首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以蛋白亚基复性技术和皮秒级时间分辨荧光光谱,研究海洋红藻多管藻中R-藻蓝蛋白(R-PC)单体和三聚体内能量传递过程。利用亚基复性技术对分离后的β亚基复性,以R-藻蓝蛋白单体和β亚基之间的差谱获得α亚基的吸收光谱。皮秒级时间分辨三维谱图(时间、波长和强度)直观地显示出藻红胆素发色团向藻蓝胆素发色团的能量传递;根据时间分辨测量结果的组份解析,对R藻蓝蛋白单体和三聚体内能量传递途径和相关传递参数进行了指认和讨论;对观察到的单体与三聚体能量传递组份特性的差别提出了解释。与C-藻蓝蛋白光谱对比,R-藻蓝蛋白独特的色团组成使其更有效地捕获与传递光能。  相似文献   

2.
The refolding of aminoacylase denatured in 6M guanidine hydrochloride (GdnHCl) has been studied by measuring enzyme activity, fluorescence emission spectra, ANS fluorescence spectra and far-UV circular dichroism spectra. The results showed that GdnHCl-denatured aminoacylase could be refolded and reactivated by dilution. A refolding intermediate was observed for low concentrations of GdnHCl (between 0.5 and 1.2M). This refolding intermediate was characterized by an increased fluorescence emission intensity, a blue-shifted emission maximum, and by increased binding of the fluorescence probe 8-anilino-1-naphthalenesulfonate (ANS). The secondary structure of the intermediate was similar to that of the native enzyme, and was therefore quite similar to the molten globule state often found in the protein folding pathway. Combined with the previous evidence of existence of an intermediate during unfolding process, we therefore proposed that the unfolding and refolding of aminoacylase might share the same pathway. A comparison of the Apo-enzyme and Holo-enzyme showed that there was little effect of the zinc ion on the refolding of the aminoacylase. Our study, the first successful report of the refolding of this metalloenzyme, also showed that lowering the concentration and the temperature of the enzyme improved the refolding rate of aminoacylase. The system therefore provides a useful model to study the refolding of proteins with prosthetic groups.  相似文献   

3.
Aminoacylase is a dimeric enzyme containing one Zn(2+) ion per subunit. The arginine (Arg)-induced unfolding of Holo-aminoacylase and Apo-aminoacylase has been studied by measurement of enzyme activity, fluorescence emission spectra and 1-anilino-8-naphthalenesulfonate (ANS) fluorescence spectra. Besides being the most alkaline amino acid, the arginine molecule contains a positively charged guanidine group, similar to guanidine hydrochloride, and has been used in many refolding systems to suppress protein aggregation. Our results showed that arginine caused the inactivation and unfolding of aminoacylase, with no aggregation during denaturation. A comparison between the unfolding of aminoacylase in aqueous and HCl (pH 7.5) arginine solutions indicated that the guanidine group of arginine had protein-denaturing effects similar to those of guanidine hydrochloride, which might help us understand the mechanism by which arginine suppresses incorrect refolding. The results showed that arginine-denatured aminoacylase could be reactivated and refolded correctly, indicating that arginine is as good a denaturant as the guanidine or urea for study of protein unfolding and refolding. Both the intrinsic fluorescence and the ANS fluorescence spectra showed that the arginine-unfolded aminoacylase formed a molten globule state in the presence of KCl, suggesting that intermediates exist during aminoacylase refolding. The results for the Apo-aminoacylase followed were similar to those for the Holo-enzyme, suggesting that Holo- and Apo-aminoacylase might have a similar unfolding and refolding pathway.  相似文献   

