首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
区域捕获测序是针对基因组特定区段如对MHC(Major histocompatibility complex)区域、外显子区域等测序的有效手段,但是由于捕获测序中探针设计不均匀而造成区域内测序深度变异很大,因此,与基于全基因组的测序数据相比,其拷贝数变异的检测难度更大.目前已经出现了捕获测序下拷贝数变异(copy number variations,CNV)的检测方法,但对CNV的检测准确性仍然很低,特别是对于低频率CNV来说效果极差.因此,本研究开发了一个新的拷贝数变异检测方法,其特点是:(1)以区域内划分的区间为单位检测区间内的CNV,而不是直接对每个个体检测CNV;(2)全面利用群体内所有个体信息,通过区间内read深度在群体的分布规律来检测CNV的分离规律,假设区间内只有1个CNV,那么区间内的read深度将服从三峰的混合正态分布.将该方法应用于21 327个银屑病个体区域捕获测序的CNV检测中,结果表明,XHMM,ExomeDepth和本方法跟金标准重叠的窗口总数与金标准总窗口数的百分比(即重叠率)分别是7%、18%和62%.与XHMM和ExomeDepth相比,新方法在区间内CNV检测覆盖度可以分别提高55个百分点和44个百分点.本研究完善拷贝数变异检测方法,为疾病的诊断治疗提供一定的理论依据.  相似文献   

2.
基因组测序技术的发展为我们提供了研究家畜重要经济性状遗传基础的契机。家畜和人类医学中的全基因组关联分析表明单个数量性状基因座(QTL)的效应是非常微小的。这一结论促使利用高密度单核苷酸多态性(SNP)信息进行基因组选择方法的研究。结合新的统计学方法,并检测基因组数据的特征无疑是进行基因组研究和实验设计的基础。准确的掌握基因组数据的特征可以为QTL检测和研究数量性状的遗传基础提供坚实的研究基础。但是,海量的基因组数据量加大了研究基因组数据特征的难度。本文中,我们讨论了研究基因组时代动物育种研究中基因组数据基本特征及其必要的统计学基础。此外,我们还提供了分析基因组特征的简单示例和Julia语言代码。在此基础上,我们讨论了在全基因组测序数据和系统分析等情况下,基因组数据基本特征分析所面临的挑战。  相似文献   

3.
家养动物参考基因组组装的不断完善和群体重测序数据的持续增加促进了基因组中大量变异的发现。基因组上的变异主要包括单核苷酸变异(SNP)和拷贝数变异(CNV)两种类型。相对于数量众多,已经被广泛研究和用作分子育种标记SNP,目前已经被发现和经过实验验证其功能的CNV数量较少,鲜有被直接用作分子标记进行育种的报道。CNV片段长度大、在基因组中普遍存在且比SNP变异覆盖的基因组范围更广,所以可能对农艺性状造成很大影响,其在畜禽基因组研究和育种应用中具有广阔前景。重点讨论了家养动物CNV的研究进展,并对其在家养动物育种中的应用进行了分析展望。  相似文献   

4.
基因组拷贝数变异及其突变机理与人类疾病   总被引:1,自引:0,他引:1  
Du RQ  Jin L  Zhang F 《遗传》2011,33(8):857-869
拷贝数变异(Copy number variation,CNV)是由基因组发生重排而导致的,一般指长度为1 kb以上的基因组大片段的拷贝数增加或者减少,主要表现为亚显微水平的缺失和重复。CNV是基因组结构变异(Structural variation,SV)的重要组成部分。CNV位点的突变率远高于SNP(Single nucleotide polymorphism),是人类疾病的重要致病因素之一。目前,用来进行全基因组范围的CNV研究的方法有:基于芯片的比较基因组杂交技术(array-based comparative genomic hybridization,aCGH)、SNP分型芯片技术和新一代测序技术。CNV的形成机制有多种,并可分为DNA重组和DNA错误复制两大类。CNV可以导致呈孟德尔遗传的单基因病与罕见疾病,同时与复杂疾病也相关。其致病的可能机制有基因剂量效应、基因断裂、基因融合和位置效应等。对CNV的深入研究,可以使我们对人类基因组的构成、个体间的遗传差异、以及遗传致病因素有新的认识。  相似文献   

