinal information processing.  相似文献   

6.
Effects of drugs on resting potential, membrane resistance, and excitatory and inhibitory postsynaptic potentials (e.p.s.p.'s and i.p.s.p.'s) of lobster muscle fibers were studied using intracellular microelectrodes Acetylcholine, d-tubocurarine, strychnine, and other drugs of respectively related actions on vertebrate synapses were without effects even in 1 per cent solutions (10- w/v). Gamma-aminobutyric acid (GABA) acted powerfully and nearly maximally at 10-7 to 10-6 w/v. Membrane resistance fell two- to tenfold, the resting potential usually increasing slightly. This combination of effects, which indicates activation of inhibitory synaptic membrane, was also produced by other short chain ω-amino acids and related compounds that inactivate depolarizing axodendritic synapses of cat. The conductance change, involving increased permeability to Cl-, by its clamping action on membrane potential shortened as well as decreased individual e.p.s.p.'s. Picrotoxin in low concentration (ca. 10-7 w/v) and guanidine in higher (ca. 10-3 w/v) specifically inactivate inhibitory synapses. GABA and picrotoxin are competitive antagonists. The longer chain ω-amino acids which inactivate hyperpolarizing axodendritic synapses of cat are without effect on lobster neuromuscular synapse. However, one member of this group, carnitine (β-OH-GABA betaine), activated the excitatory synapses, a decreased membrane resistance being associated with depolarzation. The pharmacological properties of lobster neuromuscular synapses and probably also of other crustacean inhibitory synapses appear to stand in a doubly inverted relation to axodendritic synapses of cat.  相似文献   

7.
Excitatory glutamatergic inputs from bipolar cells affect the physiological properties of ganglion cells in the mammalian retina. The spatial distribution of these excitatory synapses on the dendrites of retinal ganglion cells thus may shape their distinct functions. To visualize the spatial pattern of excitatory glutamatergic input into the ganglion cells in the mouse retina, particle-mediated gene transfer of plasmids expressing postsynaptic density 95-green fluorescent fusion protein (PSD95-GFP) was used to label the excitatory synapses. Despite wide variation in the size and morphology of the retinal ganglion cells, the expression of PSD95 puncta was found to follow two general rules. Firstly, the PSD95 puncta are regularly spaced, at 1–2 µm intervals, along the dendrites, whereby the presence of an excitatory synapse creates an exclusion zone that rules out the presence of other glutamatergic synaptic inputs. Secondly, the spatial distribution of PSD95 puncta on the dendrites of diverse retinal ganglion cells are similar in that the number of excitatory synapses appears to be less on primary dendrites and to increase to a plateau on higher branch order dendrites. These observations suggest that synaptogenesis is spatially regulated along the dendritic segments and that the number of synaptic contacts is relatively constant beyond the primary dendrites. Interestingly, we also found that the linear puncta density is slightly higher in large cells than in small cells. This may suggest that retinal ganglion cells with a large dendritic field tend to show an increased connectivity of excitatory synapses that makes up for their reduced dendrite density. Mapping the spatial distribution pattern of the excitatory synapses on retinal ganglion cells thus provides explicit structural information that is essential for our understanding of how excitatory glutamatergic inputs shape neuronal responses.  相似文献   

8.
A kainate receptor increases the efficacy of GABAergic synapses   总被引:5,自引:0,他引:5  
Jiang L  Xu J  Nedergaard M  Kang J 《Neuron》2001,30(2):503-513
Brain functions are based on the dynamic interaction of excitatory and inhibitory inputs. Spillover of glutamate from excitatory synapses may diffuse to and modulate nearby inhibitory synapses. By recording unitary inhibitory postsynaptic currents (uIPSCs) from cell pairs in CA1 of the hippocampus, we demonstrated that low concentrations of Kainate receptor (KAR) agonists increased the success rate (P(s)) of uIPSCs, whereas high concentrations of KAR agonists depressed GABAergic synapses. Ambient glutamate released by basal activities or stimulation of the stratum radiatum increases the efficacy of GABAergic synapses by activating presynaptic KARs, which facilitate Ca(2+)-dependent GABA release. The results suggest that glutamate released from excitatory synapses may also function as an intermediary between excitatory and inhibitory synapses to protect overexcitation of local circuits.  相似文献   

