首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
C Kuhn  K Albright  R Francis 《Life sciences》1991,49(19):1427-1434
Corticotropin releasing factor (CRF) both stimulates ACTH secretion from the pituitary and inhibits secretion of growth hormone (GH) in adult rats through actions in the CNS. The purpose of the present study was to evaluate these pituitary and central actions of CRF in neonatal rats, in which the hypothalamo- pituitary adrenal (HPA) axis is relatively hypo-functional. The results of this study show that central or peripheral administration of CRF evokes a marked dose-related rise in serum corticosterone in 6-day old rats. The same doses of CRF stimulate, rather than inhibit GH secretion. These results suggest that CRF has unique central actions early in ontogeny.  相似文献   

2.
The effect of thyrotrophin releasing hormone (TRH) or human pancreatic growth hormone releasing factor (hpGRF) on growth hormone (GH) release was studied in both dwarf and normal Rhode Island Red chickens with a similar genotype except for a sex-linked dw gene. Both TRH (10 micrograms/kg) and hpGRF (20 micrograms/kg) injections stimulated plasma GH release within 15 min in young and adult chickens. The increase in GH release was higher in young cockerels than that in adult chickens. The age-related decline in the response to TRH stimulation was observed in both strains, while hpGRF was a still potent GH-releaser in adult chickens. The maximal and long acting response was observed in young dwarf chickens, suggesting differences in GH pools releasable by TRH and GRF in the anterior pituitary gland. The pituitary gland was stimulated directly by perifusion with hpGRF (1 microgram/ml and 10 micrograms/ml) or TRH (1 microgram/ml). Repeated perifusion of GRF at 40 min intervals blunted further increase in GH release, but successive perifusion with TRH stimulated GH release. The results suggest the possibility that desensitization to the effects of hpGRF occurs in vitro and that the extent of response depends on the number of receptors for hpGRF or TRH and/or the amount of GH stored in the pituitary gland.  相似文献   

3.
The synthetic replicate of a 44 amino acid peptide isolated from a human pancreatic tumor which had caused acromegaly possesses high specific activity to release growth hormone (GH) in anesthetized male rats. The GH secretion induced by this peptide is dose-dependent from 50 ng to 1 μg, with plasma GH concentrations increasing more than 10-fold within 5 min of iv administration at the higher doses. Two enzymatic degradation products of the 44 residue peptide were also isolated and consist of the first 37 and 40 amino acids. All three peptides appear to possess similar potency, on a molar basis, invivo, contrary to invitro results. The specificity of these peptides on GH release was shown by their failure to alter plasma concentrations of prolactin (PRL), thyroid-stimulating hormone (TSH), luteinizing hormone (LH), follicle-stimulating hormone (FSH) and corticosterone. Based on these invivo results, the three peptides with serve as powerful tools with which to investigate the mechanisms of GH secretion.  相似文献   

4.
Synthetic human pancreatic Growth Hormone-Releasing Factor (hpGRF) elevated the plasma concentration of growth hormone (GH) in young and adult domestic fowl. This in vivo effect of hpGRF appeared to be largely similar for both the 32 amino-acid (hpGRF 1-32) or 40 amino-acid (hpGRF 1-40) polypeptide, although the effect of hpGRF 1-32 was more prolonged than that of hpGRF 1-40 in adult domestic fowl. The increase in plasma GH concentrations following hpGRF administration (10 micrograms/kg) was somewhat greater in young than adult chickens (the increase in plasma concentration of GH being 230 ng/ml at 1 week old, 282 ng/ml at 6 week old, 241 ng/ml at 10 weeks and 150 ng/ml in adults). In the adult domestic fowl hpGRF stimulated a greater increase in the plasma concentration of GH than did thyrotropin-releasing hormone (TRH). However in the young chicks TRH was more active. The in vitro release of GH from dispersed chicken pituitary cells was elevated by hpGRF (1-32) and hpGRF (1-40).  相似文献   

5.
Growth hormone releasing factor (GRF), a 44-residue peptide originally isolated from human pancreatic tumors, shows structural similarities to the members of the secretin-vasoactive intestinal peptide (VIP) peptides. This study was designed to determine the effects of human GRF (hGRF-(1-44] on pancreatic secretion in vivo in conscious dogs and in vitro in dispersed rat pancreatic acini. GRF given i.v. in graded doses in dogs caused a small but significant stimulation of pancreatic HCO3- and protein outputs and potentiated secretin- and cholecystokinin (CCK)-induced pancreatic HCO3- but not protein secretion. When given together with somatostatin, GRF failed to reverse the inhibitory action of this peptide on HCO3- and protein responses to secretin plus CCK in dogs. Studies in vitro dispersed rat pancreatic acini showed that GRF added to the incubation medium of these acini caused an increase in basal amylase release and shifted to the left the amylase dose-response curve to caerulein and urecholine but failed to affect the amylase response to VIP. This study indicates that GRF in vivo stimulates basal and augments secretin- or CCK-induced pancreatic HCO3- secretion and that this is probably due to direct stimulatory action of the peptide on pancreatic secretory cells.  相似文献   

