首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
6-Phosphogluconate dehydrogenase has been purified from human brain to a specific activity of 22.8 U/mg protein. The molecular weight was 90,000. At low ionic strengths enzyme activity increased, due to an increase in Vmax and a decrease in Km for 6-phosphogluconate, and activity subsequently decreased as the ionic strength was increased (above 0.12). Both 6-phosphogluconate and NADP+ provided good protection against thermal inactivation, with 6-phosphogluconate also providing considerable protection against loss of activity caused by p-chloromercuribenzoate and iodoacetamide. Initial velocity studies indicated the enzyme mechanism was sequential. NADPH was a competitive inhibitor with respect to NADP+, and the Ki values for this inhibition were dependent on the concentration of 6-phosphogluconate. Product inhibition by NADPH was noncompetitive when 6-phosphogluconate was the variable substrate, whereas inhibition by the products CO2 and ribulose 5-phosphogluconate and NADP+ were varied. In totality these data suggest that binding of substrates to the enzyme is random. CO2 and ribulose 5-phosphate are released from the enzyme in random order with NADPH as the last product released.  相似文献   

2.
Investigation into the phosphatidylinositol kinase activities in bovine brain has revealed the presence of a type I PtdIns kinase activity. This classification is based upon potent inhibition by neutral detergent and the production of a phosphatidylinositol phosphate that can be distinguished from phosphatidyl-inositol-4-phosphate [PtdIns(4)P] by thin-layer chromatography. The enzyme has been substantially purified and the activity is associated with an 85-kDa polypeptide on SDS/polyacrylamide gel electrophoresis. Analysis of the product confirms the identification of the enzyme as a type I PtdIns kinase. The purified kinase has been characterized with respect to substrate dependence (Mg2+, ATP, PtdIns), substrate presentation (pure lipid versus mixed micelle) and specificity [PtdIns versus PtdIns(4)P and phosphatidylinositol 4,5-bisphosphate].  相似文献   

3.
Chan KK  Fedorov AA  Fedorov EV  Almo SC  Gerlt JA 《Biochemistry》2008,47(36):9608-9617
Enzymes that share the (beta/alpha) 8-barrel fold catalyze a diverse range of reactions. Many utilize phosphorylated substrates and share a conserved C-terminal (beta/alpha) 2-quarter barrel subdomain that provides a binding motif for the dianionic phosphate group. We recently reported functional and structural studies of d-ribulose 5-phosphate 3-epimerase (RPE) from Streptococcus pyogenes that catalyzes the equilibration of the pentulose 5-phosphates d-ribulose 5-phosphate and d-xylulose 5-phosphate in the pentose phosphate pathway [J. Akana, A. A. Fedorov, E. Fedorov, W. R. P. Novack, P. C. Babbitt, S. C. Almo, and J. A. Gerlt (2006) Biochemistry 45, 2493-2503]. We now report functional and structural studies of d-allulose 6-phosphate 3-epimerase (ALSE) from Escherichia coli K-12 that catalyzes the equilibration of the hexulose 6-phosphates d-allulose 6-phosphate and d-fructose 6-phosphate in a catabolic pathway for d-allose. ALSE and RPE prefer their physiological substrates but are promiscuous for each other's substrate. The active sites (RPE complexed with d-xylitol 5-phosphate and ALSE complexed with d-glucitol 6-phosphate) are superimposable (as expected from their 39% sequence identity), with the exception of the phosphate binding motif. The loop following the eighth beta-strand in ALSE is one residue longer than the homologous loop in RPE, so the binding site for the hexulose 6-phosphate substrate/product in ALSE is elongated relative to that for the pentulose 5-phosphate substrate/product in RPE. We constructed three single-residue deletion mutants of the loop in ALSE, DeltaT196, DeltaS197 and DeltaG198, to investigate the structural bases for the differing substrate specificities; for each, the promiscuity is altered so that d-ribulose 5-phosphate is the preferred substrate. The changes in k cat/ K m are dominated by changes in k cat, suggesting that substrate discrimination results from differential transition state stabilization. In both ALSE and RPE, the phosphate group hydrogen bonds not only with the conserved motif but also with an active site loop following the sixth beta-strand, providing a potential structural mechanism for coupling substrate binding with catalysis.  相似文献   