9.
Zheng JJ  Lee S  Zhou ZJ 《Neuron》2004,44(5):851-864
Dual patch-clamp recording and Ca2+ uncaging revealed Ca2+-dependent corelease of ACh and GABA from, and the presence of reciprocal nicotinic and GABAergic synapses between, starburst cells in the perinatal rabbit retina. With maturation, the nicotinic synapses between starburst cells dramatically diminished, whereas the GABAergic synapses remained and changed from excitatory to inhibitory, indicating a coordinated conversion of the starburst network excitability from an early hyperexcitatory to a mature nonepileptic state. We show that this transition allows the starburst cells to use their neurotransmitters for two completely different functions. During early development, the starburst network mediates recurrent excitation and spontaneous retinal waves, which are important for visual system development. After vision begins, starburst cells release GABA in a prolonged and Ca2+-dependent manner and inhibit each other laterally via direct GABAergic synapses, which may be important for visual integration, such as the detection of motion direction.  相似文献   

10.
Firing-rate models provide a practical tool for studying signal processing in the early visual system, permitting more thorough mathematical analysis than spike-based models. We show here that essential response properties of relay cells in the lateral geniculate nucleus (LGN) can be captured by surprisingly simple firing-rate models consisting of a low-pass filter and a nonlinear activation function. The starting point for our analysis are two spiking neuron models based on experimental data: a spike-response model fitted to data from macaque (Carandini et al. J. Vis., 20(14), 1–2011, 2007), and a model with conductance-based synapses and afterhyperpolarizing currents fitted to data from cat (Casti et al. J. Comput. Neurosci., 24(2), 235–252, 2008). We obtained the nonlinear activation function by stimulating the model neurons with stationary stochastic spike trains, while we characterized the linear filter by fitting a low-pass filter to responses to sinusoidally modulated stochastic spike trains. To account for the non-Poisson nature of retinal spike trains, we performed all analyses with spike trains with higher-order gamma statistics in addition to Poissonian spike trains. Interestingly, the properties of the low-pass filter depend only on the average input rate, but not on the modulation depth of sinusoidally modulated input. Thus, the response properties of our model are fully specified by just three parameters (low-frequency gain, cutoff frequency, and delay) for a given mean input rate and input regularity. This simple firing-rate model reproduces the response of spiking neurons to a step in input rate very well for Poissonian as well as for non-Poissonian input. We also found that the cutoff frequencies, and thus the filter time constants, of the rate-based model are unrelated to the membrane time constants of the underlying spiking models, in agreement with similar observations for simpler models.  相似文献   

11.
Carcinus muscle fibers respond to γ-aminobutyric acid (GABA) with a conductance increase that subsides rather rapidly. In the larger fibers which have low input resistance the decrease may disappear within 2 min. The inhibition of the excitatory postsynaptic potentials (EPSP's) by GABA nevertheless persists as long as the drug is applied. The subsidence of the increased conductance indicates that the membrane of the inhibitory synapses has become desensitized to GABA. The persistence of inhibition of the EPSP's appears to be due to an action of the drug on the presynaptic terminals of the excitatory axons which reduces or blocks the secretory activity that releases the excitatory transmitter.  相似文献   

12.
GABA excites immature neurons and inhibits adult ones, but whether this contributes to seizures in the developing brain is not known. We now report that in the developing, but not the adult, hippocampus, seizures beget seizures only if GABAergic synapses are functional. In the immature hippocampus, seizures generated with functional GABAergic synapses include fast oscillations that are required to transform a naive network to an epileptic one: blocking GABA receptors prevents the long-lasting sequels of seizures. In contrast, in adult neurons, full blockade of GABA(A) receptors generates epileptogenic high-frequency seizures. Therefore, purely glutamatergic seizures are not epileptogenic in the developing hippocampus. We suggest that the density of glutamatergic synapses is not sufficient for epileptogenesis in immature neurons; excitatory GABAergic synapses are required for that purpose. We suggest that the synergistic actions of GABA and NMDA receptors trigger the cascades involved in epileptogenesis in the developing hippocampus.  相似文献   

13.
采用单细胞电生理记录技术,对螽斯Gampocleis gratiosa听觉双轴突中间神经元TN2的声反应放电活动的基本特征进行了观测,发现TN2的放电模式为“phasic”型,最敏感频率为13kHz,反应阈值为31dB SPL,是一个高灵敏、宽带通的神经元。还研究了抑制性神经递质GABA及其拮抗剂苦毒素对TN2声反应的影响,发现GABA能抑制TN2的放电活动,而苦毒素则将其放电模式改变为“toni  相似文献   

