共查询到20条相似文献,搜索用时 15 毫秒
1.
Ceruloplasmin (Cp) was found to promote the oxidative damage to DNA, as evidenced by the formation of 8-hydroxy-2'-deoxyguanosine and strand breaks, when incubated with H2O2 in vitro. The capacity of Cp to enhance oxidative damage to DNA was inhibited by hydroxyl radical scavengers such as sodium azide and mannitol, a metal chelator, diethylenetriaminepenta-acetic acid, and catalase. Although the oxidized protein resulted in an increase in the content of carbonyl groups, the ferroxidase activity and the proteolytic susceptibility were not significantly altered. The release of a portion of Cu from Cp was observed, and conformational alterations were indicated by the changes in fluorescence spectra. Based on these results, we suggest that damage to DNA is mediated in the H2O2/Cp system via the generation of ·OH by released Cu2+ and/or loosely bound Cu exposed from oxidatively damaged Cp through the conformational change. The release of Cu from Cp during oxidative stress could enhance the formation of reactive oxygen species and could also potentiate cellular damage. 相似文献
2.
Mollazadeh S Matin MM Bahrami AR Iranshahi M Behnam-Rassouli M Rassouli FB Neshati V 《Zeitschrift für Naturforschung. C, Journal of biosciences》2011,66(11-12):555-561
Transitional cell carcinoma (TCC), which is the most common type of bladder cancer, shows resistance to chemotherapeutic agents due to the overexpression of drug efflux pumps. In this study, the effects of feselol, a sesquiterpene coumarin extracted from Ferula badrakema, on cisplatin cytotoxicity were investigated in 5637 cells, a TCC subline. Cell viability and DNA lesion were evaluated by thiazolyl blue tetrazolium bromide and comet assays, respectively. Feselol had no significant cytotoxic effect in 5637 cells but at 32 microg/mL it increased the cytotoxicity of 1 microg/mL cisplatin by 37% after 24 h. Furthermore, the comet assay revealed that DNA damage induced by cisplatin in 5637 cells is enhanced by 31% when used in combination with feselol. Therefore, feselol might be considered as an effective reversal agent for future in vivo and clinical studies. 相似文献
3.
Epe B 《Photochemical & photobiological sciences》2012,11(1):98-106
DNA damage induced by photosensitization is not only responsible for the genotoxic effects of various types of drugs in the presence of light, but is also relevant for some of the adverse effects of sunlight, in particular in the UVA and visible range of the spectrum. The types of DNA modifications induced are very diverse and include pyrimidine dimers, covalent adducts, various base modifications generated by oxidation, single-strand breaks and (regular and oxidized) sites of base loss. The ratios in which the various modifications are formed (damage spectra) can be regarded as a fingerprint of the damaging mechanism. Here, we describe the damage spectra of various classes of photosensitizers in relation to the underlying damaging mechanisms. In mammalian cells irradiated with solar radiation, damage at wavelengths <400 nm is characteristic for a (not yet identified) endogenous type-I or type-II photosensitizer. In the UVA range, however, both direct DNA excitation and photosensitized damage appear to be relevant, and there are indications that other chromophore(s) are involved than in the visible range. 相似文献
4.
We investigated the effect of catechol derivatives, including dopa, dopamine, adrenaline and noradrenaline, on DNA damage and the mechanisms of DNA strand breakage and formation of 8-hydroxyguanine (8HOG). The catechol derivatives caused strand breakage of plasmid DNA in the presence of ADP-Fe(3+). The DNA damage was prevented by catalase, mannitol and dimethylsulfoxide, suggesting hydroxyl radical (HO..)-like species are involved in the strand breakage of DNA. Iron chelators, such as desferrioxamine and bathophenanthroline, and reduced glutathione also inhibited the DNA damage. Deoxyribose, a molecule that is used to detect HO,, was not degraded by dopa in the presence of ADP-Fe(3+). By adding EDTA, however, dopa induced the marked deoxyribose degradation in the presence of ADP-Fe(3+), indicating that EDTA may extract iron from ADP-Fe(3+) to catalyze HO. formation by dopa. Thus, EDTA was a good catalyst for HO.-generation, whereas it did not promote the strand breakage of DNA. However, calf thymus DNA base damage, which was detected as 8-HOG formation, was caused by dopa in the presence of EDTA-Fe(3+), but not in the presence of ADP-Fe(3+). The 8HOG formation was also inhibited by catalase and HO. scavengers, indicating that HO&z.rad; was involved in the base damage. These results suggest that DNA strand breakage is due to ferryl species rather than HO., and that 8HOG formation is due to HO. rather than ferryl species. 相似文献
5.