4.
The Na+/K+-ATPase couples the chemical energy in ATP to transport Na+ and K+ across the plasma membrane against a concentration gradient. The ion pump is composed of two mandatory subunits: the alpha subunit, which is the major catalytic subunit, and the beta subunit, which is required for proper trafficking of the complex to the plasma membrane. In some tissues, the ion pump also contains an optional third subunit, gamma, which modulates the pump activity. To examine the conformational dynamics of the gamma subunit during ion transport and its position in relation to the alpha and the beta subunits, we have used fluorescence resonance energy transfer under voltage clamp conditions. From these experiments, evidence is provided that the gamma subunit is located adjacent to the M2-M6-M9 pocket of the alpha subunit at the transmembrane-extracellular interface. We have also used fluorescence resonance energy transfer to investigate the relative movement of the three subunits as the ion pump shuttles between the two main conformational states, E1 and E2, as described by the Albers-Post scheme. The results from this study suggest that there is no relative change in distance between the alpha and gamma subunits but there is a relative change in distance between the beta and gamma subunits during the E2 to E1 transition. It was also observed that labeling the gamma subunit at specific residues with fluorophores induces a decrease in K+-induced stationary current. This result could be due to a perturbation in the K+ branch of the reaction cycle of the pump, representing a new way to inhibit the pump.  相似文献   

5.
The thermal and the urea-induced unfolding profiles of the coiled-coil alpha-helix of native and refolded tropomyosin from chicken gizzard were studied by circular dichroism. Refolding of tropomyosin at low temperature from alpha + beta subunits, dissociated by guanidinium chloride, urea, or high temperature, predominantly produced alpha alpha + beta beta homodimers in agreement with earlier studies of refolding from guanidinium chloride (Graceffa, P. (1989) Biochemistry 28, 1282-1287). The presence of two unfolding transitions in low salt solutions with about equal helix loss verified the composition with the first unfolding transition of the homodimer mixture originating from alpha alpha. In contrast, refolding by equilibrating at temperatures close to physiological, however, produced the native alpha beta heterodimer, which unfolded in a single transition. The refolding kinetics of dissociated alpha + beta subunits indicated that beta beta homodimers form first, leading to alpha alpha homodimers both of which are relatively stable against chain exchange below approximately 25 degrees C. Equilibrating the homodimer mixture at 37-40 degrees C for long times, however, produced the native alpha beta molecule via chain exchange. The equilibria involved indicate that the free energy of formation from subunits of alpha beta is much less than that of (alpha alpha + beta beta)/2. In vivo folding of alpha beta from the two separate alpha and beta gene products is, therefore, thermodynamically favored over the formation of homodimers and biological factors need not be considered to explain the native preferred alpha beta composition.  相似文献   

6.
The guanidine-hydrochloride (Gdn-HCl) induced unfolding and refolding characteristics of the co-chaperonin GroES from Escherichia coli, a homoheptamer of subunit molecular mass 10,000 Da, were studied by using intrinsic fluorescence, 1-anilino-8-naphthalene sulfonate (ANS) binding, and size-exclusion HPLC. When monitored by tyrosine fluorescence, the unfolding reaction of GroES consisted of a single transition, with a transition midpoint at around 1.0 M Gdn-HCl. Interestingly, however, ANS binding and size-exclusion HPLC experiments strongly suggested the existence of an intermediate state in the transition. In order to confirm the existence of an intermediate state between the native heptameric and unfolded monomeric states, a tryptophan residue was introduced into the interface of GroES subunits as a fluorescent probe. The unfolding reaction of GroES I48W as monitored by tryptophyl fluorescence showed a single transition curve with a transition midpoint at 0.5 M Gdn-HCl. This unfolding transition curve as well as the refolding kinetics were dependent on the concentration of GroES protein. CD spectrum and size-exclusion HPLC experiments demonstrated that the intermediates assumed a partially folded conformation at around 0.5 M Gdn-HCl. The refolding of GroES protein from 3 M Gdn-HCl was probed functionally by measuring the extent of inhibition of GroEL ATPase activity and the enhancement of lactate dehydrogenase refolding yields in the presence of GroEL and ADP. These results clearly demonstrated that the GroES heptamer first dissociated to monomers and then unfolded completely upon increasing the concentration of Gdn-HCl, and that both transitions were reversible. From the thermodynamic analysis of the dissociation reaction, it was found that the partially folded monomer was only marginally stable and that the stability of GroES protein is governed mostly by the association of the subunits.  相似文献   

