首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Incubation of the submersed aquatic macrophyte, Hydrilla verticillata Royle, for up to 4 weeks in growth chambers under winter-like or summer-like conditions produced high (130 to 150 μl CO2/1) and low (6 to 8 μl CO2/l) CO2 compensation points (Γ), respectively. The activities of both ribulose bisphosphate (RuBP) and phosphoenolpyruvate (PEP) carboxylases increased upon incubation but the major increase was in the activity of PEP carboxylase under the summer-like conditions. This reduced the ratio of RuBP/PEP carboxylases from 2.6 in high Γ plants to 0.2 in low Γ plants. These ratios resemble the values in terrestrial C3 and C4 species, respectively. Kinetic measurements of the PEP carboxylase activity in high and low Γ plants indicated the Vmax was up to 3-fold greater in the low Γ plants. The Km (HCO3 ?) values were 0.33 and 0.22 mM for the high and low Γ plants, respectively. The Km (PEP) values for the high and low Γ plants were 0.23 and 0.40 mM, respectively; and PEP exhibited cooperative effects. Estimated Km (Mg2+) values were 0.10 and 0.22 mM for the high and low Γ plants, respectively. Malate inhibited both PEP carboxylase types similarly. The enzyme from low Γ plants was protected by malate from heat inactivation to a greater extent than the enzyme from high Γ plants. The results indicated that C4 acid inhibition and protection were not reliable methods to distinguish C3 and C4 PEP carboxylases. The PEP carboxylase from low Γ plants was inhibited more by NaCl than that from hight Γ plants. These analyses indicated that Hydrilla PEP carboxylases had intermediate characteristics between those of terrestrial C3 and C4 species with the low Γ enzyme being different from the high Γ enzyme, and closer to a C4 type.  相似文献   

10.
Incubation of the submersed aquatic macrophyte, Hydrilla vertieillata Royle, for up to 4 weeks in growth chambers under winter-like or summer-like conditions produced high (130 to 150 μl CO2/l) and low (6 to 8 μl CO2/l) CO2 compensation points (Γ), respectively. The activities of both ribulose bisphosphate (RuBP) and phosphoenolpyruvate (PEP) carboxylases increased upon incubation but the major increase was in the activity of PEP carboxylase under the summer-like conditions. This reduced the ratio of RuBP/PEP carboxylases from 2.6 in high Γ plants to 0.2 in low Γ plants. These ratios resemble the values in terrestrial C3 and C4 species, respectively. Kinetic measurements of the PEP carboxylase activity in high and low Γ plants indicated the Vmax was up to 3-fold greater in the low Γ plants. The Km (HCO3 -) values were 0.33 and 0.22 mM for the high and low Γ plants, respectively. The Km (PEP) values for the high and low Γ plants were 0.23 and 0.40 mM, respectively; and PEP exhibited cooperative effects. Estimated Km (Mg2+) values were 0.10 and 0.22 mM for the high and low Γ plants, respectively. Malate inhibited both PEP carboxylase types similarly. The enzyme from low Γ plants was protected by malate from heat inactivation to a greater extent than the enzyme from high Γ plants. The results indicated that C4 acid inhibition and protection were not reliable methods to distinguish C3 and C4 PEP carboxylases. The PEP carboxylase from low Γ plants was inhibited more by NaCl than that from high Γ plants. These analyses indicated that Hydrilla PEP carboxylases had intermediate characteristics between those of terrestrial C3 and C4 species with the low Γ enzyme being different from the high Γ enzyme, and closer to a C4 type.  相似文献   

11.
Relationships between the CO2 compensation concentration, the slope of CO2 curves of Pn and the energy of irradiance were studied in adult leaves ofFagus silvatica L. seedlings. A gazometric method of quantitative analysis of air flow, in a closed system, was applied. Pn and the slope of CO2 curve of Pn increased with increasing irradiance at constant temperature of the abaxial leaf surface (19 ± 0.5 °C), however, the CO2 compensation concentration decreased. This physiological characteristic changed relatively slightly at irradiance close to saturation irradiance (235 Wm−2).  相似文献   

