首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
范可尼贫血症(FA)又称范可尼综合征,是一种常染色体或X染色体连锁的隐性遗传病.范可尼贫血症患者具有先天性发育异常、骨髓衰竭、高度癌症易感性等特征.尽管范可尼贫血症是一种在人群中发生比例仅为1:1000000~5:1000000的罕见遗传病,但它却是一个可以用来研究DNA损伤修复和肿瘤发生的重要模型.迄今为止,已经确定了15个范可尼贫血症基因(FA基因)以及一些范可尼贫血症相关基因.当15个FA基因中的任何一个发生突变,都会导致范可尼贫血症的发生.从这些基因发生突变的病人身上所分离得到的细胞则具有对DNA交联损伤试剂(如丝裂霉素C等)高度敏感,以及基因组不稳定的表型.在此,对目前所了解的FA基因所编码的FA蛋白参与DNA交联损伤修复的具体分子机制进行了回顾与阐述.  相似文献   

2.
旨在研究阿霉素诱导引起的DNA损伤压力下,肝癌细胞Hep G2中参与DNA损伤应答的mi RNA,并分析这些mi RNA靶基因参与肝癌DNA损伤应答相关的生物学进程与通路。通过小RNA测序检测阿霉素处理肝癌细胞Hep G2前后mi RNA的差异表达情况,使用GO与KEGG通路富集方法对差异表达mi RNA靶基因进行功能富集分析。结果显示,共检测出显著表达差异mi RNA 68个,其中上调13个,下调55个。mi RNA靶基因的功能分析结果显示,53条mi RNAs靶基因显著富集于调控细胞增殖、细胞凋亡、细胞迁移和细胞周期等与DNA损伤应答以及肿瘤相关的生物进程和信号通路,包括p53信号通路、癌症通路、Wnt信号通路和MAPK信号通路等。研究表明,在阿霉素诱导下,Hep G2中的差异表达mi RNAs与DNA损伤相关的肿瘤生物学进程以及信号通路显著相关,预示这些mi RNAs在阿霉素引发的肝细胞癌DNA损伤应答中起着重要的作用。  相似文献   

3.
借助基因芯片获取慢性酒精中毒大鼠海马相关基因的表达数据集,通过生物信息学的分析方法对差异表达基因进行筛选与分析。从分子水平揭示慢性酒精中毒对大鼠大脑海马体的影响,为慢性酒精中毒的损伤机制以及相关疾病发病机制的基础研究与临床治疗提供新的方向。同时,还通过Y迷宫实验对实验大鼠的学习记忆功能进行了检测,借助电镜拍摄其线粒体。结果显示,我们一共筛选出208个差异表达基因,其中51个表达上调,157个表达下调。其中涉及的主要信号通路有氧化磷酸化通路、D-谷氨酰胺和谷氨酸代谢通路、阿尔茨海默病信号通路、帕金森病信号通路、膀胱癌信号通路、B细胞受体信号通路和亨廷顿病信号通路等。由此我们得出结论,慢性酒精中毒可能影响了海马多个基因的表达,其中包括Rpsa、Wdr31、Rps11、Rps9、Ndufa2、Mrto4、Rpl6、Dap3、Ndufb8、Ndufb6、Ephb2、Cox6c、Prkcd、Rela、Raf1、Ubd、Mrps28、Mrpl35等关键基因,进而损伤了电子传递链复合体Ⅰ,最终损伤线粒体,导致大鼠学习记忆能力的损伤。  相似文献   