Oxidative DNA damage induced by iron chloride in the larvae of the lace coral Pocillopora damicornis
Vijayavel K Downs CA Ostrander GK Richmond RH 《Comparative biochemistry and physiology. Toxicology & pharmacology : CBP》2012,155(2):275-280
Biochemical and molecular biomarkers tools are utilized as early warning signatures of contaminant exposure to target and non-target organisms. The objective of this study was to investigate the sublethal effects of iron chloride to the larvae of the lace coral Pocillopora damicornis by measuring a suit of oxidative-stress biomarkers. The larvae were exposed to a range of sublethal concentrations of iron chloride (0.01, 0.1, 1, 10, and 100 ppm) for seven days. With reference to oxidative stress biomarkers, the no-observed effect concentration (NOEC) and the lowest observed effect concentration (LOEC) of iron chloride were observed to be 0.01 and 100 ppm respectively. At the end of the seventh day the antioxidant status of the larvae was evaluated by the levels of glutathione (GSH), glutathione peroxidase (GPX), glutathione reductase (GR), and glutathione-S-transferase (GST), in both experimental and control groups. For the quantification of cellular oxidative damage, lipid peroxidation (LPO) activity was determined in the same and the extent of DNA damage was assessed by the expression of DNA apurinic/apyrimidinic (AP) sites. Iron chloride exhibited a concentration-dependent inhibition of GSH and GPX and induction of GR, GST, LPO, and DNA-AP sites in the P. damicornis larvae when compared to the control group. The oxidative stress biomarkers of the larvae exposed to 0.1, 1, and 10 ppm of iron chloride did not show any significant overall differences when compared to the control group. However the activities of LPO, GSH, GPX, GR, GST and DNA-AP in the larval group exposed to 100 ppm of iron chloride exhibited statistically significant (P=0.002, 0.003, 0.002, 0.002, 0.005 and 0.007) differences when compared to the control group. The research results indicated that iron chloride in concentrations at the 100 ppm level caused oxidative stress in the P. damicornis larvae. 相似文献
6.
Claudia SEBBIO Claudio CARERE Giuseppe NASCETTI Bruno BELLISARIO Pasquale MOSESSO Roberta CIMMARUTA Dario ANGELETTI 《动物学报(英文版)》2014,(2):308-321
The choice of a suitable species to translate pollution signals into a quantitative monitor is a fundamental step in biomonitoring plans. Here we present the results of three years of biomonitoring at a new coal power plant in central Italy using three different aquatic and terrestrial wildlife species in order to compare their reliability as sentinel organisms for genotoxicity. The comet assay was applied to the common land snail Helix spp., the lagoon fish Aphaniusfasciatus, and the green frog Rana esculenta sampled in the area potentially exposed to the impact of the power station. The tissue concentration of some expected pollutants (As, Cd, Ni, Pb, Cr) was analysed in parallel samples collected in the same sampling sites. The three species showed different values in the comet assay (Tail Intensity) and different accumulation profiles of heavy metals. Aphanius fasciatus showed an increasing genotoxic effect over time that paralleled the temporal increase of the heavy metals, especially arsenic, and the highest correlation between heavy metals and DNA damage. Helix spp. showed levels of damage inversely related to the distance from the source of pollution and in partial accordance with the total accumulation of trace elements. On the contrary, Rana esculenta showed a low capability to accumulate metals and had inconsistent results in the comet test. The fish appeared to be the most efficient and sensitive species in detecting chemical pollution. Overall, both the fish and the snail reflected a trend of increasing pollution in the area surrounding the power plant across time and space [Current Zoology 60 (2): 308-321, 2014]. 相似文献
7.
In cultured human lymphocytes we determined the ability of nitrilotriacetic acid (NTA) to inhibit DNA replication and to stimulate DNA repair synthesis (UDS), as well as to influence the UDS induced by UV irradiation. In phytohemagglutinin-stimulated lymphocytes a strong inhibition of DNA replication was induced by NTA concentrations above 10(-3) M, which was accompanied by a marked cell lethality, whereas at lower doses the incorporation of tritiated thymidine (3H-TdR) into DNA or treated cells was slightly increased in comparison to untreated cells. When, after NTA pretreatment, UDS was determined by scintillation spectrometry or autoradiography in unstimulated G0 lymphocytes, UV-irradiated or unirradiated, an increased incorporation of 3H-TdR was observed, positively correlated with the NTA doses. This effect was only partially due to the expansion of the intracellular TdR pool as a consequence of the stimulation of 3H-TdR uptake by NTA. Even after normalization of the scintillometric data by the radioactivities of the soluble nucleotide fraction, significant increase of DNA repair synthesis was detected after treatment with 7.5 x 10(-3)-10(-2) M NTA. 相似文献
8.
