首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mouse bone marrow cells were separated by adherence column and albumin density gradient procedures, assaying for spleen colony forming units (in vivo CFU's), agar colony forming cells (in vitro CFC's) and cluster forming cells. Column filtrates were enriched for CFU's whereas in vitro CFC's and cluster-forming cells were enriched in adherent fractions. Gradient separation of these column fractions gave density distribution profiles indicating the non-identity and heterogeneity of CFU's and in vitro CFC's.  相似文献   

2.
It has been shown by re-cloning of colonies formed in vitro from rat bone marrow cells, that normal granulocyte colonies can originate from single cells. No mixed macrophage (M) and granulocyte (G) colonies were obtained after re-cloning either M or G colonies. The results indicate, that clones of normal granulocytes and macrophages can be obtained in vitro, and that the mixed primary M and G colonies formed after seeding hematopoietic cells from animals presumably originate from a mixture of M and G cells.  相似文献   

3.
Hemopoietic colony formation in agar occurred spontaneously in mass cultures of marrow cells obtained from a number of species (guinea pig, rat, lamb, rabbit, pig, calf, human and Rhesus monkey). This contrasted with the observation that colony formation by mouse bone marrow exhibited an absolute requirement for an exogenous source of a colony stimulating factor. Analysis of spontaneous colony formation in Rhesus monkey marrow cultures revealed the presence of a cell type in hemopoietic tissue, capable of elaborating colony stimulating factor when used to condition media or as feeder layers. Equilibrium density gradient centrifugation separated colony stimulating cells from in vitro colony forming cells in monkey bone marrow. Separation studies on spleen, blood and marrow characterized the stimulating cells as of intermediate density, depleted or absent in fractions enriched for cells of the granulocytic series and localized in regions containing lymphocytes and monocytes. Adherence column separation of peripheral blood leukocytes showed the stimulating cells to be actively adherent, unlike the majority of lymphocytes, and combined adherence column and density separation indicated that stimulating cells were present in hemopoietic tissue within the population of adherent lymphocytes or monocytes.  相似文献   

4.
We studied the properties of cells forming fibroblast colonies from the bone marrow and fetal liver of mouse and rat. Bone marrow and fetal liver cells formed colonies in vitro including fibroblasts as well as a considerable proportion of macrophages. The colonies formed from bone marrow and hepatic cells of rat differed from the murine ones by a higher proportion of fibroblasts. Most colonies derived from the bone marrow of both mouse and rat included a fraction of cells expressing alkaline phosphatase, and hence, capable of osteogenic differentiation; the colonies derived from the fetal liver included low proportions of such cells. The cell layers derived from the colony-forming fibroblasts of both bone marrow and fetal liver of mouse maintained hematopoiesis in the peritoneal cavity of irradiated mice, which indicated that these progenitor cells can form hematopoietic microenvironment.  相似文献   

5.
The in vitro proliferation and differentiation of myeloid progenitor cells (CFU-c) in agar culture from CBA/Ca mouse bone marrow cells was studied. Density sub-populations of marrow cells were obtained by equilibrium centrifugation in continuous albumin density gradients. The formation of colonies of granulocytes and/or macrophages was studied under the influence of three types of colony-stimulating factor (CSF) from mouse lung conditioned medium CSFMLCM), post-endotoxin mouse serum (CSFES) and from human urine (CSFHu). The effect of the sulphydryl reagent mercaptoethanol on colony development was also examined. The density distribution of CFU-c was dependent on the type of CSF. Functional heterogeneity was found among CFU-c with partial discrimination between progenitor cells forming pure granulocytic colonies and those forming pure macro-phage colonies. Mercaptoethanol increased colony incidence but had no apparent effect on colony morphology or the density distribution of CFU-c.  相似文献   

