首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
10 complex hazardous wastes were tested for mutagenic activity using a modified version of the TLC/Salmonella assay developed by Bj?rseth et al. (1982). This fractionation/bioassay scheme couples thin-layer chromatography (TLC) with the Salmonella/mammalian-microsome (Ames) assay for the detection of mutagenic constituents in complex mixtures. Crude (unadulterated) hazardous wastes and selected hazardous waste extracts were fractionated on commercially available cellulose TLC plates. Mutagenicity testing was performed in situ by applying a single overlay of minimal growth agar, tester strain TA98 or TA100, and the optional metabolic activation system directly onto the developed chromatogram. A mutagenic effect was indicated either by the appearance of localized clusters of revertant colonies or by an increase in total revertant growth vis-à-vis control plates. 7 of 10 hazardous wastes (including tars, emulsions, sludges, and spent acids and caustics) demonstrated mutagenic activity when tested by this method. To assess the sensitivity of the modified TLC/Salmonella assay, 14 Salmonella mutagens from a wide range of chemical classes and polarities were tested. Selected compounds included heterocyclics, aromatic amines, alkylating agents, antitumor agents, a nitrosamine and a nitroaromatic. 11 of the 14 mutagens were positive in this test system. The 3 compounds refractory to analysis included a polycyclic aromatic hydrocarbon and two volatiles.  相似文献   

2.
Atmospheric deposition of nitrogen (N) compounds is the major source of anthropogenic N to most upland ecosystems, where leaching of nitrate (NO 3 ? ) into surface waters contributes to eutrophication and acidification as well as indicating an excess of N in the terrestrial catchment ecosystems. Natural abundance stable isotopes ratios, 15N/14N and 18O/16O (the “dual isotope” technique) have previously been used in biogeochemical studies of alpine and forested ecosystems to demonstrate that most of the NO 3 ? in upland surface waters has been microbially produced. Here we present an application of the technique to four moorland catchments in the British uplands including a comparison of lakes and their stream inflows at two sites. The NO 3 ? concentrations of bulk deposition and surface waters at three sites are very similar. While noting the constraints imposed by uncertainty in the precise δ18O value for microbial NO 3 ? , however, we estimate that 79–98% of the annual mean NO 3 ? has been microbially produced. Direct leaching of atmospheric NO 3 ? is a minor component of catchment NO 3 ? export, although greater than in many similar studies in forested watersheds. A greater proportion of atmospheric NO 3 ? is seen in the two lake sites relative to their inflow streams, demonstrating the importance of direct NO 3 ? deposition to lake surfaces in catchments where terrestrial ecosystems intercept a large proportion of deposited N. The dominance of microbial sources of NO 3 ? in upland waters suggests that reduced and oxidised N deposition may have similar implications in terms of contributing to NO 3 ? leaching.  相似文献   

3.
Despite recent progress made in describing microbial transformations that occur under anaerobic conditions, our understanding of the role sulfate‐reducing bacteria may play in the remediation of environmental contaminants is still very limited. The objective of this mini‐review is to summarize what is currently known of the metabolism of chlorinated aromatic compounds in the presence of sulfate. Sulfidogenic processes are discussed with respect to the thermodynamics of haloaromatic oxidation and to their potential use in the in situ bioremediation of hazardous organic wastes. A comprehensive listing is made of anaerobic transformations that involve both halogenated and nonhalogenated monoaromatic substrates by denitrifiers, dissimilatory iron‐reducing bacteria, and methanogenic consortia. In contrast to other anaerobic processes, studies involving sulfate‐mediated metabolism of hazardous organic compounds have been neglected; however, the recent success in defining methanogenic transformations, in particular, has enhanced expectations of defining an analogous role for sulfate‐reducing microbial communities in low redox environments that have become contaminated with hazardous substances.  相似文献   

4.
广州市固体废物管理与处置现状及对策   总被引:3,自引:0,他引:3  
黄小平  胡迪琴 《生态科学》2002,21(2):141-146
分析广州市工业固体废物、危险废物、生活垃圾、余泥渣土等管理与处置现状,揭示广州市现有固体废物管理处置存在的主要问题,并提出对策建议。分析表明,近年广州市工业固体废物年产生量呈上升趋势,工业固体废物排放量有所回升;1999年危险废物实现零排放,医疗垃圾的集中处置率达100%;居民生活垃圾清运处置率达100%。生活垃圾分类收集率为26%,加快了垃圾填埋场的改造和建设;余泥渣土的管理逐步规范化,市区余泥渣土排放工地申领排放证率保持100%。存在问题包括管理上欠长远规划、处置技术落后、二次污染、资源回收率低、资金匮乏等,尤其缺乏对危险废物、废旧电池的集中处置机构。  相似文献   

