首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been reported that one of the hyperthermostable aminopeptidases from Pyrococcus horikoshii exhibits hydrolytic activity toward short peptides and acyl-peptides (deblocking activity). In the genome database of P. horikoshii, two new open reading frames homologous to the hyperthermostable aminopeptidase of P. horikoshii were found. The two new genes for the proteins were cloned, expressed using E. coli, and characterized. The purified proteins gave a single band on SDS-PAGE corresponding to molecular masses of 42 kDa and 41 kDa respectively, and exhibited aminopeptidase activity, including deblocking activity. These enzymes are likely to exist as oligomeric structures at neutral pH. The optimum pHs of the two enzyme activities were in the range of 7.0 to 7.5, and the optimum temperatures for the activities were around 100 °C. The enzymes exhibited low hydrolytic activity for peptide substrates longer than 10 residues. They were activated by cobalt and zinc ions. Their substrate specificities and activation factors are different. It was confirmed that P. horikoshii has three similar aminopeptidases with deblocking activity and that these enzymes appear to play important roles in hydrolyzing small peptides in P. horikoshii cells.  相似文献   

2.
It has been reported that one of the hyperthermostable aminopeptidases from Pyrococcus horikoshii exhibits hydrolytic activity toward short peptides and acyl-peptides (deblocking activity). In the genome database of P. horikoshii, two new open reading frames homologous to the hyperthermostable aminopeptidase of P. horikoshii were found. The two new genes for the proteins were cloned, expressed using E. coli, and characterized. The purified proteins gave a single band on SDS-PAGE corresponding to molecular masses of 42 kDa and 41 kDa respectively, and exhibited aminopeptidase activity, including deblocking activity. These enzymes are likely to exist as oligomeric structures at neutral pH. The optimum pHs of the two enzyme activities were in the range of 7.0 to 7.5, and the optimum temperatures for the activities were around 100 degrees C. The enzymes exhibited low hydrolytic activity for peptide substrates longer than 10 residues. They were activated by cobalt and zinc ions. Their substrate specificities and activation factors are different. It was confirmed that P. horikoshii has three similar aminopeptidases with deblocking activity and that these enzymes appear to play important roles in hydrolyzing small peptides in P. horikoshii cells.  相似文献   

3.
Recombinant l-aminoacylase (PhoACY) from a hyperthermophilic archeon, Pyrococcus horikoshii, is a zinc-containing metalloenzyme. When the zinc was substituted by Mn2+ or Ni2+, its specific activity was significantly increased with acetyl-l-methionine as a substrate. The thermostability of PhoACY was improved when it was incubated with 1 mM Zn2+, Mn2+ or Ni2+. The enzyme with external Zn2+ addition had no significant loss of the activity when held at 90°C for up to 12 h and moreover had more than a 10-fold longer half-life even at 100°C, compared to the enzyme without Zn2+ addition. A thermostable structure of the enzyme associated with zinc binding is described based on differential scanning calorimetry.  相似文献   

4.
Pyrococcus horikoshii open reading frame PH1527 encodes a 39014 Da protein that shares about 30% identity with endoglucanases and members of the M42 peptidase family. Analytical ultracentrifugation and electron microscopy studies showed that the purified recombinant protein forms stable, large dodecameric complexes with a tetrahedral shape similar to the one described for DAP, a deblocking aminopeptidase that was characterized in the same organism. The two related proteins were named PhTET1 (for DAP) and PhTET2 (for PH1527). The substrate specificity and the mode of action of the PhTET2 complex were studied in detail and compared to those of PhTET1 and other assigned M42 peptidases. When assayed with short chromogenic peptides, PhTET2 was found to be an aminopeptidase, with a clear preference for leucine as the N-terminal amino acid. However, the enzyme can cleave moderately long polypeptide substrates of various compositions in a fairly unspecific manner. The hydrolytic mechanism was found to be nonprocessive. The enzyme has neither carboxypeptidase nor endoproteolytic activities, and it is devoid of N-terminal deblocking activity. PhTET2 was inhibited in the presence of EDTA and bestatin, and cobalt was found to be an activating metal. The PhTET2 protein is a highly thermostable enzyme that displays optimal activity around 100 degrees C over a broad pH array.  相似文献   