12.
13.
One-dimensional thin layer chromatography with microcrystallinecellulose was used for the separation of minor carotenoid componentsin spinach, parsley and Brassicachloroplasts. It was revealedthat chloroplasts of these plants contain two minor xanthophyllcomponents besides carotenes, lutein, violaxanthin and neoxanthin.These minor components, designated as xanthophyll–443and –439, were different in spectral properties from antheraxanthinand zeaxanthin which are known to be present in the chloroplastsof some higher plants, and evidence was obtained showing thatxanthophyll–439 has an epoxy group. Spectral propertiesof these xanthophylls in benzene, ethanol, H-hexane and carbondisulfide, as well as their contents relative to other carotenoids,are presented in this paper. 1Postal address  相似文献   

14.
Ligation of pigments to proteins of the thylakoid membrane is a central step in the assembly of the photosynthetic apparatus in higher plants. Because of the potentially damaging photooxidative activity of chlorophylls, it is likely that between their biosynthesis and final assembly, chlorophylls will always be bound to protein complexes in which photooxidation is prevented by quenchers such as carotenoids. Such complexes may include chlorophyll carriers and/or membrane receptors involved in protein insertion into the membrane. Many if not all pigment-protein complexes of the thylakoid are stabilised towards protease attack by bound pigments. The major light-harvesting chlorophyll a/b protein (Lhebl,2) folds into its native structure in vitro only when it binds pigments. Pigment-induced folding may also be a general feature of chlorophyll-carotenoid proteins of the photosynthetic apparatus.  相似文献   

15.
The carbon-dioxide response of photosynthesis of leaves of Quercus suber, a sclerophyllous species of the European Mediterranean region, was studied as a function of time of day at the end of the summer dry season in the natural habitat. To examine the response experimentally, a standard time course for temperature and humidity, which resembled natural conditions, was imposed on the leaves, and the CO2 pressure external to the leaves on subsequent days was varied. The particular temperature and humidity conditions chosen were those which elicited a strong stomatal closure at midday and the simultaneous depression of net CO2 uptake. Midday depression of CO2 uptake is the result of i) a decrease in CO2-saturated photosynthetic capacity after light saturation is reached in the early morning, ii) a decrease in the initial slope of the CO2 response curve (carboxylation efficiency), and iii) a substantial increase in the CO2 compensation point caused by an increase in leaf temperature and a decrease in humidity. As a consequence of the changes in photosynthesis, the internal leaf CO2 pressure remained essentially constant despite stomatal closure. The effects on capacity, slope, and compensation point were reversed by lowering the temperature and increasing the humidity in the afternoon. Constant internal CO2 may aid in minimizing photoinhibition during stomatal closure at midday. The results are discussed in terms of possible temperature, humidity, and hormonal effects on photosynthesis.Abbreviations and symbols CE carboxylation efficiency - NP net photosynthesis rate - PAR photosynthetically active radiation - Pi leaf internal CO2 partial pressure - W water vapor mole fraction difference between leaf and air - T CO2 compensation pressure Dedicated to Professor Dr. Hubert Ziegler on the occasion of his 60th birthday  相似文献   