14.
Five glutamate transporter genes have been identified; two of these (EAAT3 and EAAT4) are expressed in neurons and are predominantly confined to the membranes of cell bodies and dendrites. At an ultrastructural level, glutamate transporters have been shown to surround excitatory synapses in hippocampus and cerebellum [J. Neurosci. 18 (1998) 3606; J. Comp. Neurol. 418 (2000) 255]. This pattern of localization overlaps the well-described perisynaptic distribution of Group I metabotropic glutamate receptors or mGluRs [Neuron 11 (1993) 771; J. Chem. Neuroanat. 13 (1997) 77]. Both of the principal excitatory synaptic inputs to cerebellar Purkinje neurons, the parallel fiber (PF) and climbing fiber (CF) synapses, express mGluR-dependent forms of synaptic plasticity [Nat. Neurosci. 4 (2001) 467]. Prompted by the colocalization of postsynaptic glutamate transporters and mGluRs, we have examined whether glutamate uptake limits mGluR-mediated signals and mGluR-dependent forms of plasticity at PF and CF synapses in cerebellar slices. We find that, at PF and, surprisingly also at CF synapses, mGluR activation generates a slow synaptic current and triggers intracellular calcium release. At both PF and CF synapses, mGluR responses are strongly limited by glutamate transporters under resting conditions and are facilitated by short trains of stimuli. Nearly every Purkinje neuron expresses an mGluR-mediated synaptic current upon inhibition of glutamate transport. Global applications of glutamate achieved by photolysis of chemically caged glutamate yield similar results and argue that the colocalized transporters can effectively limit glutamate access to the mGluRs even in the face of such a large amount of transmitter. We hypothesize that neuronal glutamate transporters and Group I mGluRs located in the perisynaptic space interact to sense and then regulate the amount of glutamate escaping excitatory synapses. This hypothesis is currently being tested using electrophysiological methods and the introduction of optically tagged glutamate transporter proteins. In the brain, synaptic signals are terminated mainly by neurotransmitter transporters. Families of genes encoding transporters for the major neurotransmitters (dopamine, GABA, glutamate, glycine, norepinephrine and 5-HT) have been identified. Although transporters serve as targets for important classes of therapeutic drugs (e.g. selective serotonin reuptake inhibitors) and drugs of abuse (amphetamine, cocaine), little is known about how they operate at a molecular level or contribute to synaptic transmission.  相似文献   

15.
A most prominent feature of neurons in the suprachiasmatic nucleus (SCN) is the circadian rhythm in spontaneous firing frequency. To disclose synaptic mechanisms associated with the rhythmic activity, the spontaneous postsynaptic activity was studied using whole-cell, patch clamp recordings in the ventral region of the SCN in slice preparations from rats. The synaptic events were compared between two time intervals corresponding to the highest and lowest electrical activity within the SCN during subjective daytime and nighttime, respectively. The gamma-aminobutyric acid (GABA)-mediated spontaneous inhibitory activity showed no diurnal variations, but the excitatory activity was markedly higher in frequency, without differences in amplitude, during the subjective day compared to the subjective night. Spontaneous and evoked inhibitory synaptic events were blocked by the GABA(A) receptor antagonist bicuculline. The alpha-amino-hydroxy-5-methylisoxazole-4-propionic acid (AMPA/kainate) receptor antagonist 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX) blocked most of the excitatory activity. In addition, CNQX reduced the spontaneous inhibitory activity. The N-methyl-D-aspartate antagonist D-2-amino-5-phosphonopentanoic acid reduced the inhibitory activity to a lesser degree, and there was no significant difference in amplitude or frequency of synaptic events in control and Mg2+-free solutions, indicating that the AMPA receptor plays an important role in regulating the inhibitory release of GABA within the SCN. Ipsi- and contralateral stimulation of the SCN consistently evoked excitatory synaptic responses. Inhibitory synaptic responses occurred in some neurons upon increasing stimulus strength. In conclusion, this study shows that there is a substantial influence from spontaneous glutamatergic synapses on the ventral part of the SCN and that these exhibit daily variations in activity. Diurnal fluctuations in spontaneous excitatory postsynaptic activity within this network may contribute to the mechanisms for synchronization of rhythms between individual SCN neurons and may underlie the daily variations in the spontaneous firing frequency of SCN neurons.  相似文献   

16.
Ethanol consumption during development affects the maturation of hippocampal circuits by mechanisms that are not fully understood. Ethanol acts as a depressant in the mature CNS and it has been assumed that this also applies to immature neurons. We investigated whether ethanol targets the neuronal network activity that is involved in the refinement of developing hippocampal synapses. This activity appears during the growth spurt period in the form of giant depolarizing potentials (GDPs). GDPs are generated by the excitatory actions of GABA and glutamate via a positive feedback circuit involving pyramidal neurons and interneurons. We found that ethanol potently increases GDP frequency in the CA3 hippocampal region of slices from neonatal rats. It also increased the frequency of GDP-driven Ca2+ transients in pyramidal neurons and increased the frequency of GABA(A) receptor-mediated spontaneous postsynaptic currents in CA3 pyramidal cells and interneurons. The ethanol-induced potentiation of GABAergic activity is probably the result of increased quantal GABA release at interneuronal synapses but not enhanced neuronal excitability. These findings demonstrate that ethanol is a potent stimulant of developing neuronal circuits, which might contribute to the abnormal hippocampal development associated with fetal alcohol syndrome and alcohol-related neurodevelopmental disorders.  相似文献   

