首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously shown that the intrahippocampal microinjection of okadaic acid (OKA), a potent inhibitor of serine/threonine protein phosphatases, induces epileptic seizures, neuronal death, and the hyperphosphorylation of the NR2B subunit of the N-methyl-d-aspartate (NMDA) receptor. We administered OKA by reverse microdialysis in the hippocampus of awake and halothane-anesthetized rats, with simultaneous collection of microdialysis fractions and recording of the EEG activity, and subsequent histological analysis. OKA produced intense behavioral and persistent EEG seizure activity in the awake rats but not in the anesthetized animals, and did not significantly alter the extracellular concentration of glutamate and aspartate detected in the microdialysis fractions. One day after the experiment a remarkable neurodegeneration of CA1 hippocampal region was observed in both the awake and the anesthetized rats. We conclude that the OKA-induced epilepsy cannot be ascribed to increased extracellular glutamate, but to an increased sensitivity of NMDA receptor. We propose that halothane protected against the epilepsy because it blocks NMDA receptor overactivation, and that the neurodegeneration of CA1 region is independent of this overactivation and due probably to alterations of cytoskeletal proteins consequent to the OKA-induced hyperphosphorylation.  相似文献   

2.
Tau pathology in Alzheimer disease and other tauopathies   总被引:26,自引:0,他引:26  
Just as neuronal activity is essential to normal brain function, microtubule-associated protein tau appears to be critical to normal neuronal activity in the mammalian brain, especially in the evolutionary most advanced species, the homo sapiens. While the loss of functional tau can be compensated by the other two neuronal microtubule-associated proteins, MAP1A/MAP1B and MAP2, it is the dysfunctional, i.e., the toxic tau, which forces an affected neuron in a long and losing battle resulting in a slow but progressive retrograde neurodegeneration. It is this pathology which is characteristic of Alzheimer disease (AD) and other tauopathies. To date, the most established and the most compelling cause of dysfunctional tau in AD and other tauopathies is the abnormal hyperphosphorylation of tau. The abnormal hyperphosphorylation not only results in the loss of tau function of promoting assembly and stabilizing microtubules but also in a gain of a toxic function whereby the pathological tau sequesters normal tau, MAP1A/MAP1B and MAP2, and causes inhibition and disruption of microtubules. This toxic gain of function of the pathological tau appears to be solely due to its abnormal hyperphosphorylation because dephosphorylation converts it functionally into a normal-like state. The affected neurons battle the toxic tau both by continually synthesizing new normal tau and as well as by packaging the abnormally hyperphosphorylated tau into inert polymers, i.e., neurofibrillary tangles of paired helical filaments, twisted ribbons and straight filaments. Slowly but progressively, the affected neurons undergo a retrograde degeneration. The hyperphosphorylation of tau results both from an imbalance between the activities of tau kinases and tau phosphatases and as well as changes in tau's conformation which affect its interaction with these enzymes. A decrease in the activity of protein phosphatase-2A (PP-2A) in AD brain and certain missense mutations seen in frontotemporal dementia promotes the abnormal hyperphosphorylation of tau. Inhibition of this tau abnormality is one of the most promising therapeutic approaches to AD and other tauopathies.  相似文献   

3.
4.
Dendritic degeneration and loss of synaptic proteins are early events correlated with functional decline in neurodegenerative disease. The temporal and mechanistic relationship between synapse loss and cell death, however, remains unclear. We used confocal microscopy and image processing to count post-synaptic sites on rat hippocampal neurons by expressing post-synaptic density protein 95 fused to green fluorescent protein. Fluorescent puncta co-localized with neurotransmitter release sites, NMDA-induced Ca2+ increases and NMDA receptor immunoreactivity. During excitotoxic neurodegeneration, synaptic sites were lost and synaptic transmission impaired. These changes were mediated by NMDA receptors and required Ca2+-dependent activation of the proteasome pathway. Tracking synapses from the same cell following brief neurotoxic insult revealed transient loss followed by recovery. The time-course, concentration-dependence and mechanism for loss of post-synaptic sites were distinct from those leading to cell death. Cells expressing p14ARF, which inhibits ubiquitination of post-synaptic density protein 95 and prevents loss of synaptic sites, displayed an increased sensitivity to glutamate-induced cell death. Thus, excitotoxic synapse loss may be a disease-modifying process rather than an obligatory step leading to cell death. These results demonstrate the importance of assessing synaptic function independent of neuronal survival during neurodegeneration and indicate that this approach will be useful for identifying toxins that degrade synaptic connections and for screening for agents that protect synaptic function.  相似文献   