《Cell cycle (Georgetown, Tex.)》2013,12(23):4074-4082
Targeting DNA repair with poly(ADP-ribose) polymerase (PARP) inhibitors has shown a broad range of anti-tumor activity in patients with advanced malignancies with and without BRCA deficiency. It remains unclear what role p53 plays in response to PARP inhibition in BRCA-proficient cancer cells treated with DNA damaging agents. Using gene expression microarray analysis, we find that DNA damage response (DDR) pathways elicited by veliparib (ABT-888), a PARP inhibitor, plus topotecan comprise the G1/S checkpoint, ATM, and p53 signaling pathways in p53-wildtype cancer cell lines and BRCA1, BRCA2 and ATR pathway in p53-mutant lines. In contrast, topotecan alone induces the G1/S checkpoint pathway in p53-wildtype lines and not in p53-mutant cells. These responses are coupled with G2/G1 checkpoint effectors p21CDKN1A upregulation, and Chk1 and Chk2 activation. The drug combination enhances G2 cell cycle arrest, apoptosis and a marked increase in cell death relative to topotecan alone in p53-wildtype and p53-mutant or -null cells. We also show that the checkpoint kinase inhibitor UCN-01 abolishes the G2 arrest induced by the veliparib and topotecan combination and further increases cell death in both p53-wildtype and -mutant cells. Collectively, PARP inhibition by veliparib enhances DDR and cell death in BRCA-proficient cancer cells in a p53-dependent and -independent fashion. Abrogating the cell-cycle arrest induced by PARP inhibition plus chemotherapeutics may be a strategy in the treatment of BRCA-proficient cancer. 相似文献
9.
10.
Ozone has been shown to induce lung tumors in mice. The reactivity of ozone with DNA in an aqueous solution was investigated by a DNA sequencing technique using 32P-labeled DNA fragments. Ozone induced cleavages in the deoxyribose-phosphate backbone of double-stranded DNA, which were reduced by hydroxyl radical scavengers, suggesting the participation of hydroxyl radicals in the cleavages. The ozone-induced DNA cleavages were enhanced with piperidine treatment, which induces cleavages at sites of base modification, but the inhibitory effect of hydroxyl radical scavengers on the piperidine-induced cleavages was limited. Main piperidine-labile sites were guanine and thymine residues. Cleavages at some guanine and thymine residues after piperidine treatment became more predominant with denatured single-stranded DNA. Exposure of calf thymus DNA to ozone resulted in a dose-dependent increase of the 8-oxo-7,8-dihydro-2'-deoxyguanosine formation, which was partially inhibited by hydroxyl radical scavengers. ESR studies using 5,5-dimethylpyrroline-N-oxide (DMPO) showed that aqueous ozone produced the hydroxyl radical adduct of DMPO. In addition, the fluorescein-dependent chemiluminescence was detected during the decomposition of ozone in a buffer solution and the enhancing effect of D2O was observed, suggesting the formation of singlet oxygen. However, no or little enhancing effect of D2O on the ozone-induced DNA damage was observed. These results suggest that DNA backbone cleavages were caused by ozone via the production of hydroxyl radicals, while DNA base modifications were mainly caused by ozone itself and the participation of hydroxyl radicals and/or singlet oxygen in base modifications is small, if any. A possible link of ozone-induced DNA damage to inflammation-associated carcinogenesis as well as air pollution-related carcinogenesis is discussed. 相似文献
11.