7.
Mitochondrial F1 from the yeast Schizosaccharomyces pombe, in contrast to the mammalian enzyme, exhibits a characteristic intrinsic tryptophan fluorescence with a maximal excitation at 291 nm and a maximal emission at 332 nm. Low values of Stern-Volmer quenching constants, 4.0 M-1 or 1.8 M-1, respectively, in the presence of either acrylamide or iodide, indicate that tryptophans are mainly buried inside the native enzyme. Upon subunit dissociation and unfolding by 6 M guanidine hydrochloride (Gdn.HCl), the maximal emission is shifted to 354 nm, a value very similar to that obtained with N-acetyltryptophanamide, a solute-tryptophan model compound. The tryptophan content of each isolated subunit has been estimated by fluorescence titration in the presence of Gdn.HCl with free tryptophan as a standard. Two tryptophans and one tryptophan are found respectively in the alpha and epsilon subunits, whereas none is detected in the beta, gamma, and delta subunits. These subunit contents are consistent with the total of seven tryptophans estimated for native F1 with alpha 3 beta 3 gamma 1 delta 1 epsilon 1 stoichiometry. The maximal emission of the isolated epsilon subunit is markedly blue-shifted to 310-312 nm by interaction with the isolated delta subunit, which suggests that the epsilon subunit tryptophan might be a very minor contributor to the native F1 fluorescence measured at 332 nm. This fluorescence is very sensitive to phosphate, which produces a marked blue shift indicative of tryptophans in a more hydrophobic environment. On the other hand, ADP and ATP quench the maximal emission at 332 nm, lower tryptophan accessibility to acrylamide, and reveal tryptophan heterogeneity.  相似文献   

8.
Selective modulators of gamma-aminobutyric acid, type A (GABA(A)) receptors containing alpha(4) subunits may provide new treatments for epilepsy and premenstrual syndrome. Using mouse L(-tk) cells, we stably expressed the native GABA(A) receptor subunit combinations alpha(3)beta(3)gamma(2,) alpha(4)beta(3)gamma(2), and, for the first time, alpha(4)beta(3)delta and characterized their properties using a novel fluorescence resonance energy transfer assay of GABA-evoked depolarizations. GABA evoked concentration-dependent decreases in fluorescence resonance energy transfer that were blocked by GABA(A) receptor antagonists and, for alpha(3)beta(3)gamma(2) and alpha(4)beta(3)gamma(2) receptors, modulated by benzodiazepines with the expected subtype specificity. When combined with alpha(4) and beta(3), delta subunits, compared with gamma(2), conferred greater sensitivity to the agonists GABA, 4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridin-3-ol (THIP), and muscimol and greater maximal efficacy to THIP. alpha(4)beta(3)delta responses were markedly modulated by steroids and anesthetics. Alphaxalone, pentobarbital, and pregnanolone were all 3-7-fold more efficacious at alpha(4)beta(3)delta compared with alpha(4)beta(3)gamma(2.) The fluorescence technique used in this study has proven valuable for extensive characterization of a novel GABA(A) receptor. For GABA(A) receptors containing alpha(4) subunits, our experiments reveal that inclusion of delta instead of gamma(2) subunits can increase the affinity and in some cases the efficacy of agonists and can increase the efficacy of allosteric modulators. Pregnanolone was a particularly efficacious modulator of alpha(4)beta(3)delta receptors, consistent with a central role for this subunit combination in premenstrual syndrome.  相似文献   

9.
cAMP receptor protein (CRP) regulates expression of a number of genes in Escherichia coli. The protein is a homodimer and each monomer is folded into two structural domains. The biological activation of CRP upon cAMP binding may involve the subunit realignment as well as reorientation between the domains within each subunit. In order to study the interactions between the subunits or domains, we performed stopped-flow measurements of the guanidine hydrochloride (GuHCl)-induced denaturation of CRP. The changes in CRP structure induced by GuHCl were monitored using both intrinsic Trp fluorescence as well as the fluorescence of an extrinsic probe, 8-anilino-1-Naphthalenesulfonic acid (ANS). Results of CRP denaturation using Trp fluorescence detection are consistent with a two-step model [Malecki, and Wasylewski, (1997), Eur. J. Biochem. 243, 660], where the dissociation of dimer into subunits is followed by the monomer unfolding. The denaturation of CRP monitored by ANS fluorescence reveals the existence of two additional processes. One occurs before the dissociation of CRP into subunits, whereas the second takes place after the dissociation, but prior to proper subunit unfolding. These additional processes suggest that CRP denaturation is described by a more complicated mechanism than a simple three-state equilibrium and may involve additional changes in both inter- and intrasubunit interactions. We also report the effect of cAMP on the kinetics of CRP subunit unfolding and refolding.  相似文献   