4.
目的:利用生物信息学方法从鼻咽癌组织基因芯片中筛选差异表达基因,并分析它们之间的互相作用。方法:利用R语言程序包等相关软件分析鼻咽癌组织和正常组织中差异表达的基因,并对其进行在线GO分析、KEGG富集分析及蛋白互作分析。结果:从25例鼻咽癌组织样本和3例正常组织对照样本中共分析出1103个差异表达基因,包括600个上调基因和503个下调基因(P0.05)。GO分析结果显示,差异表达基因在生物过程中显著富集,包括细胞分裂、DNA复制、G1/S有丝分裂细胞周期的转变和有丝分裂核分裂;在分子功能中,包括与蛋白质结合、与ATP结合、蛋白同二聚化活性、与DNA复制起点结合以及与受损的DNA结合;在细胞组分中,包括细胞质、核质、胞外体和船体中部。KEGG通路分析显示,差异表达基因在细胞周期、DNA复制、癌症途径、p53信号通路、错配修复、小细胞肺癌、卵母细胞减数分裂、氨基糖和核苷酸糖代谢、基部切除修复和人T淋巴细胞病毒(HTLV-Ⅰ)感染等信号通路中显著富集。在蛋白互作分析网络中筛选出10个节点度最高核心基因CDC45、MCM10、MCM3、MCM5、MCM2、CDC7、CDT1、CDC6、SMC2和NCAPG。结论:通过鼻咽癌组织和正常组织的对比筛选,发现多个基因表达发生变化,为相关临床研究提供了重要的信息基础。  相似文献   

5.
Fanconi贫血是一种罕见的隐性遗传性疾病,临床常以先天性畸形、进行性骨髓衰竭和遗传性肿瘤倾向为主要表现而确诊。FA病人细胞对DNA交联剂如丝裂霉素C (MMC)高度敏感。目前已经发现至少12种FA基因的缺失或突变能够引起FA表型的出现,其中10种相应的编码蛋白形成FA复合物共同参与FA/BRCA2 DNA损伤修复途径—FA途径。FA核心复合物蛋白FANCL具有泛素连接酶活性,在结合酶UBE2T共同作用下,催化下游蛋白FANCD2单泛化,泛素化FANCD2与BRCA2形成新的复合物,修复DNA损伤。去泛素化酶USP1在DNA修复完毕后移除FANCD2的单体泛素,使因损伤修复而阻滞的细胞周期继续进行。机体很可能在不同信号通路对FANCD2泛素化/去泛素化的精细调节下,调控FA途径参与不同的DNA修复过程。  相似文献   

6.
目的:研究胃癌多药耐药相关microRNA并对其进行鉴定、靶基因预测和预测靶基因的生物信息学分析。方法:运用microRNA芯片对胃癌多药耐药细胞SGC7901/ADR和其亲本细胞SGC7901进行microRNA表达谱分析;采用实时定量PCR的方法对差异表达的miRNA进行验证;再运用生物信息学方法对差异表达的miRNA进行靶基因预测;再对预测的靶基因进行GO和KEGG通路分析。结果:与SGC7901相比SGC7901/ADR表达上调超过2倍的miRNA有6个,表达下调超过2倍的有11个。实时定量PCR对共同差异表达的microRNA进行验证显示与芯片结果的一致性。对这17个差异表达的miRNA进行靶基因预测,再对预测得到的靶基因进行GO和KEGG通路分析显示预测的靶基因参与了肿瘤相关通路、MAPK通路、Focal Adhesion通路等。结论:我们初步筛选得到了胃癌多药耐药相关miRNA并对其进行了生物信息学分析,为进一步地探索miRNA在胃癌多药耐药中的作用及其分子机制奠定了基础。  相似文献   

7.
《蛇志》2020,(1)
目的探讨强直性脊柱炎(AS)患者差异表达基因,并基于差异基因探讨强直性脊柱炎发病相关的可能生物学过程和信号通路。方法检索基因表达谱数据库(GEO)并筛选AS相关基因表达谱数据集。应用GEO在线分析功能GEO2R分析AS组和正常对照组的差异表达基因,用Cytoscape软件clueGO插件进行基因本体论和京都基因与基因组百科全书分析,采用String蛋白-蛋白相互作用(PPI)数据库分析差异表达基因编码蛋白间的相互作用;应用Cytoscape绘制蛋白相互作用网络图,并软件筛选信号通路关键基因分析。结果选取AS患者全血表达数据集GSE25101为研究对象,分析获得差异表达基因72个。72个差异表达基因分子功能主要为参与高迁移率族盒染色体蛋白1(HMGB1)转导机制;生物学过程主要富集于巨噬细胞迁移、骨髓细胞凋亡过程、线粒体呼吸链复合体装配、ATP合成偶联电子传输、线粒体ATP合成耦合电子输运等;细胞成分主要富集于呼吸链复合体、线粒体呼吸体等。信号通路富集于氧化磷酸化信号通路和帕金森综合征相关信号通路。PPI网络经过cytohubba插件筛选,ATP5J、NDUFS4、UQCRB、UQCRH、NDUFB3、COX7B、LSM3、ATP5EP2、ENY2、PSMA4被筛选为网络中的核心基因。结论通过生物信息学方法进行预测了AS的潜在机制,并筛选出10个潜在的与AS相关的重要分子,其中氧化磷酸化可能在AS发病机制中发挥了重要的作用。  相似文献   