5.
Zhang X  Li M  Zhang XJ 《遗传》2011,33(8):847-856
近年来,众多研究小组开展了大量的全基因组关联研究(Genome-wide association studies,GWAS),发现并鉴定了许多与复杂疾病/性状相关联的遗传变异,为复杂疾病发病机制的研究提供了重要线索。由于GWAS的结果存在假阳性、假阴性、检测到的单核苷酸多态性很少位于功能区以及对稀有变异和结构变异不敏感等问题,导致了其应用的局限性。而新一代测序技术的进步,促进了全基因组测序和全基因组外显子测序的快速发展,为解决上述问题提供了契机。全基因组外显子测序是利用序列捕获技术将全基因组外显子区域DNA捕捉并富集后进行高通量测序的基因组分析方法。由于其具有对常见和罕见变异高灵敏度,能发现外显子区绝大部分疾病相关变异以及仅需要对约1%的基因组进行测序等优点,促使全基因组外显子测序成为鉴定孟德尔疾病的致病基因最有效的策略,也被运用于复杂疾病易感基因的研究和临床诊断中。  相似文献   

6.
目的:建立新的线粒体基因组DNA杂交捕获探针制备方法并用进行初步应用。方法:通过PCR技术扩增特异线粒体DNA片段,并与生物素偶联,最后与标记磁珠的亲和素混合获得捕获探针。并自行制备的线粒体基因组DNA文库捕获探针与肝癌全基因组测序文库进行液相杂交。分离捕获产物后PCR扩增并进行测序分析。结果:成功建立了线粒体基因组杂交捕获探针制备方法并成功分离线粒体基因组DNA;对测序数据的分析显示:90%以上测序数据来自线粒体基因组DNA,且覆盖率达到100%,且均一性良好。检测到的同质性变异位点数量和异质性变异位点数量与全基因组测序数据产生的结果接近(P=0.9152,P=0.8409)。结论:新方法制备的线粒体基因组DNA杂交捕获探针可以从全基因组文库中高效捕获线粒体基因组DNA测序文库。  相似文献   

7.
拷贝数变异是指基因组中发生大片段的DNA序列的拷贝数增加或者减少。根据现有的研究可知,拷贝数变异是多种人类疾病的成因,与其发生与发展机制密切相关。高通量测序技术的出现为拷贝数变异检测提供了技术支持,在人类疾病研究、临床诊疗等领域,高通量测序技术已经成为主流的拷贝数变异检测技术。虽然不断有新的基于高通量测序技术的算法和软件被人们开发出来,但是准确率仍然不理想。本文全面地综述基于高通量测序数据的拷贝数变异检测方法,包括基于reads深度的方法、基于双末端映射的方法、基于拆分read的方法、基于从头拼接的方法以及基于上述4种方法的组合方法,深入探讨了每类不同方法的原理,代表性的软件工具以及每类方法适用的数据以及优缺点等,并展望未来的发展方向。  相似文献   

8.
随着高通量测序技术的发展,全外显子测序已经成为一种研究人类疾病的重要方法.本文展示了一种通过Nimblegen2.1M芯片进行外显子DNA序列捕获和高通量测序的方法,包括两步法文库制备.测序的平均覆盖深度达33倍时,95.6%的34M目标区域得到均衡覆盖,特异性达到80%.对比全基因组鸟枪法测序的结果,此方法在检测SNP时的假阳性率为0.97%,假阴性率为6.27%.本方法对于全基因组扩增的DNA也适用.结果显示,全外显子测序技术可以在大规模的群体研究和医学研究中起到重要作用.  相似文献   

9.
拷贝数变异(copy number variation,CNV)是人类遗传多样性的一类重要形式。在前期的研究中,人们通过寡核苷酸分型、比较基因组杂交以及测序等技术手段,在人类基因组中鉴定出了大量拷贝数变异位点。这些变异可能是由于基因组重组或复制过程中的差错而产生。CNV在人群中的覆盖率远远高于寡核苷酸多态性(single nucleotide polymorphism,SNP),它们可以通过多种机制改变基因的表达水平,如基因剂量效应、基因断裂-融合效应,以及远距调控效应,进而引起多种人类复杂疾病。认识基因组中的拷贝数变异对于我们更好地认识基因与疾病的关系、遗传-环境因素的相互作用,以及基因组变异与物种进化的关系具有重要的意义。  相似文献   

10.
本研究介绍了基因组结构变异检测的生物信息学基本方法和前沿技术。对基于第二代测序技术的四种检测方法(读对方法,读深方法,分裂片段方法和序列拼接方法)的原理和特点进行了详细解读,分析了第二代测序技术应用在检测结构变异上的特点与发展趋势。最后介绍了三代测序、Linked-reads和光学物理图谱等新技术在基因组结构变异检测中的应用,论述了融合新技术的结构变异检测方法的特点与优势。  相似文献   

