首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This study aimed to determine the changes in soleus myofibrillar ATPase (m-ATPase) activity and myosin heavy chain (MHC) isoform expression after endurance training and/or chronic hypoxic exposure. Dark Agouti rats were randomly divided into four groups: control, normoxic sedentary (N; n = 14), normoxic endurance trained (NT; n = 14), hypoxic sedentary (H; n = 10), and hypoxic endurance trained (HT; n = 14). Rats lived and trained in normoxia at 760 mmHg (N and NT) or hypobaric hypoxia at 550 mmHg (approximately 2,800 m) (H and HT). m-ATPase activity was measured by rapid flow quench technique; myosin subunits were analyzed with mono- and two-dimensional gel electrophoresis. Endurance training significantly increased m-ATPase (P < 0.01), although an increase in MHC-I content occurred (P < 0.01). In spite of slow-to-fast transitions in MHC isoform distribution in chronic hypoxia (P < 0.05) no increase in m-ATPase was observed. The rate constants of m-ATPase were 0.0350 +/- 0.0023 s(-1) and 0.047 +/- 0.0050 s(-1) for N and NT and 0.033 +/- 0.0021 s(-1) and 0.038 +/- 0.0032 s(-1) for H and HT. Thus, dissociation between variations in m-ATPase and changes in MHC isoform expression was observed. Changes in fraction of active myosin heads, in myosin light chain isoform (MLC) distribution or in MLC phosphorylation, could not explain the variations in m-ATPase. Myosin posttranslational modifications or changes in other myofibrillar proteins may therefore be responsible for the observed variations in m-ATPase activity.  相似文献   

3.
The superoxide radicals generated by the xanthine oxidase reaction reduced the myofibrillar Ca2+-ATPase activity. This negative effect was prevented by superoxide dismutase or by dithiothreitol, a protective thiol compound. Partial protection was achieved by catalase, while mannitol was ineffective. The myofibrillar Ca2+-ATPase exposed to O2-. radicals did not modify the affinity for Ca2+ while it showed a remarkable reduction of Vmax measured at the saturating level of Ca2+. The O2-. inhibited myofibrillar ATPase showed a higher value of Km for the cofactor associated to a reduced value of Vmax when studied in the presence of increasing concentration of ATP. Thus, circumstances that enhance the production of cardiac O2- radicals can be considered a negative metabolic event capable of depressing the myofibrillar Ca2+-ATPase activity.  相似文献   

4.
Male spontaneously hypertensive rats (SHR) and Wistar-Kyoto normotensive rats (WKY) were subjected to swimming training 6 times/wk, commencing at 4 wk of age, to determine whether this type of endurance exercise might alter contractile proteins and cardiac function in young adult SHR. The total duration of exercise was 190 h. Myofibrillar adenosinetriphosphatase (ATPase) activity was assayed at various free [Ca2+] ranging from 10(-7) to 10(-5) M. Ca2+-stimulated ATPase activity of actomyosin and purified myosin was determined at various Ca2+ concentrations both in the low and high ionic strength buffers. Actin-activated myosin ATPase activity of purified myosin was assayed at several concentrations of actin purified from rabbit skeletal muscle. Under all these conditions the contractile protein ATPase activity was comparable between trained and untrained WKY and SHR. Analysis of myosin isoenzymes on pyrophosphate gels showed a single band corresponding to V1 isoenzyme, and there were no differences between swimming-trained and nontrained WKY and SHR. Ventricular performance was assessed by measuring cardiac output and stroke volume after rapid intravenous volume overloading. Both cardiac index and stroke index were comparable in nontrained WKY and SHR but were significantly increased in the trained groups compared with their respective nontrained controls. These results suggest that myosin ATPase activity and distribution of myosin isoenzymes are not altered in the moderately hypertrophied left ventricle whether the hypertrophy is due to genetic hypertension (SHR) or to exercise training (trained WKY). Moreover, the data indicate that SHR, despite the persistence of a pressure overload, undergo similar increases in left ventricular mass and peak cardiac index after training, as do normotensive WKY.  相似文献   