5.
Tau protein misfolding is a pathological mechanism, which plays a critical role in the etiopathogenesis of neurodegeneration. However, it is not entirely known what kind of stimuli can induce the misfolding. It is believed that physical and emotional stresses belong to such risk factors. Although the influence of stress on the onset and progression of Alzheimer's disease (AD) has already been proposed, the molecular links between stresses and AD are still unknown. We have therefore focused our attention on determination of the influence of acute immobilization stress (IMO) in normal mice and mice deficient in corticotropin-releasing hormone (CRH). Specifically, we have analyzed levels of hyperphosphorylated tau proteins, bearing the AD-specific phospho-epitopes (AT-8, pT181, and PHF-1), which are implicated in the pathogenesis of AD. We found that IMO induces transient hyperphosphorylation of tau proteins regardless of continuation of the stimulus. Concerning tau modifications, detailed analysis of the mouse brain revealed that neurons in different brain regions including frontal cortex, temporal cortex, hippocampal C1 and CA3 regions, dentate gyrus as well as nucleus basalis Meynert, and several brainstem nuclei such as locus coeruleus but also raphe nucleus and substantia nigra respond similarly to IMO. The strongest tau protein phosphorylation was observed after 30?min of IMO stress. Stress lasting for 120?min led either to the disappearance of tau hyperphosphorylation or to the induction of a second wave of hyperphosphorylation. Noteworthy is the magnitude of pathological phosphorylation of tau protein in CRH and glucocorticoids deficient mice, being much lower in comparison to that observed in wild-type animals, which suggests a critical role of CRH in the pathogenesis of AD. Thus, our results indicate that hyperphosphorylation of tau protein induced by stress may represent the pathogenic event upstream of tau protein misfolding, which leads to progression or eventually initiation of neurodegeneration. The data show that CRH plays an important role in stress induced hyperphosphorylation of tau protein, which might be either a direct effect of CRH innervations in the brain or an effect mediated via the hypothalamo-pituitary-adrenal axis.  相似文献   

6.
Soluble NSF attachment protein receptors (SNAREs) are the core proteins in membrane fusion. The neuron-specific synaptic v-SNARE n-syb (neuronal Synaptobrevin) plays a key role during synaptic vesicle exocytosis. In this paper, we report that loss of n-syb caused slow neurodegeneration independent of its role in neurotransmitter release in adult Drosophila melanogaster photoreceptor neurons. In addition to synaptic vesicles, n-Syb localized to endosomal vesicles. Loss of n-syb lead to endosomal accumulations, transmembrane protein degradation defects, and a secondary increase in autophagy. Our evidence suggests a primary defect of impaired delivery of vesicles that contain degradation proteins, including the acidification-activated Cathepsin proteases and the neuron-specific proton pump and V0 adenosine triphosphatase component V100. Overexpressing V100 partially rescued n-syb-dependent degeneration through an acidification-independent endosomal sorting mechanism. Collectively, these findings reveal a role for n-Syb in a neuron-specific sort-and-degrade mechanism that protects neurons from degeneration. Our findings further shed light on which intraneuronal compartments exhibit increased or decreased neurotoxicity.  相似文献   

7.