10.
Preferential assembly of the tropomyosin heterodimer: equilibrium studies   总被引:3,自引:0,他引:3  
S S Lehrer  W F Stafford 《Biochemistry》1991,30(23):5682-5688
Thermal unfolding/refolding studies of the three tropomyosin dimers, alpha alpha, alpha beta, and beta beta, from chicken gizzard muscle were performed to explain the preferential assembly of alpha- and beta-tropomyosin subunits into heterodimers, alpha beta [Lehrer, S. S., & Qian, Y. (1989) J. Biol. Chem. 265, 1134]. Circular dichroism measurements showed that all three dimers unfolded in cooperative reversible transitions with T1/2 = 40.0 degrees C and delta H degrees = 162 kcal/mol for alpha alpha and with T1/2 = 42.6 degrees C and delta H degree = 98 kcal/mol for beta beta at 0.4-0.5 microM concentrations. Fluorescence measurements on pyrenyliodoacetamide-labeled tropomyosin showed that (i) excimer fluorescence decreases in parallel with unfolding of homodimers, (ii) at physiological temperature, heterodimers are formed from micromolar mixtures of homodimers over a period of minutes, and (iii) heterodimers unfold/refold with temperature without appreciable formation of homodimers. To understand the preferential formation of alpha beta, we calculated the concentrations of all species present as a function of temperature for equal total amounts of alpha and beta, using the measured thermodynamic constants of the unfolding/dissociation equilibria for alpha alpha and beta beta. Values for delta H degrees = 225 kcal/mol and T1/2 = 43 degrees C for unfolding of alpha beta at 0.5 microM concentration were obtained from the best fit of the calculations to the measured helical content vs temperature of alpha beta.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
cAMP receptor protein (CRP) regulates expression of a number of genes in Escherichia coli. The protein is a homodimer and each monomer is folded into two structural domains. The biological activation of CRP upon cAMP binding may involve the subunit realignment as well as reorientation between the domains within each subunit. In order to study the interactions between the subunits or domains, we performed stopped-flow measurements of the guanidine hydrochloride (GuHCl)-induced denaturation of CRP. The changes in CRP structure induced by GuHCl were monitored using both intrinsic Trp fluorescence as well as the fluorescence of an extrinsic probe, 8-anilino-1-Naphthalenesulfonic acid (ANS). Results of CRP denaturation using Trp fluorescence detection are consistent with a two-step model [Malecki, and Wasylewski, (1997), Eur. J. Biochem. 243, 660], where the dissociation of dimer into subunits is followed by the monomer unfolding. The denaturation of CRP monitored by ANS fluorescence reveals the existence of two additional processes. One occurs before the dissociation of CRP into subunits, whereas the second takes place after the dissociation, but prior to proper subunit unfolding. These additional processes suggest that CRP denaturation is described by a more complicated mechanism than a simple three-state equilibrium and may involve additional changes in both inter- and intrasubunit interactions. We also report the effect of cAMP on the kinetics of CRP subunit unfolding and refolding.  相似文献   