5.
In this research, the effects of a solidification/stabilization (S/S) technique on the remediation of cresol-contaminated soil were investigated. The soil samples were collected from the Tehran Oil Refinery (TOR) in Ray District, Iran. Cresols are hazardous chemicals whose exposure at high dosage results in irreparable damage to animal and human health. S/S process progresses through physicochemical reactions, reducing the leachability of a waste as well as changing its physical properties in order to encapsulate the contaminants and form a solid material. The samples were spiked by certain concentrations of cresols including meta-, ortho-, and para-isomers. The treatment process was conducted using Portland cement as the binder and modified bentonite as a stabilizer. The efficiency of the S/S technique was assessed by the unconfined compressive strength (UCS) test and toxicity characteristic leaching procedure (TCLP) test. The results of the tests showed that adding 20% and 30% Portland cement in combination with 15% and 30% modified bentonite to contaminated samples increased the 28-day compressive strength of S/S blocks to a range of 2.44 to 3.08 MPa. In fact, increasing the proportion of cement in the mix design resulted in enhanced compressive strength, while modified bentonite inversely affected samples’ strength. Regarding leaching behavior, adding organophilic clay to polluted samples noticeably declined cresol's concentrations in leachate. Overall efficiency of S/S in terms of leaching was about 70%, which was obtained by adding 20% cement and 30% modified clay. A logarithmic relationship between leaching percent and modified clay ratio was also detected with high logarithmic and linear correlation coefficients of 0.96 and 0.9, respectively, hence presenting the efficiency of S/S in stabilizing the cresols in the samples.  相似文献   

6.
Summary The chemical composition and leaching loss of applied fertilizers were measured from four waste materials derived from china clay extraction. Two waste materials, overburden and mica, had a higher nitrogen and calcium concentration, and were more efficient than sand wastes for the retention of these elements when applied as fertilizers. The possibility of using overburden and mica wastes as amendments for sand waste reclamation is briefly discussed.  相似文献   

7.
15 hazardous industrial waste samples were evaluated for mutagenicity in the Salmonella plate-incorporation assay using strains TA98 and TA100 in the presence and absence of Aroclor 1254-induced rat liver S9. Dichloromethane/methanol extracts of the crude wastes were also evaluated. 7 of the crude wastes were mutagenic, but only 2 of the extracts of these 7 wastes were mutagenic; extracts of 2 additional wastes also were mutagenic. In addition, 10 of the crude wastes were administered by gavage to F-344 rats, and 24-h urine samples were collected. Of the 10 raw urines evaluated, 3 were mutagenic in strain TA98 in the presence of S9 and beta-glucuronidase. The 3 crude wastes that produced these 3 mutagenic urines were, themselves, mutagenic. Adequate volumes of 6 of the 10 raw urines were available for extraction/concentration. These 6 urines were incubated with beta-glucuronidase and eluted through Sep-Pak C18 columns; the methanol eluates of 3 of the urines were mutagenic, and these were the same 3 whose raw urines also were mutagenic. In general, the C18/methanol extraction procedure reduced the cytotoxicity and increased the mutagenic potency of the urines. To our knowledge, this is the first report of the mutagenicity of urine from rodents exposed to hazardous wastes. Based on the present results, the use of only strain TA98 in the presence of S9 might be adequate for general screening of hazardous wastes or waste extracts for genotoxicity. The urinary mutagenesis assay does not appear to be a useful adjunct to the Salmonella assay for screening hazardous wastes. The problems associated with chemically fractionating diverse types of hazardous wastes for bioassay are also discussed.  相似文献   

8.
Pistia stratiotes L. in a Nigerian lake receiving organic and laboratory chemical wastes, accumulated trace elements from the lake water. Its possible use in the treatment of specific industrial wastes or in selective enrichment of specific elements is discussed.  相似文献   

9.
典型固体废物(废电器、废电池、污泥、焚烧飞灰、废催化剂等)含有大量金属资源,回收再利用的价值极高。微生物浸出典型固体废物受多因素影响。对不同微生物浸出金属的菌种筛选、浸出规律和机理的掌握,有助于典型固体废物中金属资源的绿色高效回收,可为我国“双碳”目标作出贡献。本文综述了从典型固体废物中浸出金属的各类微生物,分析了冶金微生物的作用机制,并展望了微生物冶金的应用前景,以期为微生物冶金技术在典型固体废物中的高效应用提供理论参考。  相似文献   

