首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leishmania tropica, Trypanosoma brucei, Trypanosoma cruzi, and Crithidia fasciculata have superoxide dismutases which are insensitive to cyanide and sensitive to peroxide and azide, properties characteristic of iron-containing superoxide dismutase. Studies on the superoxide dismutase of C. fasciculata have revealed that: 1) the enzyme is located in the cytosol; 2) isozymes exist; 3) the major superoxide dismutase isozyme (superoxide dismutase 2) has Mr approximately equal to 43,000 and consists of two equal-sized subunits, each of which contains 1.4 atoms of iron. Comparisons of the amino acid content of this crithidial superoxide dismutase with those of superoxide dismutases from other sources suggests that the crithidial enzyme is closely related to bacterial Fe-containing superoxide dismutases, and only distantly related to human Mn- and Cu,Zn-containing superoxide dismutases and to Euglena Fe-containing superoxide dismutase. Attempts are now underway to develop specific inhibitors of the trypanosomatid superoxide dismutase which may be of use in the treatment of leishmaniasis or trypanosomiasis.  相似文献   

2.
An iron-containing superoxide dismutase has been purified from the protozoan Tetrahymena pyriformis. It has a molecular weight of 85,000 and is composed of four subunits of equal size. The tetramer contains 2.5 g atoms of ferric iron. Visible absorption and electron spin resonance spectra closely resemble those of other iron-containing superoxide dismutases. The amino acid sequence of the iron superoxide dismutase was determined. Each subunit is made up of 196 residues, corresponding to a molecular weight of 22,711. Comparison of the primary structure with the known sequences of other iron-containing superoxide dismutases reveals a relatively low degree of identity (33-34%). However, a higher percentage identity is found with mammalian manganese-containing superoxide dismutases (41-42%). The amino acid sequence is discussed in consideration of residues that may distinguish iron from manganese or dimeric from tetrameric superoxide dismutases.  相似文献   

3.
Methanobacterium bryantii contains a single electrophoretically discernible superoxide dismutase, which constitutes 0.4% of the extractable protein. This enzyme has been purified to electrophoretic and ultracentrifugal homogeneity. It appears to be a tetramer. The subunits were tenaciously, but noncovalently bonded and were of identical size. The molecular weight of the enzyme was found to be 91,000 ± 2000. The specific activity of this enzyme was identical to that previously noted for the corresponding enzyme from Escherichia coli. The enzyme contained 2.7 atoms of Fe, 1.7 atoms of Zn, and less than 0.2 atoms Mn per tetramer. Its amino acid composition placed this enzyme with the other Mn- and Fe-containing superoxide dismutases. The M. bryantii enzyme was also similar to previously described Fe-containing superoxide dismutases in its optical and electron paramagnetic resonance spectra and in its susceptibility to inactivation by H2O2. The M. bryantii enzyme was ininhibited by N3?, but was less sensitive towards this inhibitor than other iron-containing superoxide dismutases.  相似文献   

4.
A manganese-containing superoxide dismutase (EC 1.15.1.1) was purified to homogeneity from a higher plant for the first time. The enzyme was isolated fromPisum sativum leaf extracts by thermal fractionation, ammonium sulfate salting out, ion-exchange and gel-filtration column chromatography, and preparative polyacrylamide gel electrophoresis. Pure manganese superoxide dismutase had a specific activity of about 3,000 U mg-1 and was purified 215-fold, with a yield of 1.2 mg enzyme per kg whole leaf. The manganese superoxide dismutase had a molecular weight of 94,000 and contained one g-atom of Mn per mol of enzyme. No iron and copper were detected. Activity reconstitution experiments with the pure enzyme ruled out the possibility of a manganese loss during the purification procedure. The stability of manganese superoxide dismutase at-20°C, 4°C, 25°C, 50°C, and 60°C was studied, and the enzyme was found more labile at high temperatures than bacterial manganese superoxide dismutases and iron superoxide dismutases from an algal and bacterial origin.Abbreviations NBT nitro blue tetrazolium - SOD superoxide dismutase (EC 1.15.1.1)  相似文献   

