首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Agents that elevate intracellular cAMP levels are required for growth of many cell types in culture including normal rat mammary epithelial (RME) cells. To determine if the intracellular levels of cAMP that result from stimulation by agents such as cholera toxin (CT) or prostaglandin E-1 (PGE-1) are within the physiological range, cAMP levels were determined in RME cells growing in primary culture and compared to levels measured in freshly isolated mammary epithelium. The results indicate that the cAMP levels of mammary epithelial organoids obtained from 45-day-old virgin rats are 4 to 6 pmol/106 cells. Growth of RME cells in primary culture in the presence of CT results in cAMP levels of approximately 15 to 20 pmol/106 cells early in culture when cells are proliferating rapidly. As cells approach confluence, cAMP concentrations decrease to levels observed in fresh organoids. CT-stimulated cAMP levels appear to be within the range of those found in pregnant mammary epithelium in vivo. Growth of RME cells in medium supplemented with PGE-1 instead of CT results in cAMP levels equivalent to those found in fresh mammary epithelial organoids and under these conditions the growth rate is approximately half that found in CT-stimulated cells. These results indicate cAMP to be a positive regulator of cell growth in vivo at levels that are within the physiological range.  相似文献   

2.
Summary In experimental animal models the susceptibility of the mammary gland to neoplastic transformation is related to its degree of development and proliferative activity; this observation led us to determine whether the human breast epithelium also exhibits development-related differences, and whether these differences could be detected in an in vitro system. Normal breast tissue obtained from reduction mammoplasties of 9 patients ranging in age from 18 to 56 years were characterized in both whole mount preparations and organoids obtained after collagenase-hyaluronidase digestion by their degree of development based upon the types of lobules present. Lobules were classified into type 1 (Lob 1), composed of approximately 11 alveolar buds, the less developed; lobules type 2 (Lob 2), of moderate development, composed of approximately 47 ductules each, and lobules type 3 (Lob 3), composed of 80 ductules each, represented the highest level of development. Epithelial organoids obtained after digestion were plated in DMEM:F12 medium supplemented with hydrocortisone, cholera toxin, insulin and 5% horse serum with a calcium concentration of 1.05 mM Ca++. Following attachment, the medium was replaced by medium containing 0.040 mM Ca++. The percentage of attachment of organoids to the flask was greater in cells from Lob 1 (89–99%) and Lob 1+2 (79–100%) than in cells from Lob 3, which had a 53–67% attachment. The total yield of cells after 7 weeks in culture was also greater in cells derived from Lob 1 and Lob 1+2 than in cells from Lob 3. The total yield of cells obtained from primary cultures was not related to the number of organoids plated, but to the degree of development of the gland. The DNA-labeling index (DNA-LI) in intact breast tissue correlated with that in primary cultures; it was greater in Lob 1 and Lob 1+2 than in Lob 3. By flow cytometry, the highest percentage of cells in S-phase was seen in cells with the highest DNA-LI. We concluded that the growth characteristics of mammary epithelial cells in vitro in a low Ca++ medium is modulated by the degree of development and differentiation of the gland. Supported by PHS Grant CA-38921 awarded by the National Cancer Institute, DHHS, and an Institutional Grant from the United Foundation of Greater Detroit.  相似文献   

3.
Summary Fragments of human breast epithelium, devoid of all stromal and basal lamina components, which maintain their in vivo topological organisation can be cultured for up to 28 days within a reconstituted rat-tail-derived collagen matrix. These organoids initially undergo a loss of structural and 3-dimensional organisation, typified by loss of lumina formed by epithelial cells, and myosin from myoepithelial cells. Their subsequent reorganisation is dependent on the presence of serum, insulin, hydrocortisone, and cholera toxin in tissue culture medium. After this preliminary phase, a reduction in the concentration of serum, insulin, hydrocortisone, and cholera toxin is necessary to allow the structural differentiation of epithelial and myoepithelial cells. The myoepithelial cells also regain their ability to produce the basal lamina component laminin. The use of bovine-dermal collagen as the matrix, rather than rat-tail-derived collagen is shown to result in more stable organisation and differentiation of the organoids. The successful use of single-cell pellets (derived by trypsinisation of the organoids) in place of organoids in such cultures illustrates that there is no requirement for pre-existing cell/ cell contact or topological organisation of cells prior to embedding within the collagen matrix.  相似文献   