5.
1. The purpose of the present study was to investigate the time course of run training effects on the Ca2+ kinetics of the cardiac myofibrillar ATPase activity in female Sprague-Dawley rats. 2. The cardiac myofibrillar ATPase activity was measured at varying Ca2+ levels, and the Hill-n and pCa50 were measured in the hearts of rats after 3, 6 and 9 weeks of running training with a training program that began with an initially high intensity (HINT) and a training program with a more progressive increase in intensity (PROG). 3. After 3 and 6 weeks of training cardiac myofibrillar ATPase activity in the hearts of the trained rats in both training programs was elevated by 28-40% over the control group (P less than 0.05) at a pCa5 but was not different from the control groups after 9 weeks of training (P greater than or equal to 0.05). 4. Also the Ca2+ co-operativity as measured by the Hill-n was elevated in the hearts of the trained rats after 6 and 9 weeks of training when compared to control groups suggesting changes in the regulatory proteins of the myofibrils of hearts from trained rats. 5. The elevations in cardiac myofibrillar ATPase activity suggest that the myocardium responded to the training stimulus in a phasic manner. 6. The regression of cardiac myofibrillar ATPase in the late weeks of training might be related to a reduction or a loss of a specific training stimulus for the myocardium.  相似文献   

6.
Although various prostaglandins have been shown to elicit an isotropic response in the rat heart, the subcellular basis responsible for this effect is unknown. The purpose of this study was to examine the influence of three prostaglandins with varying inotropic potencies on myofibrillar ATPase activity in the rat heart. PGF2α, PGI2 and PGE2 were found to have no influence on basal or Ca-stimulated myofibrillar ATPase activity. In addition, no influence 2+ s observed on the sensitivity of myofibrillar ATPase activity to Ca . Alternative mechanisms to explain the isotropic effect are discussed.  相似文献   

7.
The kinetic influence of bound creatine kinase (CK) on the Ca(2+)-activated myosin ATPase was evaluated. ATPase rates were measured from 0.8 microM to 3.2 mM MgATP. Under control conditions, the apparent KmATP was 79.9 +/- 13.3 microM. In contrast, the addition of 12.2 mM phosphocreatine (PCr) decreased the apparent KmATP to a value of 13.6 +/- 1.4 microM. To determine if this reduction was merely the result of an ATP maintenance system, ATP was regenerated using either phosphoenolpyruvate and pyruvate kinase (PEP-PK), or PCr and soluble bovine cardiac CK. Data obtained with PEP + PK indicated an apparent KmATP of 65.5 +/- 7.3 microM. To study the effects of exogenous CK, the endogenous CK was irreversibly inhibited with 1 mM iodoacetamide. The kinetics of the ATPase were then examined by adding soluble CK to the incubation medium. Under these conditions, the KmATP was 56.4 +/- 0.86 microM. Therefore, these two ATP regeneration systems could not duplicate the effects of endogenous CK. The reduction of the apparent KmATP by endogenous CK was not the result of an altered inhibition by MgADP. MgADP inhibition was determined to be non-competitive, with a Ki of 5.0 +/- 0.1 mM. These data suggest that the observed kinetic effects reflect the proximity of the enzymes in the myofibrillar bundle, thus emphasizing the importance of bound CK for the localized regeneration of MgATP utilized by the myosin ATPase.  相似文献   

8.
9.
Previous studies have shown that the renin-angiotensin system (RAS) is activated in diabetes and this may contribute to the subcellular remodelling and heart dysfunction in this disease. Therefore, we examined the effects of RAS blockade by enalapril, an angiotensin-converting enzyme inhibitor, and losartan, an angiotensin receptor AT1 antagonist, on cardiac function, myofibrillar and myosin ATPase activity as well as myosin heavy chain (MHC) isozyme expression in diabetic hearts. Diabetes was induced in rats by a single injection of streptozotocin (65 mg/kg; i.v.) and these animals were treated with and without enalapril (10 mg/kg/day; oral) or losartan (20 mg/kg/day; oral) for 8 weeks. Enalapril or losartan prevented the depressions in left ventricular rate of pressure development, rate of pressure decay and ventricular weight seen in diabetic animals. Both drugs also attenuated the decrease in myofibrillar Ca2+-ATPase, Mg2+-ATPase and myosin ATPase activity seen in diabetic rats. The diabetes-induced increase in beta-MHC content and gene expression as well as the decrease in alpha-MHC content and mRNA levels were also prevented by enalapril and losartan. These results suggest the occurrence of myofibrillar remodelling in diabetic cardiomyopathy and provide evidence that the beneficial effects of RAS blockade in diabetes may be associated with attenuation of myofibrillar remodelling in the heart.  相似文献   