6.
1. Basal circulating growth hormone (GH) concentrations in sex-linked-dwarf (SLD) chickens were unaffected by the intracerebroventricular (icv) injection of 10, 50 or 100 micrograms somatostatin (SRIF). 2. The GH response to systemic thyrotropin-releasing hormone (TRH; 10 micrograms/kg, iv) was, however, 'paradoxically' enhanced 20 min after icv SRIF administration. 3. A lower dose (1.0 micrograms) of SRIF had no effect on basal or TRH-induced GH release. 4. High-titre SRIF antisera (4 microliters) also had no acute effect on basal plasma GH concentrations, but augmented the GH response to TRH challenge. 5. SRIF would appear to act at central sites to modulate stimulated GH secretion in SLD chickens.  相似文献   

7.
Synthetic human pancreatic growth hormone-releasing factor (hpGRF) was injected intraperitoneally in different dosages, either as one injection or two injections 3 hours apart, into goldfish. Serum GH levels were increased by certain dosages of hpGRF under both treatments. This is the first demonstration of GH-releasing activity of hpGRF in a teleost fish.  相似文献   

8.
9.
Synthetic human pancreatic growth hormone releasing factor 1-44-amide was administered (8 micrograms/kg iv bolus) to chronically catheterised fetal sheep between 77 and 135 days of gestation and to infant sheep. At all ages human pancreatic growth hormone releasing factor induced a significant growth hormone response. In fetuses less than 120 days the integrated growth hormone response to human pancreatic growth hormone releasing factor (n = 5) was 250 +/- (SE) 50 ng X hr X ml-1 compared (p less than 0.001) to -22.8 +/- 8.6 ng X hr X ml-1 in saline treated controls (n = 7). In fetuses older than 120 days (n = 5), the response to human pancreatic growth hormone releasing factor was 110.8 +/- 15.6 ng X hr X ml-1 compared to -12.0 +/- 17.6 ng X hr X ml-1 in saline treated controls (n = 4 p less than 0.001). In 4 infant lambs (4-12 days) the response to human pancreatic growth hormone releasing factor (56.5 +/- 14.5 ng X hr X ml-1) was greater than in 6 control injected lambs (0.95 +/- 1.5 ng X hr X ml-1). The magnitude of the response to growth releasing factor decreased progressively with increasing postconceptual age (r = -0.80, p less than 0.001). These observations demonstrate that the fetal somatotrope can respond to exogenous growth releasing factor from at least 77 days of gestation. The progressive decrease in responsiveness may reflect the gradual development of somatostatin mediated inhibitory control or altered responsiveness of the somatotrope.  相似文献   

10.
63 non-obese healthy subjects aged 18 to 95 years were investigated for age-dependence of GHRH-stimulated GH-secretion. In addition, priming of GH-secretion with three oral doses of propranolol (3 x 80 mg, the last dose 2 hours prior to the second GHRH-bolus) was carried out in 15 subjects below 40 years and 13 subjects older than 70 years. We found that mean maximal incremental GH-levels were inversely correlated with chronological age (r = -0.44, P = 0.001) of the probands. Propranolol premedication caused a significant rise of both basal and peak GHRH-induced relative increases in all subjects tested, whereas GHRH-induced relative increases of GH remained unchanged. In a well selected group of non-obese healthy subjects stimulated GH-secretion is found to undergo an aging process that is supposed to be of pituitary and suprapituitary origin. Priming GH-secretion with a beta-Blocker is possible both in young and very old healthy subjects and is likely to affect the basal GH secretory tone and not GHRH-stimulated GH-secretion.  相似文献   