DNA damage induced by ionizing radiation can result in gene mutation, gene amplification, chromosome rearrangements, cellular transformation, and cell death. Although many of these changes may be induced directly by the radiation, there is accumulating evidence for delayed genomic instability following X-ray exposure. We have investigated this phenomenon by studying delayed chromosomal instability in a hamster-human hybrid cell line by means of fluorescence in situ hybridization. We examined populations of metaphase cells several generations after expanding single-cell colonies that had survived 5 or 10 Gy of X rays. Delayed chromosomal instability, manifested as multiple rearrangements of human chromosome 4 in a background of hamster chromosomes, was observed in 29% of colonies surviving 5 Gy and in 62% of colonies surviving 10 Gy. A correlation of delayed chromosomal instability with delayed reproductive cell death, manifested as reduced plating efficiency in surviving clones, suggests a role for chromosome rearrangements in cytotoxicity. There were small differences in chromosome destabilization and plating efficiencies between cells irradiated with 5 or 10 Gy of X rays after a previous exposure to 10 Gy and cells irradiated only once. Cell clones showing delayed chromosomal instability had normal frequencies of sister chromatid exchange formation, indicating that at this cytogenetic endpoint the chromosomal instability was not apparent. The types of chromosomal rearrangements observed suggest that chromosome fusion, followed by bridge breakage and refusion, contributes to the observed delayed chromosomal instability. 相似文献
12.
Recombination induced by triple-helix-targeted DNA damage in mammalian cells. 总被引:7,自引:4,他引:7
下载免费PDF全文

A F Faruqi M M Seidman D J Segal D Carroll P M Glazer 《Molecular and cellular biology》1996,16(12):6820-6828
Gene therapy has been hindered by the low frequency of homologous recombination in mammalian cells. To stimulate recombination, we investigated the use of triple-helix-forming oligonucleotides (TFOs) to target DNA damage to a selected site within cells. By treating cells with TFOs linked to psoralen, recombination was induced within a simian virus 40 vector carrying two mutant copies of the supF tRNA reporter gene. Gene conversion events, as well as mutations at the target site, were also observed. The variety of products suggests that multiple cellular pathways can act on the targeted damage, and data showing that the triple helix can influence these pathways are presented. The ability to specifically induce recombination or gene conversion within mammalian cells by using TFOs may provide a new research tool and may eventually lead to novel applications in gene therapy. 相似文献
13.
目的和方法:应用胎鼠皮层细胞原代培养,建立神经元的体外“缺血/再灌注”模型,观察神经元缺血/再灌注后DNA链的损伤。应用PANT和TUNEL染色分别检测缺血/再灌注后DNA单链和双链损伤。结果:神经元缺糖缺氧2h引起极少量细胞死亡,4h引起少于30%的细胞死亡,而6-8h的缺糖缺氧引起的细胞死亡数量达到80%以上,6h缺糖缺氧再灌注10-18h,细胞死亡达高峰,而在8h缺糖缺氧再灌注2h细胞死亡已经达高峰。在缺糖缺氧2,4,6,8h灌注5min,PANT阳性细胞分别达30%,50%,80%,90%。而在同样的情况下,TUNEL染色阳性细胞数没有明显增加。结论:体外神经元缺糖缺氧再灌注早期即出现DNA链的损伤,且以单链损伤为主。 相似文献
14.
DMBA induced DNA damage and repair in mammary epithelial cells in vitro measured by a nick translation assay 总被引:2,自引:0,他引:2
A new E. coli DNA polymerase I directed nick translation assay was used for measuring 7,12-dimethylbenz[a]anthracene-induced in situ DNA damage and repair in mouse mammary epithelial cells in monolayer culture. The nick translation assay was capable of detecting a DMBA-dose dependent significant increase of DNA damage, and the same assay also allowed monitoring of the DNA repair activity provoked by DMBA treatment of the epithelial cells. This relatively simple method thus provides a rapid assay for carcinogen-induced in situ DNA damage and repair in an epithelial cell tumorigenic system. 相似文献
15.
A B Britt 《Plant physiology》1995,108(3):891-896
16.
Endogenous cellular oxidation of omega6-polyunsaturated fatty acids (PUFAs) has long been recognized as a contributing factor in the development of various cancers. The accrual of DNA damage as a result of reaction with free radical and electrophilic aldehyde products of lipid peroxidation is believed to be involved; however, the genotoxic and mutation-inducing potential of specific membrane PUFAs remains poorly defined. In the present study we have examined the ability of peroxidizing arachidonic acid (AA, 20:4omega6) to induce DNA strand breaks, base modifications, and mutations. The time-dependent induction of single-strand breaks and oxidative base modifications by AA in genomic DNA was quantified using denaturing glyoxal gel electrophoresis. Mutation spectra were determined in XP-G fibroblasts and a repair-proficient line corrected for this defect by c-DNA complementation (XP-G(+)). Mutation frequencies were elevated from approximately 5- to 30-fold over the background following reaction of DNA with AA for various times. The XPG gene product was found to be involved in the suppression of mutations after extended reaction of DNA with AA. Arachidonic acid-induced base substitutions were consistent with the presence of both oxidized and aldehyde base adducts in DNA. The frequency of multiple-base substitutions induced by AA was significantly reduced upon correction for the XPG defect (14% vs 2%, P = 0.0015). Evidence is also presented which suggests that the induced frequency of multiple mutations is lesion dependent. These results are compared to published data for mutations stimulated by alpha,beta-unsaturated aldehydes identified as products of lipid peroxidation. 相似文献
17.