6.
Mouse bone marrow cells in suspension were separated into a number of fractions on the basis of cell density by equilibrium density gradient centrifugation, or on the basis of cell size by velocity sedimentation. After each type of separation, the cells from the various fractions were assayed for their ability to form macroscopic spleen colonies in irradiated recipient mice, and for their ability to form colonies in a cell culture system. The results from either separation technique demonstrate that cells in some fractions formed more colonies in vivo than in the culture system, while cells in other fractions formed more colonies in culture than in the spleen. The results of control experiments indicate that this separation of the two types of colony-forming cells was not an artifact of the separation procedures. From these experiments it was concluded that the population of cells which form colonies in culture under the conditions used is not identical to the population of cells detected by the spleen colony assay.  相似文献   

7.
Single cells from developing two day granulocytic bone marrow colonies were transfered in agar cultures. After three to five days, 48 of 239 transfered single cells had transformed to single macrophages or proliferated to form aggregates of pure macrophages or mixed macrophage-granulocyte aggregates. Some granulocytes in colonies developing in vitro from bone marrow cells appear to have the capacity to transform to macrophages.  相似文献   

8.
The technique of buoyant density separation in gradients of Bovine Serum Albumin has been used to separate hemopoietic cell populations in mouse bone marrow that form in vivo spleen colonies and in vitro colonies of granulocytes and macrophages in an agar culture system. The density distribution profiles showed a number of reproducible density subpopulations of both in vivo and in vitro colony forming cells (C.F.C.'s). The mean density of in vitro C.F.C.'s exceeded that of the in vivo but overlap of the density profiles of the two populations was evident. Density-related differences in seeding efficiency of in vivo C.F.C.'s were observed. Freund's adjuvant treatment increased marrow and spleen in vitro C.F.C. populations. Marrow density profiles obtained three and seven days after adjuvant showed a progressive increase in in vitro C.F.C.'s in a restricted density region with no associated elevation of in vivo activity. The antimitotic agent, vinblastine, revealed differences in mitotic activity between the two cell populations, reducing the in vitro C.F.C. population to .07% and the in vivo to 5% of normal in 24 hours. Density separation of vinblastine-treated marrow produced density regions devoid of in vitro activity but containing in vivo in vivo C.F.C.'s which, upon transfer to irradiated recipients, regenerated both in vivo and in vitro density distribution profiles.  相似文献   

9.
A rat monoclonal antibody, YBM/42, directed against mouse leukocyte common antigen, was used for the analysis and separation of hemopoietic progenitor cells from mouse bone marrow and fetal liver. Cells were fractionated on a FACS-II cell sorter and the resulting subpopulations examined for their morphology and ability to form colonies in agar (for day 7 colonies) and methylcellulose (for day 2 erythroid clones). The antibody bound to all leukocytes, including blast cells and day 7 hemopoietic progenitor cells (day 7 colony forming cells, CFC), but not to erythrocytes or nucleated erythroid cells. This antibody can be used to advantage to enrich for early progenitor cells from mouse fetal liver, in which the majority of cells (70%) are nucleated erythroid cells. In day 12 fetal liver, approximately 10% of all cells bind this antibody strongly and, of these approximately 70% are blast cells. Contained within this positive population are 95% of all day 7 CFC. In the most enriched fraction about 20% of the cells formed day 7 colonies. This represents a 25-fold enrichment over unsorted fetal liver. The negative fractions contain 94% of all cells forming erythroid clones (≥8 cells) on day 2 of culture (day 2 CFU-E). In the most enriched fraction, 20% of the cells are day 2 CFU-E. Day 7 CFC can therefore be well separated from day 2 CFU-E, with good recovery of both cell types, by use of a single label. Day 7 colony forming cells were classified as granulocyte (G-CFC), macrophage (M-CFC), mixed granulocyte/macrophage (GM-CFC), pure erythroid (E), or mixed erythroid (Emix). A high enrichment for multipotential cells is achieved and constitues 3–5% of cells in the most enriched fraction. Most types of day 7 CFC could not be separated with YMB/42, but GM-CFC and M-CFC exhibit a broader distribution than the other CFC with regard to fluorescence intensity. This implicit heterogeneity in GM-CFC and M-CFC is further substantiated by the finding that myeloid progenitors in the different FACS fractions also share a differential reactivity to different sources of growth factors.  相似文献   