5.
The mechanism of the enzymic reaction of an iron-containing superoxide dismutase purified from the marine bacterium Photobacterium leiognathi was studied by using pulse radiolysis. Measurements of activity were done with two different preparations of enzyme containing either 1.6 or 1.15 g-atom of iron/mol. In both cases, identical values of the second-order rate constant for reaction between superoxide dismutase and the superoxide ion in the pH range 6.2-9.0 (k=5.5 X 10(8) M-1-S-1 at pH 8.0) were found. As with the bovine erythrocuprein, there was no evidence for substrate saturation. The effects of reducing agents (H2O2, sodium ascorbate or CO2 radicals) on the visible and the electron-paramagnetic-resonance spectra of the superoxide dismutase containing 1.6 g-atom of ferric iron/mol indicate that this enzyme contains two different types of iron. Turnover experiments demonstrate that only that fraction of the ferric iron that is reduced by H2O2 is involved in the catalysis, being alternately oxidized and reduced by O2; both the oxidation and the reduction steps have a rate constant equal to that measured under turnover conditions. These results are interpreted by assuming that the superoxide dismutase isolated from the organism contains 1 g-atom of catalytic iron/mol and a variable amount of non-catalytic iron. This interpretation is discused in relation to the stoicheiometry reported for iron-containing superoxide dismutases prepared from several other organisms.  相似文献   

6.
Methanosarcina barkeri is a methanogenic archaeon that can only grow under strictly anoxic conditions but which can survive oxidative stress. We have recently reported that the organism contains a monofunctional catalase. We describe here that it also possesses an active iron superoxide dismutase. The enzyme was purified in three steps over 130-fold in a 14% yield to a specific activity of 1500 U/mg. SDS-PAGE revealed the presence of only one band, at an apparent molecular mass of 25 kDa. The primary structure determined from the cloned and sequenced gene revealed similarity to iron- and manganese superoxide dismutases. The highest similarity was to the iron superoxide dismutase from Methanobacterium thermoautotrophicum. The enzyme from M. barkeri was found to contain, per mol, 1 mol iron, but no manganese in agreement with the general observation that anaerobically growing organisms only contain iron superoxide dismutase. The enzyme was not inhibited by cyanide (10 mM), which is a property shared by all iron- and manganese superoxide dismutases. The presence of superoxide dismutase in M. barkeri is noteworthy since a gene encoding superoxide dismutase (sod) has not been found in Archaeoglobus fulgidus, a sulfate-reducing archaeon most closely related to the Methanosarcinaceae.  相似文献   

7.
A manganese-containing superoxide dismutase (MnSOD) has been isolated from extracts of O2-induced Bacteroides fragilis. The enzyme, Mr 43,000, was a dimer composed of noncovalently associated subunits of equal size. A preparation whose specific activity was 1760 U/mg had 1.1 g-atoms Mn, 0.3 g-atoms Fe, and 0.2 g-atoms Zn per mol dimer. Exposing the enzyme to 5 M guanidinium chloride, 20 mM 8-hydroxyquinoline abolished enzymatic activity. Dialysis of the denatured apoprotein in buffer containing either Fe (NH4)2(SO4)2 or MnCl2 restored O2-. scavenging activity. The iron-reconstituted enzyme was inhibited 89% by 2 mM NaN3, similar to other Fe-containing superoxide dismutases. The Mn-reconstituted and native MnSOD were inhibited approximately 50% by 20 mM NaN3. Addition of ZnSO4 to dialysis buffer containing either the iron or manganese salt inhibited restoration of enzymatic activity to the denatured apoprotein. MnSOD migrated as a single protein band coincident with a single superoxide dismutase activity band in 7.5 or 10% acrylamide gels. Isoelectric focusing resulted in a major isozymic form with pI 5.3 and a minor form at pI 5.0. Mixtures of the MnSOD and the iron-containing superoxide (FeSOD), isolated from anaerobically maintained B. fragilis [E. M. Gregory and C. H. Dapper (1983) Arch. Biochem. Biophys. 220, 293-300], migrated as a single band on acrylamide gels and isoelectrically focused to a major protein band (pI 5.3) and a minor band at pI 5.0. The amino acid composition of MnSOD was virtually identical to that of the FeSOD. The data are consistent with synthesis of a single superoxide dismutase apoprotein capable of accepting either Mn or Fe to form the holoenzyme.  相似文献   