Aims

ApoB-100 is the major protein component of cholesterol- and triglyceride-rich LDL and VLDL lipoproteins in the serum. Previously, we generated and partially described transgenic mice overexpressing the human ApoB-100 protein. Here, we further characterize this transgenic strain in order to reveal a possible link between hypeprlipidemia and neurodegeneration.

Methods and Results

We analyzed the serum and cerebral lipid profiles, tau phosphorylation patterns, amyloid plaque-formation, neuronal apoptosis and synaptic plasticity of young (3 month old), adult (6 month old) and aging (10–11 month old) transgenic mice. We show that ApoB-100 transgenic animals present i) elevated serum and cerebral levels of triglycerides and ApoB-100, ii) increased cerebral tau phosphorylation at phosphosites Ser199, Ser199/202, Ser396 and Ser404. Furthermore, we demonstrate, that tau hyperphosphorylation is accompanied by impaired presynaptic function, long-term potentiation and widespread hippocampal neuronal apoptosis.

Conclusions

The results presented here indicate that elevated ApoB-100 level and the consequent chronic hypertriglyceridemia may lead to impaired neuronal function and neurodegeneration, possibly via hyperphosphorylation of tau protein. On account of their specific phenotype, ApoB-100 transgenic mice may be considered a versatile model of hyperlipidemia-induced age-related neurodegeneration.  相似文献   

8.
Synapsins as regulators of neurotransmitter release   总被引:19,自引:0,他引:19  
One of the crucial issues in understanding neuronal transmission is to define the role(s) of the numerous proteins that are localized within presynaptic terminals and are thought to participate in the regulation of the synaptic vesicle life cycle. Synapsins are a multigene family of neuron-specific phosphoproteins and are the most abundant proteins on synaptic vesicles. Synapsins are able to interact in vitro with lipid and protein components of synaptic vesicles and with various cytoskeletal proteins, including actin. These and other studies have led to a model in which synapsins, by tethering synaptic vesicles to each other and to an actin-based cytoskeletal meshwork, maintain a reserve pool of vesicles in the vicinity of the active zone. Perturbation of synapsin function in a variety of preparations led to a selective disruption of this reserve pool and to an increase in synaptic depression, suggesting that the synapsin-dependent cluster of vesicles is required to sustain release of neurotransmitter in response to high levels of neuronal activity. In a recent study performed at the squid giant synapse, perturbation of synapsin function resulted in a selective disruption of the reserve pool of vesicles and in addition, led to an inhibition and slowing of the kinetics of neurotransmitter release, indicating a second role for synapsins downstream from vesicle docking. These data suggest that synapsins are involved in two distinct reactions which are crucial for exocytosis in presynaptic nerve terminals. This review describes our current understanding of the molecular mechanisms by which synapsins modulate synaptic transmission, while the increasingly well-documented role of the synapsins in synapse formation and stabilization lies beyond the scope of this review.  相似文献   

9.
Neuronal plasticity can be defined as adaptive changes in structure and function of the nervous system, an obvious example of which is the capacity to remember and learn. Long-term potentiation and long-term depression are the experimental models of memory in the central nervous system (CNS), and have been frequently utilized for the analysis of the molecular mechanisms of memory formation. Extensive studies have demonstrated that various kinases and phosphatases regulate neuronal plasticity by phosphorylating and dephosphorylating proteins essential to the basic processes of adaptive changes in the CNS. These proteins include receptors, ion channels, synaptic vesicle proteins, and nuclear proteins. Multifunctional kinases (cAMP-dependent protein kinase, Ca2+/phospholipid-dependent protein kinase, and Ca2+/calmodulin-dependent protein kinases) and phosphatases (calcineurin, protein phosphatases 1, and 2A) that specifically modulate the phosphorylation status of neuronal-signaling proteins have been shown to be required for neuronal plasticity. In general, kinases are involved in upregulation of the activity of target substrates, and phosphatases downregulate them. Although this rule is applicable in most of the cases studied, there are also a number of exceptions. A variety of regulation mechanisms via phosphorylation and dephosphorylation mediated by multiple kinases and phosphatases are discussed.  相似文献   