10.
The extraction of RNA from a starchy plant material, such as many common food grains, is difficult, and especially so from the mature endosperm of rice. Most commercial RNA kits are not suitable for starchy materials. Traditional RNA extraction procedures, in addition to being laborious and time consuming, leave hazardous organic wastes that result in expensive disposal costs. Interestingly, the numerous commercial DNA isolation kits now available often include directions for eliminating co-isolated RNA. This indicated an approach to obtain the generally unwanted RNA by-product by treating the total extraction product to intentionally retain RNA. A method was developed by which a two-step DNase procedure was applied to the product of the Cartagen Food DNA extraction kit that eliminated the DNA but left the co-extracted RNA. This modified procedure was compared with several other commercial and standard methods that are promoted as being able to work under high polysaccharide conditions. Successful extraction was determined by the production and amplification of cDNA by RT-PCR of actin. Extraction was successful from milled rice, as well as from cornmeal and wheat flour. The modification provides an RNA extraction method that is quick, easy, and inexpensive, and also eliminates the production of hazardous wastes.  相似文献   

11.
The growing development of biological products highlights the social and environmental responsibility that several industrial companies are facing in recent years. In this context, the advancement of bioprocessing as an alternative for exploring the potential of ecologically based products, especially in biofuels, food, and agro-industrial business, exposes the rational efficiency of the application of renewable sources in different industrial segments. Industries strongly associated with food production concentrate large amounts of wastes rich in bioactive compounds. A range of highly effective technologies has been highly explored to recover large concentrations of prominent compounds present in these materials. The advances in this scenario assurance value addition to these by-products, in addition to highlighting their various technological applications, considering the biorefinery and ecologically based production concepts. Accordingly, this review article described a detailed and systematic approach to the importance of using bioactive compounds and exploring the main sources of these elements. Also, some recent and innovative research that has achieved encouraging results was highlighted. Furthermore, the study included the main extraction technologies that have been investigated as a strategy of prospecting the application of bioactive compounds and optimizing the processes for obtaining natural compounds from plant sources. Finally, future outlooks were presented to contribute to the innovative opportunities and applicability of highly promising technologies and manipulations of bioactive compounds from a range of perspectives.  相似文献   

12.
The feasibility of using Portland cement and organobentonite to stabilize and solidify Polycyclic Aromatic Hydrocarbons (PAH) contaminated soil was examined. Naphthalene and phenanthrene in solid and dissolved phases were selected as PAHs compounds to represent organic contaminants in the soil. Different tests including Toxicity Characteristics Leaching Procedure (TCLP), Unconfined Compressive Strength (UCS), and permeability tests were conducted on the stabilization/solidification (S/S) contaminated soils. The leaching test results confirmed a significant reduction in the leaching of naphthalene and phenanthrene from the stabilized soil specimen by adding 2%, 5%, and 10% of organoclay during solidification/stabilization. Based on the results for the tested ranges of cement and organoclay for S/S contaminated soil, the optimum mix design includes 5% of cement and 2% of organoclay. The observation in this study confirmed that organoclay particles sorbed the organic contaminates and therefore naphthalene and phenanthrene leachate concentration will be reduced. Moreover, results show that increasing the curing time of S/S products reduces the naphthalene and phenanthrene leachate concentration.  相似文献   

13.
Under current legislations most oils used are considered hazardous wastes and its safe collection and disposal must be ensured. Since conventional treatment methods are often inefficient or environmentally unacceptable, the development and application of new technologies is highly necessary. Wet Air Oxidation (WAO) and Supercritical Water Oxidation (SCWO) are two forms of hydrothermal oxidation that have been proved to be effective processes to treat a wide variety of industrial wastes, but they have hardly been tested for oily wastes. In this work, the suitability of hydrothermal oxidation to the treatment of oily wastewaters is described by the results obtained with three different substrates: free fatty acids, cutting oils and bilge wastes. The efficiency of the treatment process is demonstrated for the three oily wastes tested. At temperatures below 350 °C and reaction times of 40 minutes, a 70‐‐90 % of COD elimination is achieved, obtaining an effluent with low molecular weight compounds, mainly carboxylic acids. At 500 °C, a 99 % of COD removal is achieved in less than one minute. At this temperature the reaction seems to proceed mainly through total mineralization to carbon dioxide and water.  相似文献   