4.
Summary We compared the growth and morphology of normal, dysplastic and malignant human mammary epithelial cells (HMEC) in medium containing 5% human serum, a serum-free medium (32) and serum-free medium with a low Ca++ concentration. Tissues were dissociated and epithelial organoids or single cells were seeded onto collagen-coated dishes. The cells grew in serum-containing medium, but growth of fibroblasts was also stimulated. The serum-free medium consistently selected for and stimulated the growth of epithelial cells. There was little advantage in reducing the Ca++ concentration to further increase cell yield. This serum-free primary culture system allows us to routinely prouce sufficient numbers of HMEC from small tissue samples for molecular biological investigations. Furthermore, the maintenance of cells in a defined medium can provide a system for evaluating the direct effects of factors on gene expression. This work was supported by a grant from the National Cancer Institute of Canada and funds contributed by Mr. B. T. Wharton in memory of his wife, Nadia.  相似文献   

5.
Mouse submandibular epithelial cells can be grown in primary culture using the collagen gel matrix and a chemically defined medium consisting of insulin, transferrin, cholera toxin, and BSA (or FGF). Sustained cell growth leading to a 5–10-fold increase in cell number was observed in less than 2 weeks. In the presence of these additives, clumps of cells proliferate by extending ‘star-like’ projections into the matrix, resulting in three-dimensional outgrowths. The morphology of these outgrowths can be modulated to form a ‘cyst-like’ appearance by deleting BSA and adding cortisol to the basal medium containing insulin, transferrin, cholera toxin and FGF. In brief, a serum-free medium for sustained growth has been devised and a simple manipulation of supplements can modulate the three-dimensional colony morphology in the collagen gel matrix. Finally, the resulting outgrowths can produce epidermal growth factor (EGF) in response to dihydrotestosterone.  相似文献   

6.
Summary Epithelial cells from mouse seminal vesicles were enzymatically dissociated enriched by gradient centrifugation, and maintained in collagen gel cultures with defined (serum-free) media. The epithelial origin of the cells was determined morhologically, immunocytochemically, and biochemically. Cells formed three-dimensional colonies with a lumen in collagen gels. Cell number was increased eight-fold within a 8 to 12-d culture period in a medium supplemented with epidermal growth factor (EGF) (10 ng/ml), insulin (10 μg/ml), transferrin (10 μg/ml), cholera toxin (10 ng/ml), and hydrocortisone (0.1 μg/ml). The cells required eGF and insulin; the growth-promoting effects of these two peptide hormones were optimized by transferrin, cholera toxin, and hydrocortisone. Fetal bovine serum did not support growth; rather, it suppressed the stimulated growth observed in serum-free media. A time-course study revealed that a lag period preceded rapi growth. The collagen gel, serum-free culture provides a powerful tool to study the effects of hormones on proliferation and differentiation of androgen sensitive cells.  相似文献   

7.
Summary The ability of human epithelial cells derived from adult prostatic tissues to undergo clonal growth in culture was examined. In a previously described serum-free culture system, such cells exhibited a density-dependent growth requirement. It was found that raising the level of one of the constituents of the culture medium, bovine pituitary extract, to 100 μg/ml permitted excellent clonal growth when as few as 100 cells were inoculated/60-mm2 dish. Raising the levels of supplements other than pituitary extract (cholera toxin, epidermal growth factor, hydrocortisone, or insulin) did not produce this result. The average colony-forming efficiency of cells derived from primary or early passage cultures was approximately 25%. When single cell suspensions were prepared from tissue isolates and directly analyzed for clonal growth, colony-forming efficiencies were approximately 5%, perhaps indicating the proportion of stem cells with proliferative potential in the original isolates. The colony-forming efficiency of a cell population derived from cancer tissue was not significantly different from those of populations derived from normal tissues.  相似文献   