11.
The effects of a growth hormone releasing factor, human pancreatic growth hormone releasing factor-44 (hpGRF-44), on growth hormone (GH) secretion in calves, heifers and cows were studied. A single intravenous (iv) injection of 0.1, 0.25, 0.5 or 1.0 microgram of synthetic hpGRF-44 per kg of body weight (bw) in calves significantly elevated the circulating GH level within 2-5 min, while no increase in plasma GH was observed in saline injected control calves. The plasma GH level increased proportionally to the log dose of hpGRF-44, and reached a peak at 5-10 min (p less than 0.01). Subcutaneous injection of hpGRF-44 also elevated the plasma GH level, but the peak value at 15 min was 37% of that of iv injection (p less than 0.05). Intravenous injection of 0.25 microgram of hpGRF-44 per kg of bw to female calves, heifers, and cows significantly elevated mean the GH levels from 8.5, 2.3, and 1.6 ng/ml at 0 time to peak values of 97, 26, and 11.6 ng/ml, respectively (p less than 0.01). The plasma GH response and basal level in calves were significantly higher than those of heifers or cows (p less than 0.025). The plasma GH response to hpGRF-44 as well as the basal level decreased with advancing age. The plasma GH response to hpGRF-44 and basal GH in male calves were significantly greater than those in female calves (p less than 0.001). These results indicate that synthetic hpGRF-44 is a potent secretogogue for bovine GH, and suggest its usefulness in the assessment of GH secretion and reserve in cattle.  相似文献   

12.
Peptides with high intrinsic activity to release growth hormone from pituitary cells in tissue cultures were isolated from two different human pancreatic tumors that had caused acromegaly. Homogeneous peptides were obtained after gel filtration and two steps of reverse-phase high-performance liquid chromatography. From one tumor a 44-residue peptide (human pancreas growth hormone releasing factor, hpGRF-44) was isolated, together with two shorter fragments of reduced bioactivity having 40 and 37 amino acid residues (hpGRF-40, hpGRF-37). In contrast, the other tumor contained only one form of GRF which proved to be identical to hpGRF-40. These hpGRFs are indistinguishable from partially purified preparations of hypothalamic growth hormone releasing factor of human, porcine and murine origins with respect to biological activity and are very similar in their physicochemical properties (molecular weight, retention behavior on reverse-phase HPLC, absence of sulfhydryl groups). One of the pancreatic tumors also contained two forms of immunoreactive somatostatin. One form, after isolation and partial microsequencing, was identified as somatostatin-14 with a structure identical to that of the peptide found in other species. The second form has tentatively been identified as somatostatin-28 on the basis of chromatographic behavior.  相似文献   

13.
Blood concentrations of anterior pituitary hormones, ACTH, GH, TSH, PRL, LH, and FSH were determined in corticotropin releasing factor (CRF) test (synthetic ovine CRF 1.0 microgram per kg body weight) and growth hormone releasing factor (GRF) test (synthetic human pancreatic GRF-44 100 micrograms) in 2 female sibling patients with congenital isolated TSH deficiency, in their mother, in 2 patients with congenital primary hypothyroidism and in 8 normal controls. The patients with isolated TSH deficiency showed normally increased plasma ACTH and serum GH after CRF and GRF, respectively, and also showed an abnormal GH response to CRF. The serum GH showed a rapid increase to maximum levels (12.9 ng/ml) within 30 to 60 min followed by decrease. The possibility of secretion of abnormal GH could be excluded by the fact that on serum dilution, GH value gave a linear plot passing through zero. In addition, serum PRL, LH and FSH levels after CRF administration in case 1 and PRL after GRF in case 2 were also slightly increased but these responses were marginal. The mother of the patients, patients with congenital primary hypothyroidism, and normal healthy controls showed normal responses of pituitary hormones throughout the experiment. Data from the present study and a previous report show that abnormal GH response to the hypothalamic hormones (CRF, TRH and LHRH) may be observed in patients with congenital isolated TSH deficiency.  相似文献   

14.
The hypophysiotropic activities of a synthetic human pancreatic growth hormone releasing factor (hpGRF) with 40 residues was examined in vitro using rat pituitary halves. At concentrations from 10(-10) M to 10(-7) M the peptide stimulated GH release in a dose-dependent manner with the ED50 being 1.2 x 10(-9) M. The concentration of 10(-10) M hpGRF is comparable to the basal hypophyseal portal blood levels of other known hypothalamic hypophysiotropic hormones. However, GH release was enhanced three-fold by concentration as low as 10(-12) M, though no dose-response relationship was observed up to 10(-10) M. Thus, this peptide not only stimulates the release of GH in a dose-dependent manner, but at lower concentrations also maintains elevated GH levels. The release of ACTH, beta-endorphin, LH, and FSH was not affected by hpGRF at any of the concentrations tested. At hpGRF concentrations less than 10(-7) M, the release of TSH and PRL were unaffected. However, at 10(-6) M, TSH release was enhanced about 2.5 fold and prolactin release was elevated slightly.  相似文献   