10.
An enriched population of early myeloid cells has been obtained from normal mouse bone marrow by injection of mice with sodium caseinate and the removal of cells with C3 (EAC) rosettes by Ficoll-Hypaque density centrifugation. This enriched population had no EAC or Fc (EA) rosettes and contained 87% early myeloid cells stained for myeloperoxidase and/or AS-D-chloroacetate esterase, 7% cells in later stages (ring forms) of myeloid differentiation and 6% unstained cells, 2% of which were small lymphocytes. After seeding in agar with the macrophage and granulocyte inducer MGI, the enriched population showed a cloning efficiency of 14% when removed from the animal and of 24% after one day in mass culture. Both the enriched and the unfractionated bone marrow cells gave the same proportion of macrophage and granulocyte colonies. The normal early myeloid cells were induced to differentiate by MGI in mass culture in liquid medium to mature granulocytes and macrophages. The sequence of granulocyte differentiation was the formation of EA and EAC rosettes followed by the synthesis and secretion of lysozyme and morphological differentiation to mature cells. D+ myeloid leukemic cells with no EA or EAC rosettes had a similar morphology to normal early myeloid cells and showed the same sequence of differentiation. The induction of EA and EAC rosettes occurred at the same time in both the normal and D+ leukemic cells, but lysozyme synthesis and the formation of mature granulocytes was induced later in the leukemic than in the normal cells. The results indicate that selection for non-rosette-forming normal early myeloid cells also selected for myeloid colony forming cells, that these normal early myeloid cells can form colonies with differentiation to macrophages and granulocytes, that normal and D+ myeloid leukemic cells have a similar sequence of differentiation and that the normal cells had a greater sensitivity for the formation of mature cells by MGI.  相似文献   

11.
Both murine and human bone marrow cells were cultured in plasma clots which were formed inside diffusion chambers implanted into cyclophosphamide- and saline-treated mice. After an initial fall, the number of mouse bone marrow cells and numbers of mouse myeloid stem cells (CFU-C) and agar cluster-forming units rose faster in the cyclophosphamide-treated animals. These hosts also favored formation of myeloid (CFU-D-G) and erythroid (CFU-D-E) colonies and myeloid clusters in the plasma clot. The number and growth rate of mouse CFU-D-G were higher than those of CFU-C from the same marrow population. These observations suggest the existence of humoral factors stimulating granulocyte progenitor cell replication and differentiation. At its best the increment of CFU-D-E number was equivalent to that caused by a single 0·1 unit erythropoietin dose. Culture of normal human marrow cells resulted in colonies in the plasma clot containing only granulocytes and macrophages. Cyclophosphamide-treated host animals were essential for human CFU-D-G development. Plating efficiency for human marrow myeloid colonies was better in the conventional in vitro agar cultures than in diffusion chambers.  相似文献   

12.
Equilibrium density centrifugation was used to characterise and separate subpopulations of mouse haemopoietic progenitor cells capable of producing colonies of granulocytes and macrophages in vitro. The material used to induce colony formation (CSF) was prepared from an extract of pregnant mouse uteri. This CSF preparation was found to be free of factors modifying the response. Under these culture conditions, in vitro colony forming cells (CFU-c) were found to be relatively homogeneous in their buoyant density. This homogeneity was independent of CSF concentration. A heterogeneous density profile of CFU-c was obtained when various cell fractions were cultured in the presence of CSF and rat blood lysate. The majority of the additional cells which responded to erythrocyte lysate were dense (modal density 1.080 g/cm3) compared to CFU-c which respond to CSF alone (modal density 1.074 g/cm3). It is concluded that in vitro colonies induced by CSF and in vitro colonies grown in the presence of CSF and erythrocyte lysate reflect two different populations of CFU-c.  相似文献   