8.
The extended culture of rat cervical epithelial cells can be achieved in the absence of a fibroblast feeder layer by utilizing collagen gels and a complex growth medium. The medium contains a 1:1 mixture of RPMI-1640 and Ham's F12 supplemented with 7.5% porcine serum and epidermal growth factor, cholera toxin, transferrin, insulin, and hydrocortisone. Under these culture conditions the cells show rapid log-phase growth and high saturation densities while retaining the ultrastructural characteristics of immature squamous metaplastic cells of the rat uterine cervix even after extended passage. In a manner similar to epithelial cells from a variety of sources, rat cervical epithelial cells form hemicysts at confluence in vitro when cultured on impermeable substrates. The development of these methods for culturing cervical epithelial cells provides an experimental system for the study of factors important in regulating the growth and differentiation of metaplastic squamous epithelial cells.  相似文献   

9.
Culture of cardiac muscle cells in serum-free media   总被引:2,自引:0,他引:2  
Cardiac muscle cells from neonatal rats have been cultured in completely defined serum-free media. The most successful system consists of precoating culture flasks with fibronectin at a concentration of 5 μg/cm2 of surface area and adding fetuin and either dibutyryl cyclic AMP (db-cAMP), cholera toxin, epidermal growth factor or insulin plus dexamethasone to the medium. In order to define a serum- and a hormone or growth factor-free medium, cardiac muscle cells were grown in the presence of fibronectin, fetuin and db-cAMP for 4 days, after which time db-cAMP was omitted from the medium. Under these conditions the cells continue to maintain their differentiated morphology for at least 4 days thereafter. These morphological studies demonstrate that dissociated neonatal cardiac muscle cells are able to grow and differentiate in a chemically defined medium in the absence of animal serum.  相似文献   

10.
Summary Primary cultured epithelial cells derived from the rat dorsolateral prostate proliferated in serum-free nutrient medium WAJC 404 supplemented with mitogens: insulin (650 nM), cholera toxin (120 pM), epidermal growth factor (EGF) (2.5 nM), dexamethasone (300 nM), and bovine pituitary extract (25 μg/ml). The culture consisted of two types of epithelial cell colonies: one originated from single cells or small cell aggregates and the other was epithelial cell outgrowth from small tissue fragments attached to a substratum. There were differences in requirements for the mitogens between the two types of colonies. Requirements for cholera toxin, bovine pituitary extract, and dexamethasone were higher in the former type of colonies, and those for EGF were higher in the latter type of colonies. Proliferation of the epithelial cells in either type, of colony was suppressed more than 50% by 1 nM dihydrotestosterone. This suppressive effect was not mediated by stromal component in the tissue fragments, and was counteracted by cyproterone acetate, indicating specific and direct action of the androgen on prostate epithelial cells. The results suggest that there is discrete participation of polypeptide growth factors and androgen in proliferation and differentiation, respectively, of prostate epithelial cells in vivo.  相似文献   

11.
Virgin rat mammary epithelium enriched for alveoli were embedded in a collagen gel matrix to study the direct effect of mammogenic hormones and epidermal growth factor (EGF) on their growth over a 12-day culture period. Serum-supplemented medium alone caused a 3- to 4-fold increase in cell number, whereas medium containing insulin, prolactin, progesterone, cholera toxin and serum caused a 15-fold increase. Cultures resulting from this substantial cell number increase consisted of large, smooth-bordered epithelial colonies with relatively few (< 1%) single cells surrounding them. An equal increase in cell number was obtained when progesterone was replaced by hydrocortisone in the above-mentioned medium, but these cultures contained predominantly single spindle-shaped cells with a few small epithelial colonies. The smooth-bordered epithelial colonies consisted solely of mammary epithelial cells, since they contained thioesterase II, an enzyme found exclusively in mammary epithelium. The identity of the single spindle-shaped cells remains to be determined. The addition of EGF to serum or serum, hormone and cholera toxin-supplemented medium did not enhance the proliferative effect of these factors on the alveolar-enriched population.  相似文献   