15.
16.
This investigation compares the age- and sex-related changes in growth hormone (GH) response to growth hormone releasing hormone (GHRH) in normal subjects using an appropriate pharmacokinetic model. Twenty-five subjects (14 males and 11 females) aged 23-89 yr received a single intravenous bolus dose (1 microgram/kg) of GHRH-40 solution. Plasma GH concentration-time profiles are best characterized by a biexponential equation (or one-compartment model) with first-order release and disappearance rates and an equilibration lag time. The harmonic mean release rate half-life is similar for both sexes (males: 12.6 min vs. females; 11.4 min) but significantly different across age groups (23-35 yr: 7.2 min vs. 50-89 yr: 16.8 min). The mean disappearance rate half-life and GHRH-equilibration time lag for females (33.6 and 20.4 min, respectively) and the higher age group subjects (32.4 and 21.6 min, respectively) are significantly longer than those of males (22.8 and 9 min, respectively) and the lower age-group subjects (21.6 and 8.4 min, respectively). The mean metabolic clearance rate of GH is significantly lower (p less than 0.02) for females than for males (3.1 vs. 4.83 ml/hr.m2). However, the production rate and the amount of GH released by the pituitary for our subjects appear to be very similar for both males (8.7 micrograms/hr.m2 and 4.65 micrograms/m2) and females (9.33 micrograms/hr.m2 and 5.11 micrograms/m2).  相似文献   

17.
Growth hormone (GH) secretion is controlled by growth hormone releasing factor (GRF) but changes in the circulating level of this hormone are difficult to measure. Insulin-like growth factor (IGF-I) is a GH-dependent growth factor which significantly but slightly inhibits stimulated GH release in vitro. We have tested the effects of GRF and IGF-I on GH release in pregnancy, a state in which serum concentrations of GH are elevated and levels of IGF-I are lowered. We have found, in a system of acutely dispersed adenohypophysial cells prepared from pregnant (day 21-23) or control cycling female rats, that adenohypophysial cells from pregnant rats have an increased GH release with GRF. In contrast, IGF-I inhibition is similar but slightly smaller. These altered responses may result in elevated serum GH levels during pregnancy.  相似文献   

18.
The effects of synthetic somatostatin (SRIF) on serum growth hormone (GH) concentrations stimulated by exogenous administration of synthetic thyrotropin-releasing hormone (TRH) and/or human pancreatic GH-releasing factor (hpGRF) were investigated in 4-week-old cockerels. In addition, the additive effects of TRH and hpGRF on serum GH were examined. TRH and hpGRF, when given in combination intravenously, produced an additive effect on serum GH concentration that peaked 10 min after the injection. The somatostatin did not significantly affect basal GH concentrations when given alone, but did significantly decrease the magnitude of the GH response to hpGRF. In contrast, SRIF did not significantly decrease the stimulatory effects of TRH on GH release. These results suggest that TRH and hpGRF are potent GH releasers in vivo and that their stimulating effects on GH release are additive, suggesting different mechanisms for their stimulation. The results obtained from the combination studies suggest that the main site of the stimulatory action of hpGRF is at the pituitary, and that SRIF significantly inhibited the rise in serum GH induced by a synthetic hpGRF, but not that induced by TRH.  相似文献   

19.
Galanin stimulates rat pituitary growth hormone secretion in vitro   总被引:1,自引:0,他引:1  
The effect of galanin on growth hormone (GH) secretion was investigated in monolayer cultures of rat anterior pituitary cells. Galanin caused a gradual increase in GH concentrations into the culture medium that was maximal at 90 minutes and sustained after 180 minutes. The ED50 for galanin-stimulated GH secretion was approximately 200 nM compared to an ED50 for rat GH-releasing factor (rGRF)-stimulated GH secretion of 10pM. Galanin and rGRF were additive in increasing GH release into the incubation medium. These data indicate that porcine-derived galanin has a direct effect on pituitary GH secretion in vitro.  相似文献   

20.
Synthetic thyrotropin releasing hormone (TRH) and human pancreatic growth hormone releasing factor (hpGRF) stimulated growth hormone (GH) secretion in 6- to 9-week-old turkeys in a dose-related manner. TRH and hpGRF (1 and 10 micrograms/kg, respectively) each produced a sixfold increase in circulating GH levels 10 min after iv injection. Neither TRH nor hpGRF caused a substantial change in prolactin (PRL) secretion in unrestrained turkeys sampled through intraatrial cannulas. However, some significant increases in PRL levels, possibly related to stress, were noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号