14.
Understanding the effects of nitrogen (N) fertilization on Miscanthus × giganteus greenhouse gas emissions, nitrate leaching, and biomass production is an important consideration when using this grass as a biomass feedstock. The objective of this study was to determine the effect of three N fertilization rates (0, 60, and 120?kg?N?ha?1 using urea as the N source) on nitrous oxide (N2O) and carbon dioxide (CO2) emissions, nitrogen leaching, and the biomass yields and N content of M. × giganteus planted in July 2008, and evaluated from 2009 through early 2011 in Urbana, Illinois, USA. While there was no biomass yield response to N fertilization rates in 2009 and 2010, the amount of N in the harvested biomass in 2010 was significantly greater at the 60 and 120?kg?N?ha?1?N rates. There was no significant CO2 emission response to N rates in 2009 or 2010. Similarly, N fertilization did not increase cumulative N2O emissions in 2009, but cumulative N2O emissions did increase in 2010 with N fertilization. During 2009, nitrate (NO 3 ? ) leaching at the 50-cm soil depth was not related to fertilization rate, but there was a significant increase in NO 3 ? leaching between the 0 and 120?kg?N?ha?1 treatments in 2010 (8.9 and 28.9?kg?NO3?CN?ha?1?year?1, respectively). Overall, N fertilization of M. × giganteus led to N2O releases, increased fluxes of inorganic N (primarily NO 3 ? ) through the soil profile; and increased harvested N without a significant increase in biomass production.  相似文献   

15.
Pseudomonas strains are able to biosynthesize rhamnose-containing surfactants also known as rhamnolipids. These surface-active compounds are reviewed with respect to chemical structure, properties, biosynthesis, and physiological role, focusing on their production and the use of low-cost substrates such as wastes from food industries as alternative carbon sources. The use of inexpensive raw materials such as agroindustrial wastes is an attractive strategy to reduce the production costs associated with biosurfactant production and, at same time, contribute to the reduction of environmental impact generated by the discard of residues, and the treatment costs. Carbohydrate-rich substrates generated low rhamnolipid levels, whereas oils and lipid-rich wastes have shown excellent potential as alternative carbon sources.  相似文献   

16.
This study describes several essential factors for direct and effective lactic acid production from food wastes by Lactobacillus manihotivorans LMG18011, and optimum conditions for simultaneous saccharification and fermentation using soluble starch and food wastes as substrates. The productivity was found to be affected by three factors: (1) initial pH, which influenced amylase production for saccharification of starch, (2) culture pH control which influenced selective production of L(+)-lactic acid, and (3) manganese concentration in medium which improved in production rate and yield of lactic acid. The optimum initial pH was 5.0-5.5, and the fermentation pH for the direct and effective fermentation from starchy substrate was 5.0 based on the yield of L(+)-lactic acid. Under these conditions, 19.5 g L(+)-lactic acid was produced from 200 g food wastes by L. manihotivorans LMG18011. Furthermore, the addition of manganese stimulated the direct fermentation significantly, and enabled complete bioconversion within 100 h.  相似文献   

17.
Historically, N availability has limited agricultural production as well as primary production in coastal waters. Prior to the middle of the last century, N available for grain production generally was limited to that supplied by previous legume crops, released from soil organic matter, or returned to the soil in animal wastes. The development of infrastructure to produce relatively low-cost inorganic N fertilizers eliminated the need to focus management of the entire agricultural system on increasing soil N availability. Increased N availability has contributed to dramatic increases in agricultural production but also has led to increased losses of both N and C from agricultural systems. N losses from cropland have been linked to increased algal production in the Chesapeake Bay, with N loss from cropland estimated to be the primary N input to the Bay from Coastal Plain regions of the watershed. The decade-long effort to reduce these losses has focused on reducing agricultural N use, but this strategy has yet to yield apparent reductions in N loadings to Coastal Plain tributaries. Although nitrate leaching losses are often attributed to inefficient use of N inputs, soil nitrate data indicate that both corn and soybeans can utilize nearly all available soil nitrate during periods of active growth. However, both crops tend to stop utilizing nitrate before mineralization has ceased, resulting in a late season buildup of root zone nitrate levels and significant leaching losses even when no N was applied. Reducing nitrate losses due to the inherent N inefficiency of summer annual grain crops will require the addition of winter annual crops to rotations or changes in weed management approaches that result in plant N uptake capacity being more closely matched to soil microbial N processes.  相似文献   