Radiation therapy (RT) is one of the main treatment modalities for cervical cancer. Rosiglitazone (ROSI) has been reported to have antiproliferative effects against various types of cancer cells and also to induce antioxidant enzymes that can scavenge reactive oxygen species (ROS) and thereby modify radiosensitivity. Here, we explored the effect of ROSI on radiosensitivity and the underlying mechanisms in cervical cancer cells. Three cervical cancer cell lines (ME-180, HeLa, and SiHa) were used. The cells were pretreated with ROSI and then irradiated. Expression of proteins of interest was detected by western blot and immunofluorescence. Intracellular production of ROS was measured by H2DCFDA. Radiosensitivity was assessed by monitoring clonogenic survival. Expression of antioxidant enzymes (catalase, superoxide dismutases) was increased by ROSI in HeLa and SiHa cells, but not in ME-180 cells. With ROSI pre-treatment, cell survival after irradiation remained unchanged in HeLa and SiHa cells, but decreased in ME-180 cells. Radiation-induced expression of γ-H2AX was increased and that of RAD51 was decreased by ROSI pre-treatment in ME-180 cells, but not in HeLa cells. ROSI increases radiosensitivity by inhibiting RAD51-mediated repair of DNA damage in some cervical cancer cell lines; therefore, ROSI is a potential inhibitor of RAD51 that can be used to enhance the effect of RT in the treatment of some cervical cancers. 相似文献
18.
Clustered DNA damage (locally multiply damaged site) is thought to be a critical lesion caused by ionizing radiation, and high LET radiation such as heavy ion particles is believed to produce high yields of such damage. Since heavy ion particles are major components of ionizing radiation in a space environment, it is important to clarify the chemical nature and biological consequences of clustered DNA damage and its relationship to the health effects of exposure to high LET particles in humans. The concept of clustered DNA damage emerged around 1980, but only recently has become the subject of experimental studies. In this article, we review methods used to detect clustered DNA damage, and the current status of our understanding of the chemical nature and repair of clustered DNA damage. 相似文献
19.
Treatment of primary cultures of rat hepatocytes with the antihistaminic drug, methapyrilene hydrochloride, stimulated DNA-repair synthesis up to 7-fold and caused the formation of alkaline-labile lesions in hepatocellular DNA. These data clearly demonstrate that methapyrilene hydrochloride is a DNA damaging agent. In view of a recent report and our own findings we suggest that this antihistamine has the properties of a complete carcinogen. 相似文献
20.
Pang SK Yu CW Au-Yeung SC Ho YP 《Biochemical and biophysical research communications》2007,363(1):235-240
Oxaliplatin is a third generation platinum (Pt) drug with a diaminocyclohexane (DACH) entity, which has recently obtained worldwide approval for the clinical treatment of colon cancer, and apparently operates by a different mechanism of action to the classical cisplatin or carboplatin. Introducing a novel dual mechanism of action is one approach in designing a new platinum-based anticancer agent, whereby an appropriate ligand, such as demethylcantharidin (DMC), is released from the parent compound to exert a cytotoxic effect, in addition to that of the DNA-alkylating function of the platinum moiety. To investigate the likelihood of a novel dual mechanism of anticancer action, demethylcantharidin-integrated Pt complexes: Pt(R,R-DACH)(DMC) with the same Pt-DACH moiety as oxaliplatin, and Pt(NH(3))(2)(DMC) akin to carboplatin; were studied for their ability to induce DNA damage in HCT116 colorectal cancer cells by an alkaline comet assay. The results showed that the DMC ligand released from the novel complexes caused additional DNA lesions when compared with oxaliplatin and carboplatin. The comet assay also revealed that the DNA-damaging behavior of cisplatin is characteristically different; and this study is the first to demonstrate the ability of DMC to induce DNA lesions, thus providing sufficient evidence to explain the superior antiproliferative effect of the novel DMC-integrated complexes. 相似文献