11.
基因组结构变异是多种肿瘤发生的重要驱动因素.虽然目前有基于核型分析、PCR免疫荧光和芯片杂交以及高通量测序等技术可用于基因组结构变异的检测,但由于技术的局限性,现今仍缺乏被广泛认可的基因组结构变异检测方法和相应的分析工具.在肿瘤样本中检测基因组结构变异更是面临严峻的挑战.近20年来,染色体构象捕获技术及其衍生的高通量技术Hi-C等,已经为三维基因组结构的解析提供了大量的组学数据.基因组结构变异通常引起三维基因组空间图谱的异常,通过Hi-C图谱的异常来检测结构变异成为一个新的研究方向.基于Hi-C技术的检测方法有其独特的优势,如可以比较准确地检测位于基因组上重复序列区域的结构变异,但也存在一定的局限性,如不能检测小的结构变异等.本文系统回顾了基因组结构变异的主要研究方法、工具及相应的原理等,并重点讨论了运用Hi-C技术检测结构变异的基本原理、技术优势和局限性,最后介绍了该技术在肿瘤研究中的实际应用.  相似文献   

12.
人类线粒体基因组DNA(mtDNA)是一个16569 bp的双链闭合环状DNA分子,具有母系遗传、多拷贝、高异质性及高变异率等特点,是研究人类遗传和进化上广泛使用的分子标记.近几年,高通量测序技术的出现,使得在短时间内准确测定mtDNA序列成为可能;但目前常用的高通量测序建库方法操作复杂、研究费用相对较高.基于多重PCR扩增的测序方法具有高效率、高灵敏度、低成本的特点,因而适用于大规模线粒体基因组的变异检测分析.利用73个相互重叠的扩增子通过多重PCR方法来扩增中国人的线粒体全基因组,在扩增片段两端连接特定的接头序列,然后在IlluminaHiSeq X Ten平台上进行高通量测序.对获得的测序数据分析发现,mtDNA每个位点的测序深度均达到2000×以上;当测序深度为100×时,所有样本的序列覆盖度都达到100%;数据质量适用于后续的变异检测分析.利用本研究建立的基于多重PCR的二代测序方法无需片段化即可直接上机测序,在复杂遗传病的研究中有着广泛的应用前景.  相似文献   

13.
自提出全基因组关联研究(genome-wide association study,GWAS)设想以来,在人类复杂疾病和水稻农艺性状关联研究方面,GWAS已得到广泛运用。但作为一种典型的单标记研究方法,GWAS不能检测小效应的遗传变异,而稀有变异间的联合效应往往与表型密切相关,因此,需对GWAS结果进行深入的数据挖掘。基于通路的分析方法(pathway-based analysis,PBA)就是利用基因功能、生物代谢通路等相关信息建立的对GWAS结果进行二次挖掘的方法。该方法能从GWAS结果挖掘出与性状、疾病相关联的通路及具有相同功能的基因集等数据,从而获得更多的遗传信息。现对PBA的出现、计算方法和相关软件进行简要综述,以期为人们进行通路分析提供参考。  相似文献   

14.
全基因组测序研究主要包括通过不同测序技术和组装比对方法,获得某物种的全基因组序列图谱,及在此基础上构建物种全基因组遗传变异图谱进行个体或群体遗传多样性、选择信号或起源进化等方面的研究。利用单核苷酸多态性(SNP)、插入和缺失(Indel)和拷贝数变异(CNV)等遗传变异作为分子标记,全基因组测序研究已经在家畜起源进化、驯化、适应性机制、重要经济性状候选基因、群体历史动态等方面取得了许多重要的研究成果。本文主要对近几年全基因组测序在常见家畜(猪、马、牛、羊等及其近缘物种)的取得的重要研究成果进行了综述,并讨论了全基因组测序的优势、缺点及在生产中意义。此外,对基因组测序研究的未来发展进行了归纳及展望,以期为今后家畜重要经济性状的功能基因定位和物种起源、驯化研究提供参考。  相似文献   

15.
李鑫  李凯  李一佳  马磊 《生物信息学》2016,14(3):188-194
SeqMule可根据调用的人类基因组和外显子组数据自动调节变量,对所有测序数据的单核苷酸多态性(Single nucleotide polymorphism,SNP)进行分析和注释。目的:通过对两名痛风患者的实验数据进行分析,详细地为生物信息学研究人员介绍了SeqMule软件,以期为全基因组和外显子组测序数据提供一站式的分析途径。方法:基于SeqMule内置的BWA(BurrowsWheeler Aligner)、GATK(The Genome Analysis Toolkit)、SAMtools、Freebayes比对和分析工具,以两名痛风患者的DNA测序数据分析为例,本文详细地论述了SeqMule的特点及操作,并对两名患者的外显子测序数据进行了自动化比对与SNP分析。发现SeqMule优化了很多分析软件存在的一些问题,可以对外显子组和全基因组测序数据实现全面、灵活、高效地自动化分析,能更好地分析高通量测序数据,最终提升数据分析的一致性和准确性。  相似文献   