4.
The overlapping yaaG and yaaF genes from Bacillus subtilis were cloned and overexpressed in Escherichia coli. Purification of the gene products showed that yaaG encoded a homodimeric deoxyguanosine kinase (dGK) and that yaaF encoded a homodimeric deoxynucleoside kinase capable of phosphorylating both deoxyadenosine and deoxycytidine. The latter was identical to a previously characterized dAdo/dCyd kinase (M?llgaard, H. (1980) J. Biol. Chem. 255, 8216-8220). The purified recombinant dGK was highly specific toward 6-oxopurine 2'-deoxyribonucleosides as phosphate acceptors showing only marginal activities with Guo, dAdo, and 2',3'-dideoxyguanosine. UTP was the preferred phosphate donor with a Km value of 6 microm compared with 36 microm for ATP. In addition, the Km for dGuo was 0.6 microm with UTP but 6.5 microm with ATP as phosphate donor. The combination of these two effects makes UTP over 50 times more efficient than ATP. Initial velocity and product inhibition studies indicated that the reaction with dGuo and UTP as substrates followed an Ordered Bi Bi reaction mechanism with UTP as the leading substrate and UDP the last product to leave. dGTP was a potent competitive inhibitor with respect to UTP. Above 30 microm of dGuo, substrate inhibition was observed, but only with UTP as phosphate donor.  相似文献   

5.
Escherichia coli guanosine-inosine kinase was overproduced, purified, and characterized. The native and subunit molecular weights were 85,000 and 45,000, respectively, indicating that the enzyme was a dimer. A pI of 6.0 was obtained by isoelectric focusing. In addition to ATP, it was found that deoxyadenosine 5'-triphosphate, UTP, and CTP could serve as phosphate donors. The phosphate acceptors were guanosine, inosine, deoxyguanosine and xanthosine, but not adenosine, cytidine, uridine, or deoxythymidine. Maximum activity was attained at an ATP/Mg2+ concentration ratio of 0.5. In the presence of pyrimidine nucleotides, enzyme activity was slightly increased, while it was markedly inhibited by GDP and GTP. Initial velocity and product inhibition studies support an ordered Bi Bi mechanism in which guanosine was the first substrate to bind and GMP was the last product to be released. Guanosine kinase may be a regulatory enzyme that has a role in modulating nucleotide levels.  相似文献   

6.
Metabolism of D-arabinose: a new pathway in Escherichia coli   总被引:19,自引:16,他引:3       下载免费PDF全文
Several growth characteristics of Escherichia coli K-12 suggest that growth on l-fucose results in the synthesis of all the enzymes necessary for growth on d-arabinose. Conversely, when a mutant of E. coli is grown on d-arabinose, all of the enzymes necessary for immediate growth on l-fucose are present. Three enzymes of the l-fucose pathway in E. coli, l-fucose isomerase, l-fuculokinase, and l-fuculose-l-phospháte aldolase possess activity on d-arabinose, d-ribulose, and d-ribulose-l-phosphate, respectively. The products of the aldolase, with d-ribulose-l-phosphate as substrate, are dihydroxyacetone phosphate and glycolaldehyde. l-Fucose, but not d-arabinose, is capable of inducing these activities in wild-type E. coli. In mutants capable of utilizing d-arabinose as sole source of carbon and energy, these activities are induced in the presence of d-arabinose and in the presence of l-fucose. Mutants unable to utilize l-fucose, selected from strains capable of growth on d-arabinose, are found to have lost the ability to grow on d-arabinose. Enzymatic analysis of cell-free extracts, prepared from cultures of these mutants, reveals that a deficiency in any of the l-fucose pathway enzymes results in the loss of ability to utilize d-arabinose. Thus, the pathway of d-arabinose catabolism in E. coli K-12 is believed to be: d-arabinose right harpoon over left harpoon d-ribulose --> d-ribulose-l-phosphate right harpoon over left harpoon dihydroxyacetone phosphate plus glycolaldehyde. Evidence is presented which suggests that the glycolaldehyde is further oxidized to glycolate.  相似文献   