8.
Streptococcus faecalis contains a single superoxide dismutase that has been purified to homogeneity with a 55% yield. This enzyme has a molecular weight of 45,000 and is composed of two subunits of equal size. It contains 1.3 atoms of manganese per molecule. Its amino acid composition was determined and is compared with that for the superoxide dismutases from Escherichia coli, Streptococcus mutans, and Mycobacterium lepraemurium. When used as an antigen in rabbits, the S. faecalis enzyme elicited the formation of a precipitating and inhibiting antibody. This antibody cross-reacted with the superoxide dismutase present in another strain of S. faecalis, but neither inhibited nor precipitated the superoxide dismutases in a wide range of other bacteria, including several other streptococci, such as S. pyogenes, S. pneumoniae, and S. lactis. The inhibiting antibody was used to suppress the superoxide dismutase activity present in cell extracts of S. faecalis and thus allow the demonstration that 17% of the total oxygen consumption by such extracts, in the presence of reduced nicotinamide adenine dinucleotide, was associated with the production of O(2) (-). A variety of bacterial species were surveyed for their content of superoxide dismutases. The iron-containing enzyme was distinguished from the manganese-containing enzyme through the use of H(2)O(2), which inactivates the former more readily than the latter. Some of the bacteria appeared to contain only the iron enzyme, others only the manganese enzyme, and still others both. Indeed, some had multiple, electrophoretically distinct superoxide dismutases in both categories. There was no discernible absolute relationship between the types of superoxide dismutases in a particular organism and their Gram-stain reaction.  相似文献   

9.
A hybrid superoxide dismutase containing both functional iron and manganese   总被引:15,自引:0,他引:15  
A hybrid superoxide dismutase containing functional Mn and Fe has been isolated from Escherichia coli. Streptomycin, which binds tightly to both the Mn- and the Fe-containing superoxide dismutases, had the expected effect on the electrophoretic and chromatographic behavior of the hybrid. Treatment of the hybrid with H2O2, which selectively inactivates the Fe-containing enzyme, resulted in partial inactivation accompanied by a resegregation of subunits, with the formation of active Mn-enzyme and inactive Fe-enzyme. A similar resegregation of subunits was observed when the hybrid was exposed to 2.5 M guanidinium chloride. Hybrids containing Mn or Fe could be generated in vitro by mixing the Mn-enzyme with the Fe-enzyme, removing metals with 8-hydroxyquinoline in the presence of 2.5 M guanidinium chloride, and then dialyzing against Mn(II) or Fe(II) salts. Ten per cent of the activity of the Fe-superoxide dismutases is resistant to H2O2, which correlates with its content of Mn. Since the activity remaining after exhaustive treatment with H2O2 exhibited the electrophoretic mobility of the Fe-enzyme, we concluded that some of the active sites of the Fe-enzyme were actually occupied by Mn. It should be noted, however, that for purposes of metal reconstitution experiments, a definite specificity was demonstrated. The Mn-enzyme was reconstituted with Mn(II), whereas the Fe-enzyme activity was recovered using only Fe(II). We propose that the Fe-superoxide dismutase may be heterogeneous and that 10% of its activity is actually due to a Mn-containing variant with the same electrophoretic mobility. Only the apohybrid enzyme regained enzymatic activity using both Mn(II) and Fe(II).  相似文献   

10.
Three electrophoretically distinct superoxide dismutases (EC 1.15.1.1) were observed in the crude extracts from Pseudomonas ovalis. One of these was isolated as an iron-containing superoxide dismutase. It contained 1.4 gatoms of Fe per mol of enzyme, and had a specific activity of 3900 units per mg of protein. A crystallized enzyme contained 1.1 gatoms of Fe per mol of enzyme, and had a specific activity of 3100 units per mg of protein. The results of sedimentation equilibrium and gel filtration indicated a molecular weight of 40,000. S020,W was estimated as 3.18 by sedimentation velocity study. Sodium dodecyl sulfate gel electrophoresis indicated that the enzyme was composed of two subunits, and had a molecular weight of 19,500. Analysis for sulfhydryl groups showed that there were four such groups per mol of enzyme. The spectrum of visible and ultraviolet region, the amino acid composition, the CD spectrum of the enzyme, and the effect of certain compounds on the enzyme, were studied and compared with iron-containing superoxide dismutases isolated from other organisms.  相似文献   