12.
Y Kawata  K Hamaguchi 《Biochemistry》1991,30(18):4367-4373
The CL fragment of a type-kappa immunoglobulin light chain in which the C-terminal cysteine residue was modified with N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine (CL-AEDANS fragment) was prepared. This fragment has only one tryptophan residue at position 148. The compactness of the fragment whose intrachain disulfide bond was reduced in order for the tryptophan residue to fluoresce (reduced CL-AEDANS fragment) was studied in the early stages of refolding from 4 M guanidine hydrochloride by fluorescence energy transfer from Trp 148 to the AEDANS group. The AEDANS group attached to the SH group of a cysteine scarcely fluoresced when excited at 295 nm. For the reduced CL-AEDANS fragment, the fluorescence emission band of the Trp residue overlapped with the absorption band of the AEDANS group, and the fluorescence energy transfer was observed between Trp 148 and the AEDANS group in the absence of guanidine hydrochloride. In 4 M guanidine hydrochloride, the distance between the donor and the acceptor was larger, and the efficiency of the energy transfer became lower. The distance between Trp 148 and the AEDANS group for the intact protein estimated by using the energy-transfer data was in good agreement with that obtained by X-ray crystallographic analysis. By the use of fluorescence energy transfer, tryptophyl fluorescence, and circular dichroism at 218 nm, the kinetics of unfolding and refolding of the reduced fragment were studied. These three methods gave the same unfolding kinetic pattern. However, the refolding kinetics measured by fluorescence energy transfer were different from those measured by tryptophyl fluorescence and circular dichroism, the latter two giving the same kinetic pattern.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The three most widely expressed subunits of the GABAA receptor are alpha(1), beta(2), and gamma(2) subunits, and the major isoform in the human brain is a pentameric receptor composed of 2alpha(1)2beta(2)1gamma(2). Previously, we overexpressed the extracellular domain Q28-R248 of GABAA receptor alpha(1) subunit. In the present study, the homologous extracellular domains Q25-G243 of GABAA receptor beta(2) subunit and Q40-G273 of gamma(2) subunit were also obtained through overexpression in Escherichia coli. Successful production of recombinant beta(2) and gamma(2) subunit receptor protein domains facilitates the comparison of structural and functional properties of the three subunits. To this end, the secondary structures of the three fragments were measured using CD spectroscopy and the beta-strand contents calculated to be >30%, indicating a beta-rich structure for all three fragments. In addition, the benzodiazepine (BZ)-binding affinity of the recombinant fragments were measured using fluorescence polarization to be 2.16 microM, 3.63 microM, and 1.34 microM for the alpha(1), beta(2), and gamma(2) subunit fragments, respectively, indicating that all three homomeric assemblies, including that of the beta(2) subunit, generally not associated with BZ binding, can bind BZ in the micromolar range. The finding that the BZ binding affinity of these recombinant domains was highest for the gamma(2) subunit and lowest for the beta(2) subunit is consistent with results from previous binding studies using hetero-oligomeric receptors. The present results exemplify the effective approach to characterize and compare the three major subunits of the GABAA receptor, for two of which the overexpression in E. coli is reported for the first time.  相似文献   

14.
The unfolding and refolding of Phaseolus vulgaris Leucoagglutinin, a homotetrameric legume lectin, was studied at pH 2.5 and 7.2 using fluorescence, far- and near-UV circular dichroism (CD) spectroscopy, 8-anilino-1-naphthalene sulfonate (ANS) binding and FPLC techniques. This protein was found to refold even at pH 2.5 and also exhibited high refolding yield around 60% at pH 2.5 and 85% at pH 7.2. The refolding at pH 2.5 takes place with the formation of a dimeric intermediate. Although the hydrodynamic radius of the completely renatured protein and the dimer at pH 2.5 was found to be same, the ANS binding as well as far-UV CD spectra of the two were different. The denaturation kinetics at pH 2.5 followed single exponential pattern with the rate of denaturation being independent of protein concentration. The renaturation kinetics on the other hand was dependent on the protein concentration providing further evidence of an intermediate state during refolding. From these experiments the folding pathway of the protein at pH 2.5 was proposed.  相似文献   

15.
The alpha and beta subunits of the acetyl-CoA:acetoacetate-CoA transferase were purified by isoelectric focusing of the enzyme in the presence of 6 M urea. The purified beta subunit, in which the active center of the enzyme is located, exhibits low catalytic activity (2% of the specific activity of the native enzyme) which is stimulated 5-6-fold in the presence of an equimolar concentration of alpha subunit. The presence of the substrate,acetoacetyl-CoA, is required to recover the catalytic activity of the beta subunit and mixtures containing purified alpha and beta subunits. When the enzyme is dissociation in the presence of 6 M urea and the subunits are not fractioned, removal of the urea by dialysis results in the recovery of 88-98% of enzymic activity and the native alpha2beta2 subunit structure. However, analysis of this renatured enzyme by immunochemical techniques shows that the enzyme does not refold to a completely native conformation. This renatured enzyme exhibits an immunological reactivity more closely resembling the isolated alpha subunit. The results indicate that the alpha subunit serves as a structural subunit, or possible a maturation subunit, imposing a conformation on the beta subunit that is catalytically more competent.  相似文献   