8.
多种化学、物理及生物因素可诱发细胞DNA损伤,损伤后DNA损伤位点被相关损伤感受器识别,激活相应的修复通路进行DNA修复。越来越多的证据表明DNA甲基化状态、蛋白翻译后修饰、染色质重塑、miRNA等修饰方式参与了DNA的损伤修复。文章通过不同损伤修复通路中这些修饰的特点,阐述表观遗传学改变在DNA损伤修复发展过程中的作用机制。  相似文献   

9.
利用GenMAPP软件对鼻咽癌和正常鼻咽上皮基因微阵列表达谱结果进行分析,筛查鼻咽癌差异表达基因. 结果显示:在17 000个基因中,与正常鼻咽上皮相比,在鼻咽癌中发生2倍以上差异表达的基因共有339个,其中有160个基因在鼻咽癌中表达上调,179个表达下调. 这些基因分别与细胞增殖、基因转录、凋亡、信号转导、DNA损伤修复、肿瘤分化和浸润转移及细胞周期调节等相关. 鼻咽癌的发生发展存在多基因表达调控的改变,对其差异表达基因的研究有助于阐明鼻咽癌发生发展机制.  相似文献   

10.
亨廷顿病(Huntington’s disease,HD)是一种常染色体显性遗传的神经退行性疾病,是由于亨廷顿基因(Htt)发生突变而导致的,突变的亨廷顿蛋白(mutant huntingtin,m Htt)会在胞内产生聚集引起细胞功能异常并引发神经退行.亨廷顿病的具体分子机制有多种假说,例如氧化压力、线粒体功能异常等.2017年《自然》(Nature)杂志发文认为DNA损伤修复异常是神经退行性疾病发生的共同机制.大量证据显示,DNA损伤修复在HD的发生中扮演着重要角色,Htt突变会引发多种DNA损伤以及修复通路的过度激活,HD细胞对离子辐射敏感同时存在双链断裂修复缺陷,同时Htt突变会阻碍DNA修复关键因子共济失调毛细血管扩张突变(ATM)蛋白在DNA修复中正常功能的发挥.DNA修复通路还是HD发病年龄的重要影响因素.此外,将ATM做为治疗靶点能够减轻突变Htt引发的细胞毒性以及动物模型的疾病进程.ATM还在维持细胞稳态和线粒体信号中起着关键作用,鉴于线粒体异常与HD发病的相关性,ATM作为治疗靶点的分子机制也逐渐明朗.本文着重于介绍DNA损伤修复与亨廷顿病的发生机理的研究进展,为阐明HD的发病机理,开发有效的治疗手段提供思路.  相似文献   

11.
The many proteins that function in the Fanconi anaemia (FA) monoubiquitylation pathway initiate replicative DNA crosslink repair. However, it is not clear whether individual FA genes participate in DNA repair pathways other than homologous recombination and translesion bypass. Here we show that avian DT40 cell knockouts of two integral FA genes--UBE2T and FANCM are unexpectedly sensitive to UV-induced DNA damage. Comprehensive genetic dissection experiments indicate that both of these FA genes collaborate to promote nucleotide excision repair rather than translesion bypass to protect cells form UV genotoxicity. Furthermore, UBE2T deficiency impacts on the efficient removal of the UV-induced photolesion cyclobutane pyrimidine dimer. Therefore, this work reveals that the FA pathway shares two components with nucleotide excision repair, intimating not only crosstalk between the two major repair pathways, but also potentially identifying a UBE2T-mediated ubiquitin-signalling response pathway that contributes to nucleotide excision repair.  相似文献   