12.
Concentrations of extracellular Ca++ optimum for growth of cell types of mesodermal origin have been reported to be up to 100-fold higher than concentrations optimal for epidermal or other epithelial lining cells. In order to examine Ca++ requirements of epithelial v. fibroblastic cells derived from a common tissue source, prior to prolonged culture, freshly isolated mouse epidermal keratinocytes, hair follicle cells and dermal fibroblasts were plated at high density or at clonal density in medium ranging from 0.014 to 1.4 mM Ca++. Epithelial skin cells grew best at Ca++ levels below 0.1 mM while dermal fibroblasts grew best at a Ca++ concentration of 1.4 mM. the epithelial cell types exhibited marked morphologic changes in response to Ca++, while the fibroblasts did not. These results suggest that the variations in Ca++ response between lining epithelium and mesenchymal cells resulted from inherent differences in these cell types, but a mechanism for such differential effects has not yet been defined.  相似文献   

13.
Summary— Thirty endometrial biopsies were cultured in order to separate stromal and epithelial cells. Using epidermal growth factor (EGF), cortisol, cholera toxin, insulin with 5% horse serum for epithelial cells or a medium with 20% fetal calf serum for stromal cells, we could specifically enrich endometrial culture in epithelial or stromal cells and culture them for 1 or 2 months. These cultures retained the phenotypic characteristics of epithelial (cytokeratins, mucin HMFG 1) and stromal (vimentin, smooth muscle actin, desmin) lineage by immunostaining analysis. Epithelial and stromal cultures from one individual were respectively immortalized by the SV 40 large T antigen. The immortalized cell lines kept the phenotype of the normal cells from which they derived.  相似文献   

14.
Summary The clonal growth and serial propagation of rat esophageal epithelial cells in low serum-containing medium has been achieved without feeder layers or conditioned medium. To date, a total of four lines have been developed and maintained for as many as 40 passages in culture. Growth of the cells was possible only after modifying the culture medium (PFMR-4) by reducing the calcium concentration from 1 to 0.1 mM, and by adding low levels of dialyzed fetal bovine serum and seven growth factors; i.e. epidermal growth factor, hydrocortisone, ethanolamine, phosphoethanolamine, insulin, transferrin, and cholera toxin. Cell lines have been developed from both explant outgrowths and enzyme dissociated esophagi. The epithelial nature of the cells was confirmed by electron microscopy and immunological methods. Clonal growth studies revealed that optimal cell growth occurred in medium containing 2.4% dialyzed fetal bovine serum and 0.1 mM calcium. Calcium levels of 0.3 mM or higher caused the cells to stratify and undergo terminal differentiation. Coating the culture dishes with collagen, or a combination of collagen, fibronectin, and bovine serum albumin, increased both the cell growth rate and the colony forming efficiency. The successful long term culture of rat esophageal epithelial cells permits their use as models in studies concerned with esophageal differentiation and carcinogenesis. This investigation was supported by U.S. Public Health Service Grant CA 28950, awarded by the National Cancer Institute, Bethesda, MD.  相似文献   