10.
11.
12.
Perfusion of isolated rat hearts with isoproterenol resulted in increases in the level of protein-bound phosphate of the myofibrils. After perfusion of the hearts with 32P, followed by SDS-polyacrylamide gel electrophoresis of the purified myofibrils, four major 32P-containing protein bands were identified. Most of the increased 32P incorporation produced by isoproterenol was localized on the troponin I and myosin light chain bands, and, to lesser extent, on the M-protein band. ATPase activity was tested in the purified myofibrils. No changes in Ca2+ requirement for activation were found after isoproterenol perfusion. However, maximal ATPase activity was markedly reduced in the myofibrils obtained from isoproterenol-treated hearts. It would appear that the myofibrillar protein phosphorylation induced by isoproterenol perfusion results in a decrease in actomyosin ATPase activity.  相似文献   

13.
1. Muscle fatigue following long-duration rhythmic activity is often characterized by reduced force following a single impulse and at low-frequencies of stimulation. 2. Although this response is generally attributed to an alteration in excitation-contraction coupling, the possibility that the responsiveness of myofibrillar proteins to a given Ca2+ signal is altered has never been ruled out. 3. In this study, rat plantaris muscles were subjected to an in situ regimen of contractions (100 Hz, lasting 100 msec, once every 750 msec, for 1 hr), and allowed to recover for 15 min. 4. Twitch, 100 Hz, and 200 Hz forces were reduced by 79%, 49% and 17% respectively, at this time. 5. In myofibrils isolated from these muscles, maximum activity of Ca2+ activated myofibrillar ATPase, Ca2+ sensitivity (pCa 50), and co-operatively (Hill n), were not different from non-fatigued muscles. 6. It appears, therefore, that the Ca2+ activation properties of myofibrillar ATPase do not contribute to this pattern of fatigue.  相似文献   

14.
15.
Measurements have been made of the activity of ornithine decarboxylase of liver, heart, kidney and brain in alloxan-diabetic and control rats. In all these tissues this enzyme had decreased markedly at four weeks after induction of diabetes. These results are discussed in relation to the hormonal control and cyclic nucleotide regulation of ornithine decarboxylase.  相似文献   

16.
To investigate the mechanism underlying postischemic contractile dysfunction (myocardial stunning) we examined myocardial sulfhydryl group content, myofibrillar Ca2+-dependent Mg2+-ATPase activity and protein profile after global ischemia and reperfusion. The Langerdorff-perfused rabbit hearts were subjected to 15 min normothermic ischemia followed by 10 min reperfusion and myofibrils were isolated from homogenates of left ventricular tissues. Depressed contractile function during reperfusion was accompanied by a decrease in total sulfhydryl group content. However, myofibrillar protein profile was unchanged and Western immunoblotting analysis showed no significant differences in troponin I immunoreactive bands between control and stunned hearts. Likewise, myofibrillar Mg2+-ATPase activity was unaltered after ischemia and reperfusion. We conclude that myocardial stunning is not caused by altered myofibrillar function and protein degradation but may be partly due to the oxidative modification of as yet undefined proteins.  相似文献   

17.
The isolated perfused working rat heart was used to study experimental diabetes-induced alterations in the sensitivity and responsiveness of the myocardium to the effects of isoproterenol. Experimental diabetes was induced by intravenous administration of either 65 mg/kg alloxan or 60 mg/kg streptozotocin. The positive inotropic and cardiac relaxant effects of isoproterenol were studied at various time points after the induction of diabetes. There were no changes either in the sensitivity or in the maximum responses of diabetic rat hearts to the positive inotropic effect of isoproterenol at any time point studied. However, the cardiac relaxant effect of isoproterenol was depressed in acute as well as chronic diabetic rat hearts when compared with age-matched controls. Ventricular noradrenaline content was unchanged in 180-day diabetic rat hearts indicating the absence of a diabetes-induced sympathetic neuropathy in the heart. The depressed relaxing effect of isoproterenol may have resulted from alterations in energy utilization and sarcoplasmic reticular function in diabetic rat hearts.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号