7.
Background: Arabitol dehydrogenase (ArDH) is involved in the production of different sugar alcohols like arabitol, sorbitol, mannitol, erythritol and xylitol by using five carbon sugars as substrate. Arabinose, d-ribose, d-ribulose, xylose and d-xylulose are known substrate of this enzyme. ArDH is mainly produced by osmophilic fungi for the conversion of ribulose to arabitol under stress conditions. Recently this enzyme has been used by various industries for the production of pharmaceutically important sugar alcohols form cheap source than glucose. But the information at structure level as well as its binding energy analysis with different substrates was missing. Results: The present study was focused on sequence analysis, insilico characterization and substrate binding analysis of ArDH from a fungus specie candida albican. Sequence analysis and physicochemical properties showed that this protein is highly stable, negatively charged and having more hydrophilic regions, these properties made this enzyme to bind with number of five carbon sugars as substrate. The predicted 3D model will helpful for further structure based studies. Docking analysis provided free energies of binding of each substrate from a best pose as arabinose -9.8224calK/mol, dribose -11.3701Kcal/mol, d-ribulose -8.9230Kcal/mol, xylose -9.7007Kcal/mol and d-xylulose 9.7802Kcal/mol. Conclusion: Our study provided insight information of structure and interactions of ArDH with its substrate. These results obtained from this study clearly indicate that d-ribose is best substrate for ArDH for the production of sugar alcohols. This information will be helpful for better usage of this enzyme for hyper-production of sugar alcohols by different industries.  相似文献   

8.
Diglyceride kinase (diacylglycerol kinase, E.C. 2.7.1.-), an enzyme localized in the inner membrane of Escherichia coli, has been purified about 600-fold. The purified enzyme exhibits an absolute requirement for magnesium ion; its activity toward both lipid and nucleotide substrates is stimulated by diphosphatidylglycerol or other phospholipids. Adenine nucleotides are much better substrates for the enzyme than are other purine or pyrimidine nucleotides. The purified enzyme preparation catalyzes the phosphorylation of a number of lipids, including ceramide and several ceramide and diacylglycerol-like analogs. The broad lipid substrate specificity of diglyceride kinase suggests that this enzyme may function in vivo for the phosphorylation of an acceptor other than diacylglycerol.  相似文献   

9.
The cytoplasmic protein-tyrosine kinase domain of the insulin receptor (residues 959-1355) has been expressed as a soluble protein in Sf9 insect cells via a Baculovirus expression vector (Ellis, L., Levitan, A., Cobb, M.H., and Ramos, P. (1988) J. Virol. 62, 1634-1639). The purified protein is a monomer as judged by its behavior in sucrose gradients and on gel filtration in the presence or absence of protamine. The initial rate of autophosphorylation using 3 mM MgCl2 is increased 20-30-fold by protamine. A maximum of 4-5 mol of phosphate are incorporated per mol of enzyme. The activity of the enzyme as a function of phosphorylation state was studied for three substrates: a synthetic dodecapeptide derived from the sequence of the major autophosphorylation site in the insulin receptor, poly(Glu, Tyr), 4:1, and histone 2B. Autophosphorylation of the protein to a stoichiometry of 4-5 mol of phosphate/mol increases its enzymatic activity as much as 200-fold; a 30-fold increase in activity occurs upon addition of 1 mol of phosphate/mol. The activities of unphosphorylated enzyme with the three substrates are 3.4, 2.3, and 0.44 nmol/min/mg, respectively. The activities of the autophosphorylated enzyme with the three substrates are 175, 274, and 45 nmol/min/mg, respectively. Exposure of the autophosphorylated enzyme to ADP results in a loss of phosphate from the enzyme which is associated with a decrease in enzymatic activity. Autophosphorylation of the kinase in the presence or absence of protamine displays a marked dependence on enzyme concentration. Furthermore, the rate of autophosphorylation decreases as the viscosity of the solution increases. Taken together, these data suggest that phosphorylation occurs via an intermolecular reaction.  相似文献   