15.
Clonal growth and serial propagation of rat esophageal epithelial cells   总被引:6,自引:0,他引:6  
The clonal growth and serial propagation of rat esophageal epithelial cells in low serum-containing medium has been achieved without feeder layers or conditioned medium. To date, a total of four lines have been developed and maintained for as many as 40 passages in culture. Growth of the cells was possible only after modifying the culture medium (PFMR-4) by reducing the calcium concentration from 1 to 0.1 mM, and by adding low levels of dialyzed fetal bovine serum and seven growth factors; i.e. epidermal growth factor, hydrocortisone, ethanolamine, phosphoethanolamine, insulin, transferrin, and cholera toxin. Cell lines have been developed from both explant outgrowths and enzyme dissociated esophagi. The epithelial nature of the cells was confirmed by electron microscopy and immunological methods. Clonal growth studies revealed that optimal cell growth occurred in medium containing 2.4% dialyzed fetal bovine serum and 0.1 mM calcium. Calcium levels of 0.3 mM or higher caused the cells to stratify and undergo terminal differentiation. Coating the culture dishes with collagen, or a combination of collagen, fibronectin, and bovine serum albumin, increased both the cell growth rate and the colony forming efficiency. The successful long term culture of rat esophageal epithelial cells permits their use as models in studies concerned with esophageal differentiation and carcinogenesis.  相似文献   

16.
We have previously shown that fetal lung mesenchyme can reprogram embryonic rat tracheal epithelium to express a distal lung phenotype. We have also demonstrated that embryonic rat lung epithelium can be induced to proliferate and differentiate in the absence of lung mesenchyme. In the present study we used a complex growth medium to induce proliferation and distal lung epithelial differentiation in embryonic tracheal epithelium. Day-13 embryonic rat tracheal epithelium was separated from its mesenchyme, enrobed in growth factor-reduced Matrigel, and cultured for up to 7 days in medium containing charcoal-stripped serum, insulin, epidermal growth factor, hepatocyte growth factor, cholera toxin, fibroblast growth factor 1 (FGF1), and keratinocyte growth factor (FGF7). The tracheal epithelial cells proliferated extensively in this medium, forming lobulated structures within the extracellular matrix. Many of the cells differentiated to express a type II epithelial cell phenotype, as evidenced by expression of SP-C and osmiophilic lamellar bodies. Deletion studies showed that serum, insulin, cholera toxin, and FGF7 were necessary for maximum growth. While no single deletion abrogated expression of SP-C, deleting both FGF7 and FGF1 inhibited growth and prevented SP-C expression. FGF7 or FGF1 as single additions to the medium, however, were unable to induce SP-C expression, which required the additional presence of serum or cholera toxin. FGF10, which binds the same receptor as FGF7, did not support transdifferentiation when used in place of FGF7. These data indicate that FGF7 is necessary, but not sufficient by itself, to induce the distal rat lung epithelial phenotype, and that FGF7 and FGF10 play distinct roles in lung development.  相似文献   

17.
Using five different monoclonal antibodies to vimentin, we have examined the expression of vimentin in cryostat sections and serum-free cultures of normal human breast tissue. In cryostat sections, myoepithelial cells as well as stromal cells showed immunoreactivity to vimentin, irrespective of the antibody used. In contrast, luminal epithelial cells were negative for vimentin, but positive for keratin K18. In culture, myoepithelial cells showed immunoreactivity to vimentin from their first appearance in monolayer. Moreover, a fraction of luminal epithelial cells expressed vimentin in addition to keratin K18. We found a clear, reversible correlation between proliferation, determined by incorporation of [3H]-TdR, and induction of vimentin in the luminal epithelial cells. Thus, in growth-stimulated cultures on a medium containing cholera toxin (CT), epidermal growth factor (EGF), transferrin (Tf), hydrocortisone (H) and insulin (I), the fraction of vimentin-positive luminal epithelial cells increased, while it decreased within 14 days from approximately 36% to 3% on a medium containing CT and EGF, only. We therefore conclude: (1) vimentin is constantly expressed in myoepithelial cells in situ and in vitro, and (2) expression of vimentin in luminal epithelial cells in vitro is not a result of monolayer cultivation as such, but rather associated with the increased growth rate seen in culture.  相似文献   