5.
PH0459, from the hyperthermophilic archaeon Pyrococcus horikoshii OT3, is a probable haloacid dehalogenase with a molecular mass of 26,725 Da. Here, we report the 2.0 A crystal structure of PH0459 (PDB ID: 1X42) determined by the multiwavelength anomalous dispersion method. The core domain has an alpha/beta structure formed by a six-stranded parallel beta-sheet flanked by six alpha-helices and three 3(10)-helices. One disulfide bond, Cys186-Cys212, forms a bridge between an alpha-helix and a 3(10)-helix, although PH0459 seems to be an intracellular protein. The subdomain inserted into the core domain has a four-helix bundle structure. The crystal packing suggests that PH0459 exists as a monomer. A structural homology search revealed that PH0459 resembles the l-2-haloacid dehalogenases l-DEX YL from Pseudomonas sp. YL and DhlB from Xanthobacter autotrophicus GJ10. A comparison of the active sites suggested that PH0459 probably has haloacid dehalogenase activity, but its substrate specificity may be different. In addition, the disulfide bond in PH0459 probably facilitates the structural stabilization of the neighboring region in the monomeric form, although the corresponding regions in l-DEX YL and DhlB may be stabilized by dimerization. Since heat-stable dehalogenases can be used for the detoxification of halogenated aliphatic compounds, PH0459 will be a useful target for biotechnological research.  相似文献   

6.
7.
Li T  Sun F  Ji X  Feng Y  Rao Z 《Journal of molecular biology》2003,325(5):1031-1037
The histone protein HPhA from the hyperthermophilic archaeon Pyrococcus horikoshii, shows hyperthermostability, as required for optimal growth of the organism at 95 degrees C. The structure of recombinant P.horikoshii HPhA has been determined to 2.3A resolution by molecular replacement, and refined to R(work) and R(free) values of 20.7% and 27.3%, respectively. The HPhA monomer structure is characterized by the histone fold and assembles into a homodimer like other archaeal histones. There are four anions found in the dimer structure, giving rise to clues as to where DNA might bind. A detailed comparison of four known structures of archaeal histones, which evolve and exist under different temperatures, shows that the thermophilic archaeal histone HPhA has a larger hydrophobic contact area, an increased number of hydrogen bonds and a reduced solvent-accessible area. We also observe a unique network of tyrosine residues located at the crossover point of the two HPhA monomers, which locks them together and stabilizes the dimer. These factors together account for the increased thermal stability.  相似文献   

8.
9.
X Du  W Wang  R Kim  H Yakota  H Nguyen  S H Kim 《Biochemistry》2001,40(47):14166-14172
Bacterial pyrazinamidase (PZAase)/nicotinamidase converts pyrazinamide (PZA) to ammonia and pyrazinoic acid, which is active against Mycobacterium tuberculosis. Loss of PZAase activity is the major mechanism of pyrazinamide-resistance by M. tuberculosis. We have determined the crystal structure of the gene product of Pyrococcus horikoshii 999 (PH999), a PZAase, and its complex with zinc ion by X-ray crystallography. The overall fold of PH999 is similar to that of N-carbamoylsarcosine amidohydrolase (CSHase) of Arthrobacter sp. and YcaC of Escherichia coli, a protein with unknown physiological function. The active site of PH999 was identified by structural features that are also present in the active sites of CSHase and YcaC: a triad (D10, K94, and C133) and a cis-peptide (between V128 and A129). Surprisingly, a metal ion-binding site was revealed in the active site and subsequently confirmed by crystal structure of PH999 in complex with Zn(2+). The roles of the triad, cis-peptide, and metal ion in the catalysis are proposed. Because of extensive homology between PH999 and PZAase of M. tuberculosis (37% sequence identity), the structure of PH999 provides a structural basis for understanding PZA-resistance by M. tuberculosis harboring PZAase mutations.  相似文献   

10.
Akiba T  Nishio M  Matsui I  Harata K 《Proteins》2004,57(2):422-431
The beta-glycosidase of the hyperthermophilic Archaeon Pyrococcus horikoshii is a membrane-bound enzyme with the preferred substrate of alkyl-beta-glycosides. In this study, the unusual structural features that confer the extreme thermostability and substrate preferences of this enzyme were investigated by X-ray crystallography and docking simulation. The enzyme was crystallized in the presence of a neutral surfactant, and the crystal structure was solved by the molecular replacement method and refined at 2.5 A. The main-chain fold of the enzyme belongs to the (betaalpha)8 barrel structure common to the Family 1 glycosyl hydrolases. The active site is located at the center of the C-termini of the barrel beta-strands. The deep pocket of the active site accepts one sugar unit, and a hydrophobic channel extending radially from there binds the nonsugar moiety of the substrate. The docking simulation for oligosaccharides and alkylglucosides indicated that alkylglucosides with a long aliphatic chain are easily accommodated in the hydrophobic channel. This sparingly soluble enzyme has a cluster of hydrophobic residues on its surface, situated at the distal end of the active site channel and surrounded by a large patch of positively charged residues. We propose that this hydrophobic region can be inserted into the membrane while the surrounding positively charged residues make favorable contacts with phosphate groups on the inner surface of the membrane. The enzyme could thus adhere to the membrane in the proximity of its glycolipid substrate.  相似文献   