11.
A unique form of superoxide dismutase was isolated and characterized from Nocardia asteroides GUH-2. This enzyme contains 1 to 2 g atoms each of Fe, Mn, and Zn per mol and exhibits spectral properties suggestive of Fe- or Mn-containing superoxide dismutases. Its Mr = 100,000, and it is composed of four subunits of equal size which are not covalently joined. The amino acid composition of the enzyme was more closely related to the Mn- or Fe-containing enzymes of Mycobacterium species and was least related to the Cu-Zn enzyme of eukaryotes. Azide at 1 and 20 mM inhibits the activity 10 and 41%, respectively, and 5 mM H2O2 inhibits 40%, but 1 or 5 mM cyanide caused trivial effect. The immunofluorescent staining, which was specific for superoxide dismutase of N. asteroides, indicated the association of this enzyme to the outer cell wall of the organism. Further, the enzyme was shown to be selectively secreted into the medium.  相似文献   

12.
The controversial question of the intracellular location of manganese-containing superoxide dismutase in higher plants was examined under a new experimental approach by applying the more rigorous and specific methods of immunocytochemistry to protoplasts isolated fromPisum sativum L. leaves. Manganese superoxide dismutase (EC 1.15.1.1) was purified to homogeneity from 15 kg of leaves ofPisum sativum L. Rabbits were immunized with the mangano enzyme and the antibody specific for pea manganese superoxide dismutase was purified and found not to contain antigenic sites in common with (i) human manganese superoxide dismutase, (ii) iron superoxide dismutase from eitherEscherichia coli or higher plants, or (iii) plant or animal cuprozinc-superoxide dismutase.Pisum sativum L. manganese superoxide dismutase only appears to have antigenic determinants similar to other manganese superoxide dismutases from higher land plants. The antibody to pea Mn-superoxide dismutase was used to locate the enzyme in protoplasts isolated from young pea leaves by indirect immunofluorescence, and by electron microscopy using the unlabelled antibody peroxidase-antiperoxidase method. Results from immunofluorescence showed that chloroplasts were devoid of specific fluorescence which appeared scattered over the cytosolic spaces among chloroplasts, and demonstrate the absence of manganese superoxide dismutase inside chloroplasts. The metalloenzyme was found to be localized only in peroxisomes, whereas mitochondria, the traditionally accepted site for this enzyme in many eukaryotic organisms, did not show any specific staining. The possible subcellular roles of manganese superoxide dismutase inPisum sativum L. leaves are discussed in the light of its peroxisomal location.  相似文献   

13.
Evolutionary relationships among marine species assigned to the genera Alteromonas, Oceanospirillum, Pseudomonas, and Alcaligenes were determined by an immunological study of their Fe-containing superoxide dismutases (FeSOD) and glutamine synthetases (GS), two enzymes with differentially conserved amino acid sequences which are useful for determining intermediate and distant relationships, respectively. Five reference antisera were prepared against the FeSODs from Alteromonas macleodii, A. haloplanktis, Oceanospirillum commune, Pseudomonas stanieri, and Deleya pacifica. For GS, a previously prepared antiserum to the enzyme from Escherichia coli was employed. Amino acid sequence similarities for both enzymes were determined by the quantitative microcomplement fixation technique and the Ouchterlony double diffusion procedure. Six evolutionary groups were detected by FeSOD sequence similarities: three subgroups within the genus Alteromonas, the genera Oceanospirillum and Pseudomonas, and a new genus, Deleya (to accommodate marine Alcaligenes). Only four groupings were delineated by the GS data: the latter three genera and one group composed of all the species of Alteromonas. Evidence that all of these subgroups are derived from the evolutionary lineage defined by the purple sulfur photosynthetic bacteria is presented.Abbreviations Alt Alteromonas - anti-Amac, anti-Ahal, anti-Ocom, anti-Psta, anti-Dpac antisera to the Fe-containing superoxide dismutases from Alteromonas macleodii 107, Alteromonas haloplanktis 121, Oceanospirillum commune 8, Pseudomonas stanieri 146, Deleya pacifica 62 - FeSOD Fe-containing superoxide dismutase - G+C guanine plus cytosine - GS glutamine synthetase - ImD immunological distance - MnSOD Mn-containing superoxide dismutase - Oce Oceanospirillum - Pse Pseudomonas - Rm relative mobility - rRNA ribosomal RNA - SOD superoxide dismutase Dedicated to the memory of Professor Roger Y. Stanier  相似文献   