12.
Fanconi anemia (FA) is an autosomal disorder that causes genome instability. FA patients suffer developmental abnormalities, early-onset bone marrow failure, and a predisposition to cancer. The disease is manifested by defects in DNA repair, hypersensitivity to DNA crosslinking agents, and a high degree of chromosomal aberrations. The FA pathway comprises 13 disease-causing genes involved in maintaining genomic stability. The fast pace of study of the novel DNA damage network has led to the constant discovery of new FA-like genes involved in the pathway that when mutated lead to similar disorders. A majority of the FA proteins act as signal transducers and scaffolding proteins to employ other pathways to repair DNA. This review discusses what is known about the FA proteins and other recently linked FA-like proteins. The goal is to clarify how the proteins work together to carry out interstrand crosslink repair and homologous recombination-mediated repair of damaged DNA.  相似文献   

13.
Garner E  Smogorzewska A 《FEBS letters》2011,585(18):2853-2860
The Fanconi anemia (FA) pathway maintains genome stability through co-ordination of DNA repair of interstrand crosslinks (ICLs). Disruption of the FA pathway yields hypersensitivity to interstrand crosslinking agents, bone marrow failure and cancer predisposition. Early steps in DNA damage dependent activation of the pathway are governed by monoubiquitylation of FANCD2 and FANCI by the intrinsic FA E3 ubiquitin ligase, FANCL. Downstream FA pathway components and associated factors such as FAN1 and SLX4 exhibit ubiquitin-binding motifs that are important for their DNA repair function, underscoring the importance of ubiquitylation in FA pathway mediated repair. Importantly, ubiquitylation provides the foundations for cross-talk between repair pathways, which in concert with the FA pathway, resolve interstrand crosslink damage and maintain genomic stability.  相似文献   

14.
Bruun D  Folias A  Akkari Y  Cox Y  Olson S  Moses R 《DNA Repair》2003,2(9):1007-1013
BRCA1 and BRCA2 proteins act in repair of interstrand crosslinks (ICLs) and maintenance of genome stability and are known to be part of the Fanconi anemia (FA) pathway. We have investigated the role of the BRCA1 and BRCA2 genes in genome stability following ICL damage in normal and FA cells. To circumvent cell lethality of complete disruptions in BRCA1 or BRCA2, small inhibitory RNA (siRNA) was used to transiently deplete the expression of the proteins. Using chromosomal stability after ICL damage as the end point, we find that BRCA1 functions in more than just the FA pathway for genome maintenance, whereas BRCA2 appears to act predominantly in the FA pathway. Depletion of BRCA1 causes a marked decrease, although not a complete absence of, ubiquitination of FANCD2. In contrast to BRCA1, BRCA2 is not needed for normal ubiquitination of FANCD2 after DNA damage, a requirement for the FA pathway to function. Thus, BRCA2 is epistatic to FA genes for ICL repair, but not for damage-induced modification of FANCD2 and may act downstream form FANCD2.  相似文献   

15.
DNA repair is an active cellular process to respond to constant DNA damage caused by metabolic processes and environmental factors. Since the outcome of DNA damage is generally adverse and long term effects may contribute to oncogenesis, cells have developed a variety of DNA repair mechanisms, which operate depending on the type of DNA damage inflicted. At least 15 Fanconi anemia (FA) proteins interact in a common pathway involved in homologous recombination. Inherited homozygous mutations in any of these FA genes cause a rare disease, Fanconi anemia, characterized by congenital abnormalities, progressive bone-marrow failure and cancer susceptibility. Heterozygous germline FA mutations predispose to various types of cancer. In addition, somatic FA mutations have been identified in diverse cancer types. Evidence exists that cells deficient in the FA pathway become dependent on alternative pathways for survival. Additional inhibition of such alternative pathways is thus expected to result in cell death, creating a relationship of synthetic lethality. Identifying these relationships can reveal yet unknown mechanisms of DNA repair and new targets for therapy.  相似文献   