17.
The reaction of color sensitive neural networks to intensity and color steps on logarithmic transformation of the input signals is calculated mathematically. The networks consist of opponent-color cells respectively with (duple system 1) or without a surround (duple system 2) or of double opponent-color cells (quadruple system). The output signals are independent of the intensity level. Both duple systems are able to code the color of homogeneous areas on a dichromatic level. The hue corresponds to the sign, the saturation to the absolute value of the output signal. The coding of saturation becomes incorrect at intensity borders only with duple system 1 (due to a Mach band response) at color borders however with duple system 1 and 2 (due to low-pass properties). The quadruple system (like duple system 2) is insensitive to intensity differences. It only responds to color differences, which are transferred according to a band-pass filter. The system therefore is able to function as a detector of color borders. The results are used in a new model for the processing of color and color borders. A linear transformation has been found to be less suited for color coding.  相似文献   

18.
In the mouse retina, dopaminergic amacrine (DA) cells synthesize both dopamine and GABA. Both transmitters are released extrasynaptically and act on neighbouring and distant retinal neurons by volume transmission. In simultaneous recordings of dopamine and GABA release from isolated perikarya of DA cells, a proportion of the events of dopamine and GABA exocytosis were simultaneous, suggesting co-release. In addition, DA cells establish GABAergic synapses onto AII amacrine cells, the neurons that transfer rod bipolar signals to cone bipolars. GABAA but not dopamine receptors are clustered in the postsynaptic membrane. Therefore, dopamine, irrespective of its site of release—synaptic or extrasynaptic—exclusively acts by volume transmission. Dopamine is released upon illumination and sets the gain of retinal neurons for vision in bright light. The GABA released at DA cells'' synapses probably prevents signals from the saturated rods from entering the cone pathway when the dark-adapted retina is exposed to bright illumination. The GABA released extrasynaptically by DA and other amacrine cells may set a ‘GABAergic tone’ in the inner plexiform layer and thus counteract the effects of a spillover of glutamate released at the bipolar cell synapses of adjacent OFF and ON strata, thus preserving segregation of signals between ON and OFF pathways.  相似文献   

19.
GABA-mediated synaptic inhibition is crucial in neural circuit operations. In mammalian brains, the development of inhibitory synapses and innervation patterns is often a prolonged postnatal process, regulated by neural activity. Emerging evidence indicates that gamma-aminobutyric acid (GABA) acts beyond inhibitory transmission and regulates inhibitory synapse development. Indeed, GABA(A) receptors not only function as chloride channels that regulate membrane voltage and conductance but also play structural roles in synapse maturation and stabilization. The link from GABA(A) receptors to postsynaptic and presynaptic adhesion is probably mediated, partly by neuroligin-reurexin interactions, which are potent in promoting GABAergic synapse formation. Therefore, similar to glutamate signaling at excitatory synapse, GABA signaling may coordinate maturation of presynaptic and postsynaptic sites at inhibitory synapses. Defining the many steps from GABA signaling to receptor trafficking/stability and neuroligin function will provide further mechanistic insights into activity-dependent development and possibly plasticity of inhibitory synapses.  相似文献   

20.
Barn owls (Tyto alba) have evolved several specializations in their auditory system to achieve the high sensory acuity required for prey capture, including superior processing of interaural time differences and phase coding in the auditory periphery. Here, we tested whether barn owls are capable of high temporal resolution that may be a prerequisite for the accuracy in binaural processing. Temporal resolution was measured psychoacoustically and demonstrated in temporal modulation transfer functions. Four barn owls were trained in an operant task with food reward to detect sinusoidal amplitude modulations within an 800-ms gated white-noise burst or 800-ms periods of modulation in continuous white noise (spectrum levels of -5 dB and 15 dB SPL). Within the range of tested amplitude modulation frequencies from 5 Hz to 1280 Hz, barn owls' detection thresholds were lowest at 10-20 Hz. This sensitivity corresponds to an intensity-difference limen of between 0.9 dB and 1.4 dB. For all conditions, temporal modulation transfer functions showed band-pass characteristics with a high-frequency cutoff in the range of 37 Hz to 92 Hz, corresponding to minimum integration times of 4.3 ms and 1.7 ms, respectively. In summary, these data indicate a temporal resolution in the owl's auditory system that is good, but not unusual, compared to other vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号