18.
Agents that elevate intracellular cAMP levels are required for growth of many cell types in culture including normal rat mammary epithelial (RME) cells. To determine if the intracellular levels of cAMP that result from stimulation by agents such as cholera toxin (CT) or prostaglandin E-1 (PGE-1) are within the physiological range, cAMP levels were determined in RME cells growing in primary culture and compared to levels measured in freshly isolated mammary epithelium. The results indicate that the cAMP levels of mammary epithelial organoids obtained from 45-day-old virgin rats are 4 to 6 pmol/10(6) cells. Growth of RME cells in primary culture in the presence of CT results in cAMP levels of approximately 15 to 20 pmol/10(6) cells early in culture when cells are proliferating rapidly. As cells approach confluence, cAMP concentrations decrease to levels observed in fresh organoids. CT-stimulated cAMP levels appear to be within the range of those found in pregnant mammary epithelium in vivo. Growth of RME cells in medium supplemented with PGE-1 instead of CT results in cAMP levels equivalent to those found in fresh mammary epithelial organoids and under these conditions the growth rate is approximately half that found in CT-stimulated cells. These results indicate cAMP to be a positive regulator of cell growth in vivo at levels that are within the physiological range.  相似文献   

19.
Summary Human buccal epithelial cells have been reared from explants maintained in supplemented MCDB 153 medium. Primary epithelial outgrowths show typical structural features and uniformly express keratins; subunit analyses demonstrate expression of keratins 5, 6, 14, 16/17, and 19. The cells exhibit up to 6% colony forming efficiency and divide at about 0.8 population doublings per day on fibronectin/collagen-coated dishes at clonal density. Studies of markers of proliferation and differentiation in buccal epithelial cells indicate that epidermal growth factor, cholera toxin, retinoic acid, and pituitary extract each exhibit a distinctive ability to enhance growth and variably affect cell migration and cell surface area. Transforming growth factorβ-1 inhibits growth and increases surface area without affecting migration, involucrin expression, and cross-linked envelope formation. Moreover, exposure of cells to fetal bovine serum, the tumor promoting agent 12-O-tetradecanoylphorbol-13-acetate or an elevated Ca2+ concentration (from 0.1 to 1 mM) inhibits growth and induces squamous differentiation as indicated by inhibition of migration, increases in surface area, involucrin expression, or formation of cross-linked envelopes. The results show that epithelial cells can be reproducibly derived from explant cultures of human buccal mucosa specimens and the cells transferred under serum-free conditions. Buccal epithelial cells in culture undergo a pattern of growth and differentiation that mimics parakeratinization in vivo and variably respond to several agents shown to modulate growth of cells that originate from other types of epithelia. This work was supported in part by grants from the Swedish National Board of Laboratory Animals, the Swedish Medical Research Council, the Swedish Natural Science Research Council, the Swedish Fund for Scientific Research Without Animal Experiments, the Swedish Cancer Society, the Swedish Tobacco Company, and Lions Club International, Djurg?rden, Stockholm, Sweden.  相似文献   

20.
The effect of lithium on the growth of mammary epithelial cells from adult virgin and midpregnant BALB/c or BALB/cfC3H mice was tested in a serum-free collagen gel culture system. The serum-free medium consisted of a 1:1 mixture of Ham's F12 and Dulbecco's Modified Eagle's medium supplemented with insulin, transferrin, cholera toxin, epidermal growth factor (EGF), and bovine serum albumin fraction V (BSA V). A multifold increase in cell number occurred during 10–12 days of culture in this medium. In dose-response studies in which the concentration of each component of this serum-free medium was varied in turn, the addition of LiCL (10 mM) enhanced growth at most concentrations of each factor. However, LiCL could not enhance growth in the absence of insulin or BSA V, but could replace EGF. The optimal concentration of LiCl was 5–10 mM; higher concentrations (20–80 mM) were toxic. KCl (1–10 mM) when added to the serum-free medium slightly stimulated growth; the addition of NaCl to the medium had little effect on growth. LiCl did not enhance the growth of cells from spontaneous mammary tumors of BALB/cfC3H mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号