10.
The 3'-terminal region of starfish Asterina pectinifera cdc25 cDNA encoding the C-terminal catalytic domain was overexpressed in Escherichia coli. The C-terminal domain consisted of 226 amino acid residues containing the signature motif HCxxxxxR, a motif highly conserved among protein tyrosine and dual-specificity phosphatases, and showed phosphatase activity toward p-nitrophenyl phosphate. The enzyme activity was strongly inhibited by SH inhibitors. Mutational studies indicated that the cysteine and arginine residues in the conserved motif are essential for activity, but the histidine residue is not. These results suggest that the enzyme catalyzes the reaction through a two-step mechanism involving a phosphocysteine intermediate like in the cases of other protein tyrosine and dual-specificity phosphatases. The C-terminal domain of Cdc25 activated the histone H1 kinase activity of the purified, inactive form of Cdc2.cyclin B complex (preMPF) from extracts of immature starfish oocytes. Synthetic diphosphorylated di- to nonadecapeptides mimicking amino acid sequences around the dephosphorylation site of Cdc2 still retained substrate activity. Phosphotyrosine and phosphothreonine underwent dephosphorylation in this order. This is the reverse order to that reported for the in vivo and in vitro dephosphorylation of preMPF. Monophosphopeptides having the same sequence served as much poorer substrates. As judged from the results with synthetic phosphopeptides, the presence of two phosphorylated residues was important for specific recognition of substrates by the Cdc25 phosphatase.  相似文献   

11.
Sequences termed v-abl, which encode the protein-tyrosine kinase activity of Abelson murine leukemia virus, have been expressed in Escherichia coli as a fusion product (ptabl50 kinase). This fusion protein contains 80 amino acids of SV40 small t and the 403 amino acid protein kinase domain of v-abl. We report here the purification and characterization of this kinase. The purified material contains two proteins (Mr = 59,800 and 57,200), both of which possess sequences derived from v-abl. Overall purification was 3,750-fold, with a 31% yield, such that 117 micrograms of kinase could be obtained from 40 g of E. coli within 6-7 days. The specific kinase activity is over 170 mumol of phosphate min-1 mumol-1, comparable to the most active protein-serine kinases. Kinase activity is insensitive to K+, Na+, Ca2+, Ca2+-calmodulin, cAMP, or cAMP-dependent protein kinase inhibitor. The Km for ATP is dependent on the concentration of the second substrate. GTP can also be used as a phosphate donor. The enzyme can phosphorylate peptides consisting of as few as two amino acids and, at a very low rate, free tyrosine. Incubation of the kinase with [gamma-32P]ATP results in incorporation of 1.0 mol of phosphate/mol of protein. This reaction, however, cannot be blocked by prior incubation with unlabeled ATP. Incubation of 32P-labeled kinase with either ADP or ATP results in the synthesis of [32P]ATP. This suggests the phosphotyrosine residue on the Abelson kinase contains a high energy phosphate bond.  相似文献   

12.
As a step to further understand the role of adenylate kinase (AK) in the energy metabolism network, we identified, purified, and characterized a previously undescribed adenylate kinase in Drosophila melanogaster. The cDNA encodes a 175-amino acid protein, which shows 47.85% identity in 163 amino acids to human AK6. The recombinant protein was successfully expressed in Escherichia coli BL21(DE3) strain. Characterization of this protein by enzyme activity assay showed adenylate kinase activity. AMP and CMP were the preferred substrates, and UMP can also be phosphorylated to some extent, with ATP as the best phosphate donor. Subcellular localization study showed a predominantly nuclear localization. Therefore, based on the substrate specificity, the specific nuclear localization in the cell, and the sequence similarity with human AK6, we named this novel adenylate kinase identified from the fly DAK6.  相似文献   

13.
Methods for the quantitative determination of ribose 5-phosphate isomerase, ribulose 5-phosphate 3-epimerase, transketolase and transaldolase in tissue extracts are described. The determinations depend on the measurement of glyceraldehyde 3-phosphate by using the coupled system triose phosphate isomerase, α-glycero-phosphate dehydrogenase and NADH. By using additional purified enzymes transketolase, ribose 5-phosphate isomerase and ribulose 5-phosphate epimerase conditions could be arranged so that each enzyme in turn was made rate-limiting in the overall system. Transaldolase was measured with fructose 6-phosphate and erythrose 4-phosphate as substrates, and again glyceraldehyde 3-phosphate was measured by using the same coupled system. Measurements of the activities of the non-oxidative reactions of the pentose phosphate pathway were made in a variety of tissues and the values compared with those of the two oxidative steps catalysed by glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase.  相似文献   