13.
The in vitro proliferation and differentiation of myeloid progenitor cells (CFU-c) in agar culture from CBA/Ca mouse bone marrow cells was studied. Density subpopulations of marrow cells were obtained by equilibrium centrifugation in continuous albumin density gradients. The formation of colonies of granulocytes and/or macrophages was studied under the influence of three types of colony-stimulating factor (CSF) from mouse lung conditioned medium CSFMLCM), post-endotoxin mouse serum (CSFES) and from human urine (CSFHu). The effect of the sulphydryl reagent mercaptoethanol on colony development was also examined. The density distribution of CFU-c was dependent on the type of CSF. Functional heterogeneity was found among CFU-c with partial discrimination between progenitor cells forming pure granulocytic colonies and those forming pure macrophage colonies. Mercaptoethanol increased colony incidence but had no apparent effect on colony morphology or the density distribution of CFU-c.  相似文献   

14.
C3H/HeHa mice implanted with rods of metallic copper (CR) or glass (GR) exudate neutrophil granulocytes and mononuclear cells into the site of rod implant (peritoneal cavity). Exudation in CR mice is substantially greater than in GR animals. In CR mice there is an impressive stimulation of myelopoiesis measured in the femoral marrow subsequent to the initial accumulation in the peritoneal cavity. Serum levels of colony stimulating activity (CSA), an in vitro myeloproliferative stimulating activity, are elevated in such animals, as are femoral marrow agar-colony forming cells (CFC). The procedure is useful to the study of myelopoiesis and myelopoietic regulatory mechanisms.  相似文献   

15.
The colony-forming ability of haematopoietic cells of W anaemic mice was examined on the macrophage layer formed in the peritoneal cavity of mice. Bone marrow cells of W anaemic mice formed a considerable number of colonies on the macrophage layer, notwithstanding they did not form any colonies in the spleen of the same recipients. As the colony-forming ability of the bone marrow cells was not reduced by the incubation with 3H-thymidine, most of the cells which formed colonies on the macrophage layer seemed to stay in G0 state. The interrelationship between the spleen colony-forming cells, the macrophage-layer colony-forming cells, and in vitro colony-forming cells was discussed.  相似文献   

16.
Pyruvate kinase studies in the granulocyte-macrophage lineage duringin vitro differentiation have been performed using culture techniques on GM-CFC cells and a study has also been done in bone marrow cells.The enzyme exhibits biphasic behaviour with respect to both of its substrates in cells derived fromin vitro cultures at 5 and 7 days of incubation period. However in bone marrow cells these kinetics are only observed for ADP.The different kinetic behaviour of pyruvate kinase toward Fru-1,6-P2, Ala, Phe and ATP in the three cellular populations allows us to conclude that the expression of pyruvate kinase is associated with the differentiation of these cells.Abbreviations GM-CFC granulocyte-macrophage colony forming cells - PK pyruvate kinase - CFU-E Colony Forming Units Erythroid - Ew Error weight - PEP phosphoenolpyruvate - Fru-1,6-P2 fructose 1,6-bisphosphate - Ala L-alanine - Phe L-phenylanine - 5 GM granulocytemacrophage colonies obtained after 5 days incubation - 7 GM granulocyte-macrophage colonies obtained after 7 days incubation - h Hill coefficient - S0,5 substrate concentration that yields half-maximal velocity  相似文献   

17.
Analysis of in vitro colony formation in agar cultures of foetal haemopoietic tissues of eight mammalian species has shown that granulocyte-macrophage progenitor cells are present in foetal liver, yolk sac, marrow and spleen in numbers approaching the incidence in adult marrow. Such characteristics as buoyant density, growth rate and differentiation served to distinguish foetal from adult colony forming cells (CFCs). Cell cycle analysis performed by exposing haemopoietic cells to high doses of tritiated thymidine in vitro showed that foetal CFC proliferation in species of short gestation (rabbit, rat, mouse) approached or exceeded that observed in adult marrow. In contrast, in species of long gestation (human, monkey, calf, lamb, guinea-pig) a period of variable duration was observed when foetal liver CFCs entered a non-cycling G0 or blocked G1 phase. In these species foetal liver CFCs were found to be proliferating actively early in gestation and following the non-cycling phase again re-entered a proliferative state associated with onset of active granulopoiesis in foetal marrow and possible migration of CFC from liver to marrow. These results indicate the existence of granulocyte-macrophage progenitor populations displaying foetal characteristics and adapted to particular stages of haemopoietic development, a situation which closely parallels that reported for erythropoiesis.  相似文献   