16.
17.
An inherited deficiency in the frataxin protein causes neurodegeneration of the dorsal root ganglia and Friedreich''s ataxia (FA). Frataxin deficiency leads to oxidative stress and inflammatory changes in cell and animal models; however, the cause of the inflammatory changes, and especially what causes brain microglial activation is unclear. Here we investigated: 1) the mechanism by which frataxin deficiency activates microglia, 2) whether a brain-localized inflammatory stimulus provokes a greater microglial response in FA animal models, and 3) whether an anti-inflammatory treatment improves their condition. Intracerebroventricular administration of LPS induced higher amounts of microglial activation in the FA mouse model vs controls. We also observed an increase in oxidative damage in the form of 8-oxoguanine (8-oxo-G) and the DNA repair proteins MUTYH and PARP-1 in cerebellar microglia of FA mutant mice. We hypothesized that frataxin deficiency increases DNA damage and DNA repair genes specifically in microglia, activating them. siRNA-mediated frataxin knockdown in microglial BV2 cells clearly elevated DNA damage and the expression of DNA repair genes MUTYH and PARP-1. Frataxin knockdown also induced a higher level of PARP-1 in MEF cells, and this was suppressed in MUTYH-/- knockout cells. Administration of the PARP-1 inhibitor PJ34 attenuated the microglial activation induced by intracerebroventricular injection of LPS. The combined administration of LPS and angiotensin II provoke an even stronger activation of microglia and neurobehavioral impairment. PJ34 treatment attenuated the neurobehavioral impairments in FA mice. These results suggest that the DNA repair proteins MUTYH and PARP-1 may form a pathway regulating microglial activation initiated by DNA damage, and inhibition of microglial PARP-1 induction could be an important therapeutic target in Friedreich''s ataxia.  相似文献   

18.
The Fanconi anemia (FA) pathway plays a central role in the repair of DNA interstrand crosslinks (ICLs) and regulates cellular responses to replication stress. Homologous recombination (HR), the error‐free pathway for double‐strand break (DSB) repair, is required during physiological cell cycle progression for the repair of replication‐associated DNA damage and protection of stalled replication forks. Substantial crosstalk between the two pathways has recently been unravelled, in that key HR proteins such as the RAD51 recombinase and the tumour suppressors BRCA1 and BRCA2 also play important roles in ICL repair. Consistent with this, rare patient mutations in these HR genes cause FA pathologies and have been assigned FA complementation groups. Here, we focus on the clinical and mechanistic implications of the connection between these two cancer susceptibility syndromes and on how these two molecular pathways of DNA replication and repair interact functionally to prevent genomic instability.  相似文献   

19.
The Fanconi anemia/BRCA pathway: a coordinator of cross-link repair   总被引:1,自引:0,他引:1  
Fanconi anemia (FA) is a rare inherited disease characterized by genomic instability and markedly increased cancer risk. Efforts to elucidate the molecular basis of FA have unearthed a novel DNA damage response pathway, the integrity of which is critical for cellular resistance to DNA cross-linking agents. Despite significant progress in uncovering the molecular events underlying FA, the precise function of this pathway in DNA repair is unknown. This article will review evidence implicating FA proteins in multiple aspects of DNA cross-link repair and propose a model to explain the selectivity of the FA pathway toward DNA cross-linking agents.  相似文献   

20.
Fanconi anemia (FA) is a fascinating, rare genetic disorder marked by congenital defects, bone marrow failure, and cancer susceptibility. Research in recent years has led to the elucidation of FA as a DNA repair disorder and involved multiple pathways as well as having wide applicability to common cancers, including breast, ovarian, and head and neck. This review will describe the clinical aspects of FA as well as the current state of its molecular pathophysiology. In particular, work from the Kupfer laboratory will be described that demonstrates how the FA pathway interacts with multiple DNA repair pathways, including the mismatch repair system and signal transduction pathway of the DNA damage response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号