10.
Regulation and function of local protein synthesis in neuronal dendrites   总被引:16,自引:0,他引:16  
It has long been shown that protein synthesis can occur in neuronal dendrites, but its significance remained unclear until relatively recently. Studies suggest that local protein synthesis has crucial roles in synaptic plasticity, the change in neuronal communication efficiency that is probably a cellular basis of learning and memory. Induced by neuronal activity, local protein synthesis provides key factors for the modification of activated synapses. In this review, we summarize the evidence for local protein synthesis and its functions in synaptic plasticity. We also discuss the molecular mechanisms by which neuronal activity induces the synthesis of proteins that allow for changes in synaptic function.  相似文献   

11.
Pinning down phosphorylated tau and tauopathies   总被引:4,自引:0,他引:4  
Neurofibrillary tangles (NFTs) are prominent neuronal lesions in a large subset of neurodegenerative diseases, including Alzheimer's disease (AD). NFTs are mainly composed of insoluble Tau that is hyperphosphorylated on many serine or threonine residues preceding proline (pSer/Thr-Pro). Tau hyperphosphorylation abolishes its biological function to bind microtubules and promotes microtubule assembly and precedes neurodegeneration. Not much is known about how tau is further regulated following phosphorylation. Notably, we have recently shown that phosphorylated Ser/Thr-Pro motifs exist in two distinct conformations. The conversion between two conformations in some proteins is catalyzed by the prolyl isomerase Pin1. Pin1 binds to tau phosphorylated specifically on the Thr231-Pro site and probably catalyzes cis/trans isomerization of pSer/Thr-Pro motif(s), thereby inducing conformational changes in tau. Such conformational changes can directly restore the ability of phosphorylated Tau to bind microtubules and promote microtubule assembly and/or facilitate tau dephosphorylation by its phosphatase PP2A, as PP2A activity is conformation-specific. Furthermore, Pin1 expression inversely correlates with the predicted neuronal vulnerability in normally aged brain and also with actual neurofibrillary degeneration in AD brain. Moreover, deletion of the gene encoding Pin1 in mice causes progressive age-dependent neuropathy characterized by motor and behavioral deficits, tau hyperphosphorylation, tau filament formation and neuronal degeneration. Distinct from all other mouse models where transgenic overexpression of specific proteins elicits tau-related pathologies, Pin1 is the first protein whose depletion causes age-dependent neurodegeneration and tau pathologies. Thus, Pin1 is pivotal in maintaining normal neuronal function and preventing age-dependent neurodegeneration. This could represent a promising interventive target to prevent neurodegenerative diseases.  相似文献   

12.
Calcineurin in memory and bidirectional plasticity   总被引:4,自引:0,他引:4  
The molecular mechanisms of learning and memory, and the underlying bidirectional changes in synaptic plasticity that sustain them largely implicate protein kinases and phosphatases. Specifically, Ca(2+)-dependent kinases and phosphatases actively control neuronal processing by forming a tightly regulated balance in which they oppose each other. In this balance, calcineurin (PP2B) is a critical protein phosphatase whose main function is to negatively modulate learning, memory, and plasticity. It acts by dephosphorylating numerous substrates in different neuronal compartments. This review outlines some of CN neuronal targets and their implication in synaptic functions, and describes the role of CN in the acquisition, storage, retrieval, and extinction of memory, as well as in bidirectional plasticity.  相似文献   