14.
Pseudomonas aeruginosa is a strict aerobe which is likely exposed to oxygen reduction products including superoxide and hydrogen peroxide during the metabolism of molecular oxygen. To counterbalance the potentially hazardous effects of elevated endogenous levels of superoxide, most aerobic organisms possess one or more superoxide dismutases or compounds capable of scavenging superoxide. We have previously shown that P. aeruginosa possesses both an iron- and a manganese-cofactored superoxide dismutase (D. J. Hassett, L. Charniga, K. A. Bean, D. E. Ohman, and M. S. Cohen, Infect. Immun. 60:328-336, 1992). In this study, the genes encoding manganese (sodA)- and iron (sodB)- cofactored superoxide dismutase were cloned by using a cosmid library of P. aeruginosa FRD which complemented an Escherichia coli (JI132) strain devoid of superoxide dismutase activity. The sodA and sodB genes of P. aeruginosa, when cloned into a high-copy-number vector (pKS-), partially restored the aerobic growth rate defect, characteristic of the Sod- strain, to that of the wild type (AB1157) when grown in Luria broth. The nucleotide sequences of sodA and sodB have open reading frames of 612 and 579 bp that encode dimeric proteins of 22.9 and 21.2 kDa, respectively. These data were also supported by the results of in vitro expression studies. The deduced amino acid sequence of the P. aeruginosa manganese and iron superoxide dismutase revealed approximately 50 and 67% similarity with manganese and iron superoxide dismutases from E. coli, respectively. There was also remarkable similarity with iron and manganese superoxide dismutases from other phyla. The mRNA start site of sodB was mapped to 174 bp upstream of the ATG codon. A likely promoter with similarity to the -10 and -35 consensus sequence of E. coli was observed upstream of the ATG start codon of sodB. Regions sequenced 519 bp upstream of the sodA electrophoresis, sodA gene revealed no such promoter, suggesting an alternative mode of control for sodA. By transverse field electrophoresis, sodA and sodB were mapped to the 71- to 75-min region on the P. aeruginosa PAO1 chromosome. Strikingly, mucoid alginate-producing bacteria generated greater levels of manganese superoxide dismutase than nonmucoid revertants, suggesting that mucoid P. aeruginosa is responding to oxidative stress and/or changes in the redox status of the cell.  相似文献   

15.
A glyoxysomal copper,zinc-containing superoxide dismutase (EC 1.15.1.1) was purified to homogeneity, for the first time, from watermelon cotyledons (Citrullus vulgaris Schrad.). The stepwise purification procedure consisted of acetone precipitation, batch anion-exchange chromatography, anion-exchange Fast Protein Liquid Chromatography and gel-filtration column chromatography. Pure copper,zinc-superoxide dismutase (Cu,Zn-SOD II) had a specific activity of 1211 units per milligram protein and was purified 400-fold, with a yield of 8 micrograms enzyme per gram cotyledon. The glyoxysomal Cu,Zn-SOD had a relative molecular weight of about 33,000 and was composed of two equal subunits of 16,500 Daltons. Metal analysis showed that the enzyme, unlike other Cu,Zn-SODs, contained 1 gram-atom Cu and 1 gram-atom Zn per mole dimer. No iron and manganese were detected. Ultraviolet and visible absorption spectra were reminiscent of other copper,zinc-superoxide dismutases.  相似文献   

16.
An oxygen-induced superoxide dismutase was purified from the halophilic bacterium, Halobacterium halobium, strain NRL. Due to the high salt requirement for enzyme stability, the purification had to be performed in the presence of 2 M NaCl. The pI of the protein was 4.95. The approximate Mr was 38,500. The subunit size as determined by sodium dodecyl sulfate-electrophoresis was approximately 19,000. Metal analysis showed 1.5 atoms of manganese per dimer, 0.5 atom zinc, and 1.54 atoms copper. The N-terminal sequence of amino acids was determined, and based upon the first 26 amino acids significant homology to other manganese- and iron-containing superoxide dismutases was revealed.  相似文献   