18.
A colony-stimulating factor (M-CSF) has been partially purified and concentrated from mouse yolk sac-conditioned medium (YSCM). M-CSF appeared to preferentially stimulate CBA bone marrow granulocyte-macrophage progenitor cells (GM-CFC) to differentiate to form macrophage colonies in semisolid agar cultures. By comparison, colony-stimulating factor (GM-CSF) from mouse lung-conditioned medium (MLCM) stimulated the formation of granulocytic, mixed granulocytic-macrophage, and pure macrophage colonies. Mixing experiments indicated that both M-CSF and GM-CSF stimulated all of the GM-CFC but that the smaller CFC were more sensitive to GM-CSF and that the larger CFC were more sensitive to M-CSF. Almost all developing "clones" stimulated initially with M-CSF continued to develop when transferred to cultures containing GM-CSF. In the converse situation, only 50% of GM-CSF prestimulated "clones" survived when transferred to cultures containing M-CSF. All clones initially stimulated by M-CSF or transferred to cultures stimulated by M-CSF contained macrophages after 7 days of culture. These results suggest that there is a population of cells (GM-CFC) that are capable of differentiating to form both granulocytes and macrophages, but, once these cells are activated by a specific CSF (e.g. M-CSF), they are committed to a particular differentiation pathway. The pattern of CFC differentiation was not directly related to the rate of proliferation: cultures maximally stimulated by M-CSF produced mostly macrophage colonies, but the presence of small amounts of GM-CSF produced granulocytic cells in 30% of the colonies. Gel filtration, polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, and affinity chromatography with concanavalin A-Sepharose indicated that M-CSF from yolk sacs was a glycoprotein with an apparent molecular weight of 60,000. There was some heterogeneity of the carbohydrate portion of the molecule as evidenced by chromatography on concanavalin A-Sepharose.  相似文献   

19.
The technique of buoyant density separation in gradients of Bovine Serum Albumin has been used to separate in vivo and in vitro colony forming cells (C.F.C.'s) in hemopoietic tissue of mouse fetal liver. Differences in the density distribution profiles showed that the in vivo and in vitro C.F.C.'s were different cell populations but the existence of an “out-of-phase” density association suggested that the two cell types were closely related. Complex density heterogeneity of both cell populations was observed at later stages of liver development and was similar to that seen in adult marrow. A homogeneous population of in vivo and in vitro C.F.C.'s occupied a very light density position in 10.5 day fetal liver. The subsequent development of density heterogeneity was associated with progressive acquisition of higher density subpopulations. Transfer experiments showed the capacity of the lightest density cells from the earliest stage of liver hemopoiesis, to generate higher density colony forming cells in the environment of the adult marrow. Density determined differences in seeding efficiency of in vivo C.F.C.'s were observed but no evidence was obtained for differences in either in vivo or in vitro colony morphology in different density subpopulations.  相似文献   

20.
The adherence, phagocytic activity and buoyant density of mouse peritoneal exudate colony forming units (CFU-PE) were investigated. There was a significant enrichment in the proportion of CFU-PE in the adherent cells population, defined as cells adhering to a plastic surface within 30 minutes of incubation. The phagocytic activity of CFU-PE was studied by incubating exudate cells with iron particles for 45 minutes. The cells were then separated into phagocytic and non-phagocytic cell fractions by passing the incubation mixture through a magnetic field. A significant enrichment of CFU-PE was seen in the phagocytic cell fraction. When exudate cells were fractionated in a Ficoll discontinuous density gradient, more than 88% of CFU-PE were recovered at the 16/18% and 18/20% interfaces. It is concluded that CFU-PE are adherent cells, have strong phagocytic activity and have a buoyant density between 1.0562 and 1.0703. When bone marrow cells were studied by these techniques, the committed stem cells for both granulocytes and macrophages (CFU-C) were enriched in both non-adherent cell and non-phagocytic cells populations. In the Ficoll density gradient, CFU-C banded at a heavier density region than CFU-PE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号