13.
14.
Neural circuit function requires mechanisms for controlling neurotransmitter release and the activity of neuronal networks, including modulation by synaptic contacts, synaptic plasticity, and homeostatic scaling. However, how neurons intrinsically monitor and feedback control presynaptic neurotransmitter release and synaptic vesicle (SV) recycling to restrict neuronal network activity remains poorly understood at the molecular level. Here, we investigated the reciprocal interplay between neuronal endosomes, organelles of central importance for the function of synapses, and synaptic activity. We show that elevated neuronal activity represses the synthesis of endosomal lipid phosphatidylinositol 3‐phosphate [PI(3)P] by the lipid kinase VPS34. Neuronal activity in turn is regulated by endosomal PI(3)P, the depletion of which reduces neurotransmission as a consequence of perturbed SV endocytosis. We find that this mechanism involves Calpain 2‐mediated hyperactivation of Cdk5 downstream of receptor‐ and activity‐dependent calcium influx. Our results unravel an unexpected function for PI(3)P‐containing neuronal endosomes in the control of presynaptic vesicle cycling and neurotransmission, which may explain the involvement of the PI(3)P‐producing VPS34 kinase in neurological disease and neurodegeneration.  相似文献   

15.
Okadaic acid (OKA), a polyether C38 fatty acid toxin extracted from a black sponge Hallichondria okadaii, is a potent and selective inhibitor of protein phosphatase, PP1 and PP2A. OKA has been proved to be a powerful probe for studying the various regulatory mechanisms and neurotoxicity. Because of its property to inhibit phosphatase activity, OKA is associated with protein phosphorylation; it is implicated in hyperphosphorylation of tau and in later stages causes Alzhiemer’s disease (AD)-like pathology. AD is a progressive neurodegenerative disorder, pathologically characterized by extracellular amyloid beta (Aβ) plaques and intracellular neurofibrillary tangles (NFTs). The density of tau tangles in AD pathology is associated with cognitive dysfunction. Recent studies have highlighted the importance of serine/threonine protein phosphatases in many processes including apoptosis and neurotoxicity. Although OKA causes neurotoxicity by various pathways, the exact mechanism is still not clear. The activation of major kinases, such as Ser/Thr, MAPK, ERK, PKA, JNK, PKC, CaMKII, Calpain, and GSK3β, in neurons is associated with AD pathology. These kinases, associated with abnormal hyperphosphorylation of tau, suggest that the cascade of these kinases could exclusively be involved in the pathogenesis of AD. The activity of serine/threonine protein phosphatases needs extensive study as these enzymes are potential targets for novel therapeutics with applications in many diseases including cancer, inflammatory diseases, and neurodegeneration. There is a need to pay ample attention on MAPK kinase pathways in AD, and OKA can be a better tool to study cellular and molecular mechanism for AD pathology. This review elucidates the regulatory mechanism of PP2A and MAPK kinase and their possible mechanisms involved in OKA-induced apoptosis, neurotoxicity, and AD-like pathology.  相似文献   

16.
Aging is associated with the decline of cognitive properties. This situation is magnified when neurodegenerative processes associated with aging appear in human patients. Neuronal synaptic plasticity events underlie cognitive properties in the central nervous system. Caloric restriction (CR; either a decrease in food intake or an intermittent fasting diet) can extend life span and increase disease resistance. Recent studies have shown that CR can have profound effects on brain function and vulnerability to injury and disease. Moreover, CR can stimulate the production of new neurons from stem cells (neurogenesis) and can enhance synaptic plasticity, which modulate pain sensation, enhance cognitive function, and may increase the ability of the brain to resist aging. The beneficial effects of CR appear to be the result of a cellular stress response stimulating the production of proteins that enhance neuronal plasticity and resistance to oxidative and metabolic insults; they include neurotrophic factors, neurotransmitter receptors, protein chaperones, and mitochondrial biosynthesis regulators. In this review, we will present and discuss the effect of CR in synaptic processes underlying analgesia and cognitive improvement in healthy, sick, and aging animals. We will also discuss the possible role of mitochondrial biogenesis induced by CR in regulation of neuronal synaptic plasticity.  相似文献   