17.
Superoxide Dismutase and Oxygen Toxicity in a Eukaryote   总被引:29,自引:12,他引:17  
Saccharomyces cerevisiae var. ellipsoideus contained 6.5 times more superoxide dismutase and 2.3 times more catalase when grown under 100% O(2) than when grown anaerobically. Growth under oxygen caused equal increases in both the cyanide-sensitive and the cyanide-insensitive superoxide dismutases of this organism. Experience with other eukaryotes has shown that cyanide sensitivity is a property of the cupro-zinc superoxide dismutase of the cytosol, whereas cyanide insensitivity is a property of the corresponding mangani-enzyme found in mitochondria. Cu(2+), which has been shown to increase the radioresistance of yeast, also caused an increase of both of the superoxide dismutases of S. cerevisiae. Yeast which had been grown under 1 atm of O(2) were more resistant toward the lethal effects of 20 atm of O(2) than were yeast which had been grown in the absence of O(2). Escherichia coli K-12 his(-) responded to growth under 1 atm of O(2) by increasing its content of catalase and of peroxidase, but not of superoxide dismutase. This contrasts with E. coli B, which was previously shown to respond to O(2) by a striking increase in superoxide dismutase. E. coli K-12 his(-) did not gain resistance toward 20 atm of O(2) because of having been grown under 1 atm of O(2). Once again, this contrasts with the behavior of E. coli B. These data indicate that, in both prokaryotes and in eukaryotes, superoxide dismutase is an important component of the defenses against oxygen toxicity.  相似文献   

18.
Extracellular superoxide dismutase was found in extra-xylematic bark tissues and seedlings of Pinus sylvestris L. The isozymes were partially purified by infiltration and analysed by polyacrylamide gel electrophoresis. One of the major isoforms was purified to homogeneity and the N-terminal amino acid sequence was determined. The isoelectric point of these extra-cellular forms is distinctly higher than that of cellular superoxide dismutases. Furthermore, a novel type of superoxide dismutase with an isoelectric point higher than nine was detected in a crude needle extract.Keywords: Superoxide dismutase, apoplasm, seedlings, oxidative burst, Pinus sylvestris L.   相似文献   

19.
(1) Four strains of Photobacterium leiognathi were isolated from the light organs of a squid, Doryteuthis kensaki, and a fish, Acropoma japonicum, and surfaces of squid skin. Cu,Zn-containing superoxide dismutases (bacteriocupreins) and Fe-containing superoxide dismutases in crude extracts of the four strains and a type strain, ATCC 25521, were compared by using activity measurement, isoelectric focusing, and cyanide sensitivity. The results indicate no significant variation of the superoxide dismutases between the different strains. (2) The effects of metal nutrition on the superoxide dismutase activity of the crude extracts from the five strain of Photobacterium were compared. The contents of bacteriocuprein in the crude extracts were increased when iron was omitted and copper and zinc were supplemented in the medium. From these results it was concluded that the bacteriocupreins of the different strains of P. leiognathi have the same properties regardless of the difference of host species or collected sources.  相似文献   

20.
A Scots pine (Pinus sylvestris L.) cDNA library was screened with two heterologous cDNA probes (P31 and T10) encoding cytosolic and chloroplastic superoxide dismutases (SOD) from tomato. Several positive clones for cytosolic and chloroplastic superoxide dismutases were isolated, subcloned, mapped and sequenced. One of the cDNA clones (PS3) had a full-length open reading frame of 465 bp corresponding to 154 amino acid residues and showed approximately 85% homology with the amino acid sequences of angiosperm cytosolic SOD counterparts. Another cDNA clone (PST13) was incomplete, but encoded a putative protein with 93% homology to pea and tomato chloroplastic superoxide dismutase. The derived amino acid sequence from both cDNA clones matched the corresponding N-terminal amino acid sequence of the purified mature SOD isozymes. Northern blot hybridizations showed that, cytosolic and chloroplastic CuZn-SOD are expressed at different levels in Scots pine organs. Sequence data and Southern blot hybridization confirm that CuZn-SODs in Scots pine belong to a multigene family. The results are discussed in relation to earlier observations of CuZn-SODs in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号