14.
1. A cyclic 3',5'-AMP-independent protein kinase (ATP : protein phosphotransferase, EC 2.7.1.37) from rat liver cytosol was partially purified and characterized. Purification by (NH4)2SO4 precipitation, DEAE-cellulose, Bio Gel A-0.5 m and cellulose phosphate chromatography increased the specific activity about 700-fold. 2. An endogenous protein substrate was closely associated with the protein kinase and was not separable from this enzyme up to the cellulose phosphate stage. After phosphorylation, chromatography with Bio Gel A-0.5 m partially separated this endogenous phosphoprotein from the enzyme activity; this dissociation had no apparent effect on kinase activity with casein or phosvitin as substrates, or on the apparent molecular weight of the enzyme (approx. 158,000). 3. This protein kinase with casein, phosvitin, or the endogenous substrate was totally insensitive to the thiol reagents, p-hydroxymercuribenzoate, 5,5'-dithiobis(2-nitrobenzoic acid), iodoacetamide, and N-ethylmaleimide. The enzyme was also unaffected by cyclic 3',5'-AMP, heat-stable protein kinase inhibitor, and the regulatory subunit of a cyclic 3',5'-AMP-dependent protein kinase.  相似文献   

15.
Optimal assay conditions for analyses of the catalytic subunit activity of the cyclic AMP-dependent protein kinase using a well-defined, commercially available synthetic peptide as the phosphate acceptor are defined. Activity of purified catalytic subunit toward the synthetic peptide Leu-Arg-Arg-Ala-Ser-Leu-Gly (PK-1; Kemptide) was 1.5- to 45-fold greater than activity toward other commonly used substrates such as histone fractions, casein, and protamine. The effects of buffer, pH, Mg2+, and protein kinase concentration on activity toward PK-1 were investigated. The optimal assay conditions determined were as follows: 20 mM Hepes or phosphate buffer, pH 7.5, 100 microM PK-1, 100 microM [gamma-32P]ATP, 3 mM MgCl2, 12 mM KCl, and 20-200 ng of catalytic subunit assayed at 30 degrees C. Since PK-1 is the only commercially available, well-defined substrate for this enzyme, adaption of the proposed standard assay conditions for the analyses of purified catalytic subunit activity will permit direct comparison of kinetic parameters and purity of enzyme preparations from multiple preparations.  相似文献   

16.
Exogenous purified rabbit skeletal-muscle glycogen synthase was used as a substrate for adipose-tissue phosphoprotein phosphatase from fed and starved rats in order to (1) compare the relationship between phosphate released from, and the kinetic changes imparted to, the substrate and (2) ascertain if decreases in adipose-tissue phosphatase activity account for the apparent decreased activation of endogenous glycogen synthase from starved as compared with fed rats. Muscle glycogen synthase was phosphorylated with [gamma-(32)P]ATP and cyclic AMP-dependent protein kinase alone, or in combination with a cyclic AMP-independent protein kinase, to 1.7 or 3mol of phosphate per subunit. Adipose-tissue phosphatase activity determined with phosphorylated skeletal-muscle glycogen synthase as substrate was decreased by 35-60% as a consequence of starvation. This decrease in phosphatase activity had little effect on the capacity of adipose-tissue extracts to activate exogenous glycogen synthase (i.e. to increase the glucose 6-phosphate-independent enzyme activity), although there were marked differences in the activation profiles for the two exogenous substrates. Glycogen synthase phosphorylated to 1.7mol of phosphate per subunit was activated rapidly by adipose-tissue extracts from either fed or starved rats, and activation paralleled enzyme dephosphorylation. Glycogen synthase phosphorylated to 3mol of phosphate per subunit was activated more slowly and after a lag period, since release of the first mol of phosphate did not increase the glucose 6-phosphate-independent activity of the enzyme. These patterns of enzyme activation were similar to those observed for the endogenous adipose-tissue glycogen synthase(s): the glucose 6-phosphate-independent activity of the endogenous enzyme from fed rats increased rapidly during incubation, whereas that of starved rats, like that of the more highly phosphorylated muscle enzyme, increased only very slowly after a lag period. The observations made here suggest that (1) changes in glucose 6-phosphate-independent glycogen synthase activity are at best only a qualitative measure of phosphoprotein phosphatase activity and (2) the decrease in glycogen synthase phosphatase activity during starvation is not sufficient to explain the differential glycogen synthase activation in adipose tissue from fed and starved rats. However, alterations in the phosphorylation state of glycogen synthase combined with decreased activity of phosphoprotein phosphatase, both as a consequence of starvation, could explain the apparent markedly decreased enzyme activation.  相似文献   