17.
Mitochondria manufacture and release metabolites and manage calcium during neuronal activity and synaptic transmission, but whether long term alterations in mitochondrial function contribute to the neuronal plasticity underlying changes in organism behavior patterns is still poorly understood. Although normal neuronal plasticity may determine learning, in contrast a persistent decline in synaptic strength or neuronal excitability may portend neurite retraction and eventual somatic death. Anti-death proteins such as Bcl-xL not only provide neuroprotection at the neuronal soma during cell death stimuli, but also appear to enhance neurotransmitter release and synaptic growth and development. It is proposed that Bcl-xL performs these functions through its ability to regulate mitochondrial release of bioenergetic metabolites and calcium, and through its ability to rapidly alter mitochondrial positioning and morphology. Bcl-xL also interacts with proteins that directly alter synaptic vesicle recycling. Bcl-xL translocates acutely to sub-cellular membranes during neuronal activity to achieve changes in synaptic efficacy. After stressful stimuli, pro-apoptotic cleaved delta N Bcl-xL (ΔN Bcl-xL) induces mitochondrial ion channel activity leading to synaptic depression and this is regulated by caspase activation. During physiological states of decreased synaptic stimulation, loss of mitochondrial Bcl-xL and low level caspase activation occur prior to the onset of long term decline in synaptic efficacy. The degree to which Bcl-xL changes mitochondrial membrane permeability may control the direction of change in synaptic strength. The small molecule Bcl-xL inhibitor ABT-737 has been useful in defining the role of Bcl-xL in synaptic processes. Bcl-xL is crucial to the normal health of neurons and synapses and its malfunction may contribute to neurodegenerative disease. This article is part of a Special Issue entitled: Misfolded Proteins, Mitochondrial Dysfunction, and Neurodegenerative Diseases.  相似文献   

18.
Mitochondrial uncoupling mediated by uncoupling protein 1 (UCP1) is classically associated with non-shivering thermogenesis by brown fat. Recent evidence indicates that UCP family proteins are also present in selected neurons. Unlike UCP1, these proteins (UCP2, UCP4 and BMCP1/UCP5) are not constitutive uncouplers and are not crucial for non-shivering thermogenesis. However, they can be activated by free radicals and free fatty acids, and their activity has a profound influence on neuronal function. By regulating mitochondrial biogenesis, calcium flux, free radical production and local temperature, neuronal UCPs can directly influence neurotransmission, synaptic plasticity and neurodegenerative processes. Insights into the regulation and function of these proteins offer unsuspected avenues for a better understanding of synaptic transmission and neurodegeneration.  相似文献   

19.
淀粉样蛋白的沉积与Tau蛋白磷酸化是阿尔茨海默病发病的关键分子机制,神经元胞内钙离子的变化可影响其生成和代谢;另一方面,这些蛋白的改变会进一步导致神经元钙稳态的失调,致使突触损伤、神经细胞凋亡及认知功能下降。本文就神经元钙稳态失衡在阿尔茨海默病发病中的进展进行综述。  相似文献   

20.
Calpain and synaptic function   总被引:1,自引:0,他引:1  
Proteolysis by calpain is a unique posttranslational modification that can change integrity, localization, and activity of endogenous proteins. Two ubiquitous calpains, mu-calpain and m-calpain, are highly expressed in the central nervous system, and calpain substrates such as membrane receptors, postsynaptic density proteins, kinases, and phosphatases are localized to the synaptic compartments of neurons. By selective cleavage of synaptically localized molecules, calpains may play pivotal roles in the regulation of synaptic processes not only in physiological states but also during various pathological conditions. Activation of calpains during sustained synaptic activity is crucial for Ca2+-dependent neuronal functions, such as neurotransmitter release, synaptic plasticity, vesicular trafficking, and structural stabilization. Overactivation of calpain following dysregulation of Ca2+ homeostasis can lead to neuronal damage in response to events such as epilepsy, stroke, and brain trauma. Calpain may also provide a neuroprotective effect from axotomy and some forms of glutamate receptor overactivation. This article focuses on recent findings on the role of calpain-mediated proteolytic processes in potentially regulating synaptic substrates in physiological and pathophysiological events in the nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号