16.
To assess the long-term effect of increased CO2 and temperature on plants possessing the C3 photosynthetic pathway, Chenopodium album plants were grown at one of three treatment conditions: (1) 23 °C mean day temperature and a mean ambient partial pressure of CO2 equal to 350 bar; (2) 34 °C and 350 bar CO2; and (3) 34 °C and 750 bar CO2. No effect of the growth treatments was observed on the CO2 reponse of photosynthesis, the temperature response of photosynthesis, the content of Ribulose-1,5-bisphosphate carboxylase (Rubisco), or the activity of whole chain electron transport when measurements were made under identical conditions. This indicated a lack of photosynthetic acclimation in C. album to the range of temperature and CO2 used in the growth treatments. Plants from every treatment exhibited similar interactions between temperature and CO2 on photosynthetic activity. At low CO2 (< 300 bar), an increase in temperature from 25 to 35 °C was inhibitory for photosynthesis, while at elevated CO2 (> 400 bar), the same increase in temperature enhanced photosynthesis by up to 40%. In turn, the stimulation of photosynthesis by CO2 enrichment increased as temperature increased. Rubisco capacity was the primary limitation on photosynthetic activity at low CO2 (195 bar). As a consequence, the temperature response of A was relatively flat, reflecting a low temperature response of Rubisco at CO2 levels below its km for CO2. At elevated CO2 (750 bar), the temperature response of electron transport appeared to control the temperature dependency of photosynthesis above 18 °C. These results indicate that increasing CO2 and temperature could substantially enhance the carbon gain potential in tropical and subtropical habitats, unless feedbacks at the whole plant or ecosystem level limit the long-term response of photosynthesis to an increase in CO2 and temperature.Abbreviations A net CO2 assimilation rate - C a ambient partial pressure of CO2 - C i intercellular partial pressure of CO2 - Rubisco Ribulose-1,5-bisphosphate carboxylase - VPD vapor pressure difference between leaf and air  相似文献   

17.
18.
Tobacco plants (Nicotiana tabacum) were kept in CO2 free air for several days to investigate the effect of lack of electron acceptors on the photosynthetic electron transport chain. CO2 starvation resulted in a dramatic decrease in photosynthetic activity. Measurements of the electron transport activity in thylakoid membranes showed that a loss of Photosystem II activity was mainly responsible for the observed decrease in photosynthetic activity. In the absence of CO2 the plastoquinone pool and the acceptor side of Photosystem I were highly reduced in the dark as shown by far-red light effects on chlorophyll fluorescence and P700 absorption measurements. Reduction of the oxygen content of the CO2 free air retarded photoinhibitory loss of photosynthetic activity and pigment degradation. Electron flow to oxygen seemed not to be able to counteract the stress induced by severe CO2 starvation. The data are discussed in terms of a donation of reducing equivalents from mitochondria to chloroplasts and a reduction of the plastoquinone pool via the NAD(P)H-plastoquinone oxidoreductase during CO2 starvation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
The effect of methylmercury chloride (MeHg) on the fluorescence characteristics of pea seedling leaves and thylakoids isolated from these leaves was studied by the pulse-amplitude-modulation (PAM) fluorometric method. In 3-4 days after the addition of MeHg (20 microM) to the nutritious solution, the maximal (Fv/Fm) and real (under steady state actinic light illumination) (deltaF/F'm) quantum photochemical yield of PS II decreased. The nonphotochemical fluorescence quenching coefficient in control (qN) decreased after its maximum value has been reached. In MeHg-treated samples, this decrease was not observed, possibly due to the disturbance of delta pH energy transducing processes in ATP synthase. This was confirmed by the results of experiments on isolated thylakoids. After MeHg (5 microM) treatment of thylakoids, the photophosphorylation rate and light-triggered Mg2+-dependent H+-ATPase activity were suppressed by 20-40%, depending on the duration of MeHg exposure. However, in experiments with isolated thylakoids, no decrease either in the electron transport rate or in the Fv/Fm ratio was observed. In total, the results obtained allow one to assume that MeHg at concentrations and time duration used directly damages the coupling complex. The PS II inactivation in leaves and algae cells may be a result of the oxidative stress processes.  相似文献   

20.
The process of oxygenic photosynthesis enabled and still sustains aerobic life on Earth. The most elaborate form of the apparatus that carries out the primary steps of this vital process is the one present in higher plants. Here, we review the overall composition and supramolecular organization of this apparatus, as well as the complex architecture of the lamellar system within which it is harbored. Along the way, we refer to the genetic, biochemical, spectroscopic and, in particular, microscopic studies that have been employed to elucidate the structure and working of this remarkable molecular energy conversion device. As an example of the highly dynamic nature of the apparatus, we discuss the molecular and structural events that enable it to maintain high photosynthetic yields under fluctuating light conditions. We conclude the review with a summary of the hypotheses made over the years about the driving forces that underlie the partition of the lamellar system of higher plants and certain green algae into appressed and non-appressed membrane domains and the segregation of the photosynthetic protein complexes within these domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号