16.
全基因组测序及其在遗传性疾病研究及诊断中的应用   总被引:1,自引:0,他引:1  
邵谦之  姜毅  吴金雨 《遗传》2014,36(11):1087-1098
最近,随着测序成本的不断降低,数据分析策略的不断提升,全基因组测序(whole-genome sequencing,WGS)已经在癌症、孟德尔遗传病、复杂疾病的致病基因检测中得到了一定运用,并逐步走向了临床诊断。全基因组测序不但可以检测编码区和非编码区的点突变(SNVs)和插入缺失(InDels),还可以在全基因组范围内检测拷贝数变异(copy number variation,CNV)以及结构变异(structure variation,SV)。本文详细地介绍了全基因组测序的标准生物信息分析流程与方法,及其在疾病研究、临床诊断中的应用,并对全基因组测序在医学遗传学中的应用与研究进展,以及数据分析方面面临的挑战进行了概述。  相似文献   

17.
随着标记信息可以被越来越多的应用在家畜育种中,许多基因组选择(GS)方法使得育种工作者可以利用家畜早期的基因型数据提前对其进行选择。结合系谱、表型和基因型数据,我们可以缩短家畜的世代间隔,提高家畜遗传价值估计的准确性,进而加速其遗传改良速度。近年来,和广泛使用的多步基因组选择策略相比,业界更推崇基于在系谱关系矩阵中增加基因组信息的单步遗传评估方法。即使通常的基因组选择方法依然是多步方法,如GBLUP法,但是基于单步基因组模型进行的基因组评估能提供更为准确的结果。本研究的目的是引入单步贝叶斯方法,此方法可以用贝叶斯回归模型直接计算单核苷酸多态性(SNP)的效应,同时我们使用模拟方法评估模型的性能。研究结果显示:QTL数目对单步贝叶斯方法的准确性无影响,但其准确性受遗传力的影响。同时,其准确性随着测序个体数的增加而增加。我们也讨论了与使用单步贝叶斯方法相关的问题,并详细描述了一些与之有关的统计理论和算法问题。  相似文献   

18.
基于新一代高通量技术的人类疾病组学研究策略   总被引:2,自引:0,他引:2  
Yang X  Jiao R  Yang L  Wu LP  Li YR  Wang J 《遗传》2011,33(8):829-846
近年来,包括第二代测序技术和蛋白质谱技术等在内的新一代高通量技术越来越多的应用于解决生物学问题尤其是人类疾病的研究。这种以数据为导向,大规模、工业化的研究模式,使得从基因组水平、转录组水平、蛋白质组水平等角度对疾病展开全方位、多层次的研究成为可能。文章综述了新一代高通量技术在DNA、RNA、表观遗传、宏基因组和蛋白质组水平的人类疾病研究进展以及在转化医学领域的应用。在基因组水平上,外显子组测序是近年来持续的研究热点,随着测序成本的不断降低,全基因组重测序也越来越凸显了其在全基因组范围内检测大型结构变异的优势,并使得个人基因组引领的个体化医疗逐渐成为可能。在转录组水平,如小RNA测序技术可用来检测已知小RNA和预测新的小RNA,这些小RNA不仅可以作为疾病诊断和预后的分子标志物,在疾病治疗方面也具有无限潜力。在蛋白质组水平,如目标蛋白质组学可以有目标地测定可能与疾病相关的特定蛋白质或多肽,能够很好地应用于疾病的临床分期分型。文章进一步阐述了跨组学研究在疾病研究领域中的应用和发展趋势,借助生物信息学分析方法进行多组学整合研究,能更加系统地阐释疾病的发生及发展机理,为疾病的诊断治疗提供强有力的工具。  相似文献   

19.
基因组变异进化是新型细菌病原体不断出现的重要原因之一,细菌可以通过获得或丢失一些基因及基因突变来获得新的特性和适应性,比如毒力增强或耐药性增强等,从而导致新流行亚型的出现,为临床诊断治疗、传染病监测防控带来极大挑战。全基因组测序方法可以有效整合利用细菌的全基因组信息,在研究细菌重要特性和变异进化方面有很高的分辨率。我们就基于全基因组测序研究细菌进化的背景意义、国内外研究现状、应用前景与趋势等进行简要综述。  相似文献   

20.
单核苷酸多态性(single nucleotide polymorphism,SNP)是一类广泛分布于基因组中由单个碱基差异引起的DNA序列变异,SNP标记是第三代分子标记的代表。随着大规模测序技术的快速发展,大量的候选SNP位点被发现,候选SNP位点的发掘需要合适的分型技术。从等位基因分型机制、反应方式和检测等位基因方法等方面介绍当前海洋生物SNP分型技术的研究进展,以期为不同试验目的的研究选择合适的SNP分型技术提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号