11.
A gene encoding for a putative Family I inorganic pyrophosphatase (PPase, EC 3.6.1.1) from the hyperthermophilic archaeon Pyrococcus horikoshii OT3 was cloned and the biochemical characteristics of the resulting recombinant protein were examined. The gene (Accession No. 1907) from P. horikoshii showed some identity with other Family I inorganic pyrophosphatases from archaea. The recombinant PPase from P. horikoshii (PhPPase) has a molecular mass of 24.5 kDa, determined by SDS-PAGE. This enzyme specifically catalyzed the hydrolysis of pyrophosphate and was sensitive to NaF. The optimum temperature and pH for PPase activity were 70 degrees C and 7.5, respectively. The half-life of heat inactivation was about 50 min at 105 degrees C. The heat stability of PhPPase was enhanced in the presence of Mg2+. A divalent cation was absolutely required for enzyme activity, Mg2+ being most effective; Zn2+, Co2+ and Mn2+ efficiently supported hydrolytic activity in a narrow range of concentrations (0.05-0.5 mM). The K(m) for pyrophosphate and Mg2+ were 113 and 303 microM, respectively; and maximum velocity, V(max), was estimated at 930 U mg(-1).  相似文献   

12.
A homolog to the eubacteria inorganic pyrophosphatase (PPase, EC 3.6.1.1) was found in the genome of the hyperthermophilic archaeon Pyrococcus horikoshii. This inorganic pyrophosphatase (Pho-PPase) grows optimally at 88°C. To understand the structural basis for the thermostability of Pho-PPase, we have determined the crystal structure to 2.66 Å resolution. The crystallographic asymmetric unit contains three monomers related by approximate threefold symmetry, and a hexamer is built up by twofold crystallographic symmetry. The main-chain fold of Pho-PPase is almost identical to that of the known crystal structure of the model from Sulfolobus acidocaldarius. A detailed comparison of the crystal structure of Pho-PPase with related structures from S. acidocaldarius, Thermus thermophilus, and Escherichia coli shows significant differences that may account for the difference in their thermostabilities. A reduction in thermolabile residues, additional aromatic residues, and more intimate association between subunits all contribute to the larger thermophilicity of Pho-PPase. In particular, deletions in two loops surrounding the active site help to stabilize its conformation, while ion-pair networks unique to Pho-PPase are located in the active site and near the C-terminus. The identification of structural features that make PPases more adaptable to extreme temperature should prove helpful for future biotechnology applications.  相似文献   

13.
At the initiation of chromosomal DNA replication, DNA primases synthesize short RNA primers, which are subsequently elongated by DNA polymerases. To understand the structural basis for the primer synthesis by archaeal/eukaryotic-type primases, the gene of the DNA primase from hyperthermophilic archaeon Pyrococcus horikoshii was cloned and overexpressed in Escherichia coli as a fusion protein with a hexa-histidine tag at its amino terminus. The recombinant DNA primase was purified and crystallized by the hanging-drop vapor diffusion method at 293 K, with polyethylene glycol 8000 as the precipitant. The crystals belong to the P3(2)21 space group with unit-cell parameters a = b = 77.8, c = 129.6 A, and alpha = beta = 90 degrees, gamma = 120 degrees. Crystals of the selenomethionine derivative were obtained by means of a cross-seeding method using native crystals. The data for the native and selenomethionine-substituted crystals were collected to 1.8 and 2.2 A resolution, respectively, with synchrotron radiation at SPring-8 under flash-frozen conditions at 100 K. The four wavelength MAD data provided a phase to determine the structure of the primase at 2.2 A resolution.  相似文献   

14.
The S-adenosyl-L-methionine (SAM)-dependent methyltransferases represent a diverse and biologically important class of enzymes. These enzymes utilize the ubiquitous methyl donor SAM as a cofactor to methylate proteins, small molecules, lipids, and nucleic acids. Here we present the crystal structure of PH1915 from Pyrococcus horikoshii OT3, a predicted SAM-dependent methyltransferase. This protein belongs to the Cluster of Orthologous Group 1092, and the presented crystal structure is the first representative structure of this protein family. Based on sequence and 3D structure analysis, we have made valuable functional insights that will facilitate further studies for characterizing this group of proteins. Specifically, we propose that PH1915 and its orthologs are rRNA- or tRNA-specific methyltransferases.  相似文献   