18.
Disposal of low-level radioactive waste by immobilization in cement is being evaluated worldwide. The stability of cement in the environment may be impaired by sulfur-oxidizing bacteria that corrode the cement by producing sulfuric acid. Since this process is so slow that it is not possible to perform studies of the degradation kinetics and to test cement mixtures with increased durability, procedures that accelerate the biodegradation are required. Semicontinuous cultures of Halothiobacillus neapolitanus and Thiomonas intermedia containing thiosulfate as the sole energy source were employed to accelerate the biodegradation of cement samples. This resulted in a weight loss of up to 16% after 39 days, compared with a weight loss of 0.8% in noninoculated controls. Scanning electron microscopy of the degraded cement samples revealed deep cracks, which could be associated with the formation of low-density corrosion products in the interior of the cement. Accelerated biodegradation was also evident from the leaching rates of Ca(2+) and Si(2+), the major constituents of the cement matrix, and Ca exhibited the highest rate (up to 20 times greater than the control rate) due to the reaction between free lime and the biogenic sulfuric acid. Leaching of Sr(2+) and Cs(+), which were added to the cement to simulate immobilization of the corresponding radioisotopes, was also monitored. In contrast to the linear leaching kinetics of calcium, silicon, and strontium, the leaching pattern of cesium produced a saturation curve similar to the control curve. Presumably, the leaching of cesium is governed by the diffusion process, whereas the leaching kinetics of the other three ions seems to governed by dissolution of the cement.  相似文献   

19.
The three-dimensional structure of the components of the Golgi apparatus was analyzed in plasma cells of rat duodenum. The spheroidal juxtanuclear Golgi apparatus was formed by a continuous ribbonlike structure composed of the following stacked elements. On the cis-face of the Golgi stack, there was a tubular membranous network referred to as the cis-element and/or a slightly dilated saccule perforated with small pores. The two or three subjacent saccules, which showed few pores, were slightly dilated and contained a fluffy granulofilamentous material. They were also perforated in register by cavities or wells containing 80-nm vesicles. The next one or two underlying elements were fenestrated saccules showing flattened portions as well as distended portions containing a homogeneous material denser than that seen in the overlying saccules. The last two or three elements of the stack showed a partially separated or "peeling off" configuration. These last elements consisted of prosecretory granules attached to flattened, empty-looking saccules showing buds at their surface; detached, more-or-less fenestrated, flattened saccules; and shrivelled residual trans-tubular networks. In the trans-region of the stack, in addition to numerous small vesicles, short membranous tubules, detached prosecretory granules, and denser fully formed secretion granules were also seen. These images were interpreted to indicate that secretory material present in the trans-saccules flows toward the dilated portions which become prosecretory granules. The trans-most elements seemingly peel off the stack to yield prosecretory granules and fragmenting trans-tubular networks.  相似文献   

20.
Disposal of low-level radioactive waste by immobilization in cement is being evaluated worldwide. The stability of cement in the environment may be impaired by sulfur-oxidizing bacteria that corrode the cement by producing sulfuric acid. Since this process is so slow that it is not possible to perform studies of the degradation kinetics and to test cement mixtures with increased durability, procedures that accelerate the biodegradation are required. Semicontinuous cultures of Halothiobacillus neapolitanus and Thiomonas intermedia containing thiosulfate as the sole energy source were employed to accelerate the biodegradation of cement samples. This resulted in a weight loss of up to 16% after 39 days, compared with a weight loss of 0.8% in noninoculated controls. Scanning electron microscopy of the degraded cement samples revealed deep cracks, which could be associated with the formation of low-density corrosion products in the interior of the cement. Accelerated biodegradation was also evident from the leaching rates of Ca2+ and Si2+, the major constituents of the cement matrix, and Ca exhibited the highest rate (up to 20 times greater than the control rate) due to the reaction between free lime and the biogenic sulfuric acid. Leaching of Sr2+ and Cs+, which were added to the cement to simulate immobilization of the corresponding radioisotopes, was also monitored. In contrast to the linear leaching kinetics of calcium, silicon, and strontium, the leaching pattern of cesium produced a saturation curve similar to the control curve. Presumably, the leaching of cesium is governed by the diffusion process, whereas the leaching kinetics of the other three ions seems to governed by dissolution of the cement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号