17.
A cytosolic protein-tyrosine kinase has been highly purified from porcine spleen using [Val5]angiotensin II as a substrate. The purification procedure involves sequential column chromatographies on phosphocellulose, Sephacryl S-200, casein-Sepharose 4B, heparin-Sepharose CL-6B and anti-(4-aminobenzyl phosphonic acid)--Sepharose 4B. Analysis of the most highly purified preparation by SDS/PAGE revealed a major silver-stained band of molecular mass 40 kDa. The 40-kDa cytosolic protein-tyrosine kinase was purified approximately 10,000-fold with an overall yield of about 7%. It had autophosphorylation activity which was carried out by intramolecular catalysis. The stoichiometry of phosphate incorporation was about 1 mol phosphate/mol enzyme. In the autophosphorylation reaction, the apparent Km value for ATP was relatively low, 0.35 microM; Mn2+ was slightly preferred to Mg2+ as divalent cation. [Val5]Angiotensin II phosphorylation activity of the 40-kDa kinase increased with the amount of phosphate incorporated into the enzyme. A phosphate exchange reaction was observed during the autophosphorylation. These results suggest that the 40-kDa kinase described here is a different type of protein-tyrosine kinase than the enzymes so far reported.  相似文献   

18.
Y T Ro  C Y Eom  T Song  J W Cho    Y M Kim 《Journal of bacteriology》1997,179(19):6041-6047
Acinetobacter sp. strain JC1 DSM 3803, a carboxydobacterium, grown on methanol was found to show dihydroxyacetone synthase, dihydroxyacetone kinase, and ribulose 1,5-bisphosphate carboxylase, but no hydroxypyruvate reductase and very low hexulose 6-phosphate synthase, activities. The dihydroxyacetone synthase was found to be expressed earlier than the ribulose 1,5-bisphosphate carboxylase. The dihydroxyacetone synthase was purified 19-fold in eight steps to homogeneity, with a yield of 9%. The final specific activity of the purified enzyme was 1.12 micromol of NADH oxidized per min per mg of protein. The molecular weight of the native enzyme was determined to be 140,000. Sodium dodecyl sulfate-gel electrophoresis revealed a subunit of molecular weight 73,000. The optimum temperature and pH were 30 degrees C and 7.0, respectively. The enzyme was inactivated very rapidly at 70 degrees C. The enzyme required Mg2+ and thiamine pyrophosphate for maximal activity. Xylulose 5-phosphate was found to be the best substrate when formaldehyde was used as a glycoaldehyde acceptor. Erythrose 4-phosphate, glycolaldehyde, and formaldehyde were found to act as excellent substrates when xylulose 5-phosphate was used as a glycoaldehyde donor. The Kms for formaldehyde and xylulose 5-phosphate were 1.86 mM and 33.3 microM, respectively. The enzyme produced dihydroxyacetone from formaldehyde and xylulose 5-phosphate. The enzyme was found to be expressed only in cells grown on methanol and shared no immunological properties with the yeast dihydroxyacetone synthase.  相似文献   