15.
A chitinase from the hyperthermophilic archaeon Pyrococcus furiosus degrades chitin to produce diacetylchitobiose [(GlcNAc)(2)] as the end product. To further investigate the degradation mechanism of (GlcNAc)(2) in Pyrococcus spp., we cloned the gene of PH0499 from Pyrococcus horikoshii, which encodes a protein homologous to the diacetylchitobiose deacetylase of Thermococcus kodakaraensis. The deacetylase (Ph-Dac) was overexpressed as inclusion bodies in Escherichia coli Rosetta (DE3) pLys. The insoluble inclusion body was solubilized and reactivated through a refolding procedure. After several purification steps, 40 mg of soluble, thermostable (up to 80°C) Ph-Dac was obtained from 1L of culture. The apparent molecular mass of the refolded Ph-Dac was 180 kDa, indicating Ph-Dac to be a homohexamer. The refolded Ph-Dac also exhibited deacetylase activity toward (GlcNAc)(2), and the deacetylation site was revealed to be specific to the nonreducing end residue of (GlcNAc)(2). These expression and purification systems are useful for further characterization of Ph-Dac.  相似文献   

16.
Divergence of the hyperthermophilic Archaea, Pyrococcus furiosus and Pyrococcus horikoshii, was assessed by analysis of complete genomic sequences of both species. The average nucleotide identity between the genomic sequences is 70-75% within ORFs. The P. furiosus genome (1.908 mbp) is 170 kbp larger than the P. horikoshii genome (1.738 mbp) and the latter displays significant deletions in coding regions, including the trp, his, aro, leu-ile-val, arg, pro, cys, thr, and mal operons. P. horikoshii is auxotrophic for tryptophan and histidine and is unable to utilize maltose, unlike P. furiosus. In addition, the genomes differ considerably in gene order, displaying displacements and inversions. Six allelic intein sites are common to both Pyrococcus genomes, and two intein insertions occur in each species and not the other. The bacteria-like methylated chemotaxis proteins form a functional group in P. horikoshii, but are absent in P. furiosus. Two paralogous families of ferredoxin oxidoreductases provide evidence of gene duplication preceding the divergence of the Pyrococcus species.  相似文献   

17.
18.
19.
The Ski complex composed of Ski2p, Ski3p, and Ski8p plays an essential role in the 3' to 5' cytoplasmic mRNA degradation pathway in yeast. Ski2p is a putative RNA helicase, belonging in the DExD/H-box protein families and conserved in eukarya as well as in archaea. The gene product (Ph1280p) from the hyperthermophilic archaeon Pyrococcus horikoshii OT3 shows sequence homology with Ski2p, sharing 22.6% identical amino acids with a central region of Ski2p. In order to gain structural information about the Ski2p-like RNA helicase, we overproduced Ph1280p in Escherichia coli cells, and purified it to apparent homogeneity. Ph1280p exhibits DNA/RNA-dependent ATPase activity with an optimal temperature at approximately 90 degrees C. The crystal structure of Ph1280p has been solved at a resolution of 3.5 A using single-wavelength anomalous dispersion (SAD) and selenomethionyl (Se-Met)-substituted protein. Ph1280p comprises four subdomains; the two N-terminal subdomains (N1 and N2) fold into an RecA-like architecture with the conserved helicase motifs, while the two C-terminal subdomains (C1 and C2) fold into alpha-helical structures containing a winged helix (WH)-fold and helix-hairpin-helix (HhH)-fold, respectively. Although the structure of each of the Ph1280p subdomains can be individually superimposed on the corresponding domains in other helicases, such as the Escherichia coli DNA helicase RecQ, the relative orientation of the helicase and C-terminal subdomains in Ph1280p is significantly different from that of other helicases. This structural feature is implicated in substrate specificity for the Ski2-like helicase and would play a critical role in the 3' to 5' cytoplasmic mRNA degradation in the Ski complex.  相似文献   

20.
Ito N  Matsui I  Matsui E 《The FEBS journal》2007,274(5):1340-1351
Archaeal/eukaryotic primases form a heterodimer consisting of a small catalytic subunit (PriS) and a large subunit (PriL). The heterodimer complex synthesizes primer oligoribonucleotides that are required for chromosomal replication. Here, we describe crystallographic and biochemical studies of the N-terminal domain (NTD) of PriL (PriL(NTD); residues 1-222) that bind to PriS from a hyperthermophilic archaeon, Pyrococcus horikoshii, at 2.9 A resolution. The PriL(NTD) structure consists of two subdomains, the helix-bundle and twisted-strand domains. The latter is structurally flexible, and is expected to contain a PriS interaction site. Pull-down and surface plasmon resonance analyses of structure-based deletion and alanine scanning mutants showed that the conserved hydrophobic Tyr155-Tyr156-Ile157 region near the flexible region is the PriS-binding site, as the Y155A/Y156A/I157A mutation markedly reduces PriS binding, by 1000-fold. These findings and a structural comparison with a previously reported PriL(NTD)-PriS complex suggest that the presented alternative conformations of the twisted-strand domain facilitate the heterodimer assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号