16.
In order to understand how inter-subunit association stabilizes oligomeric proteins, a single polypeptide chain variant of heptameric co-chaperonin GroES (tandem GroES) was constructed from Escherichia coli heptameric GroES by linking consecutively the C-terminal of one subunit to the N-terminal of the adjacent subunit with a small linker peptide. The tandem GroES (ESC7) showed properties similar to wild-type GroES in structural aspects and co-chaperonin activity. In unfolding and refolding equilibrium experiments using guanidine hydrochloride (Gdn-HCl) as a denaturant at a low protein concentration (50 microg ml(-1)), ESC7 showed a two-state transition with a greater resistance toward Gdn-HCl denaturation (Cm=1.95 M) compared to wild-type GroES (Cm=1.1 M). ESC7 was found to be about 10 kcal mol(-1) more stable than the wild-type GroES heptamer at 50 microg ml(-1). Kinetic unfolding and refolding experiments of ESC7 revealed that the increased stability was mainly attributed to a slower unfolding rate. Also a transient intermediate was detected in the refolding reaction. Interestingly, at the physiological GroES concentration (>1 mg ml(-1)), the free energy of unfolding for GroES heptamer exceeded that for ESC7. These results showed that at low protein concentrations (<1 mg ml(-1)), the covalent linking of subunits contributes to the stability but also complicates the refolding kinetics. At physiological concentrations of GroES, however, the oligomeric state is energetically preferred and the advantages of covalent linkage are lost. This finding highlights a possible advantage in transitioning from multi-domain proteins to oligomeric proteins with small subunits in order to improve structural and kinetic stabilities.  相似文献   

17.
We report here our initial success in using fluorescence energy transfer to map the position of the subunits of the DNA polymerase III holoenzyme within initiation complexes formed on primed DNA. Using primers containing a fluorescent derivative 3 nucleotides from the 3'-terminus and acceptors of fluorescence energy transfer located on Cys333 of the beta subunit, a donor-acceptor distance of 65 A was measured. Coupling this distance with other information enabled us to propose a model for the positioning of beta within initiation complexes. Examination of the fluorescence properties of a labeled primer with the unlabeled beta subunit and other assemblies of DNA polymerase III holoenzyme subunits allowed us to distinguish all of the known intermediates of the holoenzyme-catalyzed reaction. Specific fluorescence changes could be assigned for primer annealing, Escherichia coli single-stranded DNA-binding protein binding, 3'----5' exonucleolytic hydrolysis of the primer, DNA polymerase III* binding, initiation complex formation upon the addition of beta in the presence of ATP, and DNA elongation. These fluorescence changes are sufficiently large to support future detailed kinetic studies. Particularly interesting was the difference in fluorescence changes accompanying initiation complex formation as compared to binding of DNA polymerase III holoenzyme subunit assemblies. Initiation complex formation resulted in a strong fluorescence enhancement. Binding of DNA polymerase III* led to a fluorescence quenching, and transfer of beta to primed DNA by the gamma delta complex did not change the fluorescence. This demonstrates a rearrangement of subunits accompanying initiation complex formation. Monitoring fluorescence changes with labeled beta, we have determined that beta binds with a stoichiometry of one monomer/primer terminus.  相似文献   

18.
Cunningham KM  McCarty RE 《Biochemistry》2000,39(15):4391-4398
The catalytic portion of the chloroplast ATP synthase (CF(1)) consists of five different polypeptides in the stoichiometry alpha(3)beta(3)gammadeltaepsilon and is structurally asymmetric. Asymmetry is readily apparent in the properties of the six nucleotide binding sites and the single-copy, smaller subunits. Asymmetry is also detected in the alpha subunits by the rapid and covalent binding of Lucifer Yellow vinyl sulfone (LY) to one of the three chemically identical alpha subunits. The binding of LY to a single alpha subunit has allowed the investigation of whether asymmetry in the alpha subunits is a permanent feature of CF(1). The development of an electrochemical proton gradient across illuminated thylakoid membranes and the preincubation of CF(1) in solution with Mg(2+)-ATP were found to alter the LY distribution such that multiple alpha subunits were labeled with LY. Illumination of thylakoid membranes doubled the extent of LY labeling, and fluorescence resonance energy transfer measurements indicated that LY was bound to more than one alpha subunit. Since the change in LY distribution was inhibited by proton ionophores (uncouplers), alteration of alpha conformation by illumination is a result of the generation of a proton gradient. Preincubation of CF(1) in solution with Mg(2+)-ATP had no effect on the extent of LY labeling but resulted in multiple alpha subunits binding LY as determined by fluorescence resonance energy transfer measurements. Adenine nucleotides at substrate level concentrations inhibit the reaction of LY with the alpha subunits. No increase in LY labeling was observed when thylakoids were illuminated under conditions in which CF(1) was catalytically active.  相似文献   