19.
C Bohman  S Eriksson 《Biochemistry》1988,27(12):4258-4265
Deoxycytidine kinase from human leukemic spleen has been purified 6000-fold to apparent homogeneity with an overall yield of 10%. The purification was achieved by using DEAE chromatography, hydroxylapatite chromatography, and affinity chromatography on dTTP-Sepharose. Only one form of deoxycytidine kinase activity was found during all the chromatographic procedures. The subunit molecular mass, as judged by sodium dodecyl sulfate--polyacrylamide gel electrophoresis, was 30 kilodaltons. The pure enzyme phosphorylates deoxycytidine, deoxyadenosine, and deoxyguanosine, demonstrating for the first time that the same enzyme molecule has the capacity to use these three nucleosides as substrates. The apparent molecular weight of the active enzyme, determined by gel filtration and glycerol gradient centrifugation, was 60,000. Thus, the active form of human deoxycytidine kinase is a dimer. The kinetic behavior of pure human deoxycytidine kinase was studied in detail with regard to four different phosphate acceptors and two different phosphate donors. The apparent Km values were 1, 20, 150, and 120 microM for deoxycytidine, arabinosylcytosine, deoxyguanosine, and deoxyadenosine, respectively. The Vmax values were 5-fold higher for the purine nucleosides as compared to the pyrimidine substrates. We observe competitive inhibition of the phosphorylation of one substrate by the presence of either of the three other substrates, but the apparent Ki values differed greatly from the corresponding Km values, suggesting the existence of allosteric effects. The double-reciprocal plots for ATP-MgCl2 as phosphate donor were convex, indicating negative cooperative effects. In contrast, plots with varying dTTP-MgCl2 concentration as phosphate donor were linear with an apparent Km of 2 microM. The enzyme activity was strongly inhibited by dCTP, in a noncompetitive way with deoxycytidine and in a competitive way with ATP-MgCl2.  相似文献   

20.
An important active-site residue in the glycolytic enzyme triosephosphate isomerase is His-95, which appears to act as an electrophilic component in catalyzing the enolization of the substrates. With the techniques of site-directed mutagenesis, His-95 has been replaced by Gln in the isomerase from Saccharomyces cerevisiae. The mutant isomerase has been expressed in Escherichia coli strain DF502 and purified to homogeneity. The specific catalytic activity of the mutant enzyme is less than that of wild type by a factor of nearly 400. The mutant enzyme can be resolved from the wild-type isomerase on nondenaturing isoelectric focusing gels, and an isomerase activity stain shows that the observed catalytic activity indeed derives from the mutant protein. The inhibition constants for arsenate and for glycerol phosphate with the mutant enzyme are similar to those with the wild-type isomerase, but the substrate analogues 2-phosphoglycolate and phosphoglycolohydroxamate bind 8- and 35-fold, respectively, more weakly to the mutant isomerase. The mutant enzyme shows the same stereospecificity of proton transfer as the wild type. Tritium exchange experiments similar to those used to define the free energy profile for the wild-type yeast isomerase, together with a new method of analysis involving 14C and 3H doubly labeled substrates, have been used to investigate the energetics of the mutant enzyme catalyzed reaction. When the enzymatic reaction is conducted in tritiated solvent, the mutant isomerase does not catalyze any appreciable exchange between protons of the remaining substrate and those of the solvent either in the forward reaction direction (using dihydroxyacetone phosphate as substrate) or in the reverse direction (using glyceraldehyde phosphate as substrate). However, the specific radioactivity of the product glyceraldehyde phosphate formed in the forward reaction is 31% that of the solvent, while that of the product dihydroxyacetone phosphate formed in the reverse reaction is 24% that of the solvent. The deuterium kinetic isotope effects observed with the mutant isomerase using [1(R)-2H]dihydroxyacetone phosphate and [2-2H]glyceraldehyde 3-phosphate are 2.15 +/- 0.04 and 2.4 +/- 0.1, respectively. These results lead to the conclusion that substitution of Gln for His-95 so impairs the ability of the enzyme to stabilize the reaction intermediate that there is a change in the pathways of proton transfer mediated by the mutant enzyme. The data allow us more closely to define the role of His-95 in the reaction catalyzed by the wild-type enzyme, while forcing us to be alert to subtle changes in mechanistic pathways when mutant enzymes are generated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号