19.
Voltage-gated Ca2+ channels of the N-, P/Q-, and R-type and G protein inwardly rectifying K+ channels (GIRK) are modulated via direct binding of G proteins. The modulation is mediated by G protein betagamma subunits. By using electrophysiological recordings and fluorescence resonance energy transfer, we characterized the modulatory domains of the G protein beta subunit on the recombinant P/Q-type channel and GIRK channel expressed in HEK293 cells and on native non-L-type Ca2+ currents of cultured hippocampal neurons. We found that Gbeta2 subunit-derived deletion constructs and synthesized peptides can either induce or inhibit G protein modulation of the examined ion channels. In particular, the 25-amino acid peptide derived from the Gbeta2 N terminus inhibits G protein modulation, whereas a 35-amino acid peptide derived from the Gbeta2 C terminus induced modulation of voltage-gated Ca2+ channels and GIRK channels. Fluorescence resonance energy transfer (FRET) analysis of the live action of these peptides revealed that the 25-amino acid peptide diminished the FRET signal between G protein beta2gamma3 subunits, indicating a reorientation between G protein beta2gamma3 subunits in the presence of the peptide. In contrast, the 35-amino acid peptide increased the FRET signal between GIRK1,2 channel subunits, similarly to the Gbetagamma-mediated FRET increase observed for this GIRK subunit combination. Circular dichroism spectra of the synthesized peptides suggest that the 25-amino acid peptide is structured. These results indicate that individual G protein beta subunit domains can act as independent, separate modulatory domains to either induce or inhibit G protein modulation for several effector proteins.  相似文献   

20.
Yu C  Gui C  Luo H  Chen L  Zhang L  Yu H  Yang S  Jiang W  Shen J  Shen X  Jiang H 《Biochemistry》2005,44(5):1453-1463
Spike glycoprotein of SARS coronavirus (S protein) plays a pivotal role in SARS coronavirus (SARS_CoV) infection. The immunological fragment of the S protein (Ala251-His641, SARS_S1b) is believed to be essential for SARS_CoV entering the host cell through S protein-ACE-2 interaction. We have quantitatively characterized the thermally induced and GuHCl-induced unfolding features of SARS_S1b using circular dichroism (CD), tryptophan fluorescence, and stopped-flow spectral techniques. For the thermally induced unfolding at pH 7.4, the apparent activation energy (E(app)) and transition midpoint temperature (Tm) were determined to be 16.3 +/- 0.2 kcal/mol and 52.5 +/- 0.4 degrees C, respectively. The CD spectra are not dependent on temperature, suggesting that the secondary structure of SARS_S1b has a relatively high thermal stability. GuHCl strongly affected SARS_S1b structure. Both the CD and fluorescent spectra resulted in consistent values of the transition middle concentration of the denaturant (Cm, ranging from 2.30 to 2.45 M) and the standard free energy change (deltaG(o), ranging from 2.1 to 2.5 kcal/mol) for the SARS_S1b unfolding reaction. Moreover, the kinetic features of the chemical unfolding and refolding of SARS_S1b were also characterized using a stopped-flow CD spectral technique. The obvious unfolding reaction rates and relaxation times were determined at various GuHCl concentrations, and the Cm value was obtained, which is very close to the data that resulted from CD and fluorescent spectral determinations. Secondary and three-dimensional structural predictions by homology modeling indicated that SARS_S1b folded as a globular-like structure by beta-sheets and loops; two of the four tryptophans are located on the protein surface, which is in agreement with the tryptophan fluorescence result. The three-dimensional model was also used to explain the recently published experimental results of S1-ACE-2 binding and immunizations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号