首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experiment was performed to determine the effect of a mild magnesium deprivation on calcium metabolism and bone composition, shape, and strength in rats, and whether nickel deprivation exacerbated or alleviated any changes caused by the magnesium deprivation. Weanling male rats were assigned to groups of 10 in a factorial arrangement, with variables being supplemental nickel at 0 and 1 mg/kg and magnesium at 250 and 500 mg/kg of diet. The basal diet contained about 30 ng Ni/g. Urine was collected for 24 h during wk 8 and 12, and rats were euthanized 13 wk after dietary treatments began. Mild magnesium deprivation decreased the urinary excretion of calcium and increased the tibia concentration of calcium but did not affect femur shape or strength (measured by a three-point bending test). Dietary nickel did not alter these effects of magnesium deficiency. Nickel deprivation increased the urinary excretion of phosphorus and the femur strength variables maximum force and moment of inertia. Strength differences might have been the result of changes in bone shape. Magnesium deprivation did not alter the effects of nickel deprivation on bone. The findings indicate that a mild magnesium deficiency affects calcium metabolism but that this does not markedly affect bone strength or shape, and these effects are not modified by dietary nickel. Also, nickel deprivation affects phosphorus metabolism and bone strength and shape; these effects apparently are not caused by changes in magnesium metabolism or utilization.  相似文献   

2.
A study was done to examine the effects of aluminum, magnesium, and boron on major mineral metabolism in postmenopausal women. This communication describes some of the effects of dietary boron on 12 women between the ages of 48 and 82 housed in a metabolic unit. A boron supplement of 3 mg/day markedly affected several indices of mineral metabolism of seven women consuming a low-magnesium diet and five women consuming a diet adequate in magnesium; the women had consumed a conventional diet supplying about 0.25 mg boron/day for 119 days. Boron supplementation markedly reduced the urinary excretion of calcium and magnesium; the depression seemed more marked when dietary magnesium was low. Boron supplementation depressed the urinary excretion of phosphorus by the low-magnesium, but not by the adequate-magnesium, women. Boron supplementation markedly elevated the serum concentrations of 17 beta-estradiol and testosterone; the elevation seemed more marked when dietary magnesium was low. Neither high dietary aluminum (1000 mg/day) nor an interaction between boron and aluminum affected the variables presented. The findings suggest that supplementation of a low-boron diet with an amount of boron commonly found in diets high in fruits and vegetables induces changes in postmenopausal women consistent with the prevention of calcium loss and bone demineralization.  相似文献   

3.
A series of nine experiments were done to obtain further evidence that boron might be involved in major mineral metabolism (Ca, P, and Mg), thus indicating that boron is an essential nutrient for animals. Eight factorially arranged experiments of 6–10 wk durations were done with weanling Sprague-Dawley male rats. One factorially arranged experiment was done with weanling spontaneously hypertensive rats. The variables in each experiment were dietary boron supplements of 0 and 3 μg/g, and dietary magnesium supplements of either 200 (Experiments 1–3) or 100 (Experiments 4–9) and 400 μg/g. In Experiments 7 and 9, a third variable was dietary manganese supplements of 25 and 50 μg/g. Methionine status was varied throughout the series of experiments by supplementing the casein-based diet with methionine and arginine. Findings were obtained indicating that the severity of magnesium deprivation and the methionine status of the rat strongly influence the extent and nature of the interaction between magnesium and boron, and the response to boron deprivation. When magnesium deprivation was severe enough to cause typical signs of deficiency, a significant interaction between boron and magnesium was found. Generally, the interaction was characterized by the deprivation of one of the elements making the deficiency signs of the other more marked. The interaction was most evident when the diet was not supplemented with methionine and especially when the diet contained luxuriant arginine. Signs of boron deprivation were also more marked and consistent when the diet contained marginal methionine and luxuriant arginine. Among the signs of boron deprivation exhibited by rats fed marginal methionine were depressed growth and bone magnesium concentration, and elevated spleen wt/body wt and kidney wt/body wt ratios. Because the boron supplement of 3 μg/g did not make the dietary intake of this element unusual, it seems likely that the response of the rats to dietary boron in the present study were manifestations of physiological, not pharmacological, actions, and support the hypothesis that boron is an essential nutrient for the rat. Mentions of a trademark or proprietary product does not consitute a guarantee or warranty of the product by the US Department of Agriculture and does not imply its approval to the exclusion of other products that may also be suitable.  相似文献   

4.
An experiment was performed to ascertain whether changing the dietary intake of two substances, cystine and margaric acid (heptadecanoic acid), that affect the flux through pathways involving the two vitamin B12-depednent enzymes, methionine synthase and methylmalonyl-CoA mutase, would affect the interaction between nickel and vitamin B12. Rats were assigned to treatment groups of six in a fully crossed, four-factorial arrangement. The independent variables, or factors, were: per kg of fresh diet, nickel analyzed at 25 and 850 μg; vitamin B12 supplements of 0 and 50 μg; margaric acid supplements of 0 and 5 g; andl-cystine supplements of 0 and 12 g. The diet without cystine was marginally deficient in sulfur amino acids. Nickel affected growth, liver wt/body wt ratio (LB/BW), and a number of variables associated with iron, calcium, zinc, copper, and magnesium metabolism. Most of the effects of nickel were modified by the vitamin B12 status of the rat. In numerous cases, the interaction between nickel and vitamin B12 was dependent on, or altered by, the cystine or margaric acid content of the diet. Thus, the findings showed that the extent and the direction of changes in numerous variables in response to nickel deprivation varied greatly with changes in diet composition. These variables include those previously reported to be affected by nickel deprivation, including growth and the distribution or functioning of iron, calcium, zinc, copper, and magnesium. The findings also support the hypothesis that nickel has a biological function in a metabolic pathway in which vitamin B12 is important.  相似文献   

5.
Both arginine and silicon affect collagen formation and bone mineralization. Thus, an experiment was designed to determine if dietary arginine would alter the effect of dietary silicon on bone mineralization and vice versa. Male weanling Sprague-Dawley rats were assigned to groups of 12 in a 2×2 factorially arranged experiment. Supplemented to a ground corn/casein basal diet containing 2.3 μg Si/g and adequate arginine were silicon as sodium metasilicate at 0 or 35 μg/g diet and arginine at 0 or 5 mg/g diet. The rats were fed ad libitum deionized water and their respective diets for 8 wk. Body weight, liver weight/body weight ratio, and plasma silicon were decreased, and plasma alkaline phosphatase activity was increased by silicon deprivation. Silicon deprivation also decreased femoral calcium, copper, potassium, and zinc concentrations, but increased the femoral manganese concentration. Arginine supplementation decreased femoral molybdenum concentration but increased the femoral manganese concentration. Vertebral concentrations of phosphorus, sodium, potassium, copper, manganese, and zinc were decreased by silicon deprivation. Arginine supplementation increased vertebral concentrations of sodium, potassium, manganese, zinc, and iron. The arginine effects were more marked in the silicon-deprived animals, especially in the vertebra. Germanium concentrations of the femur and vertebra were affected by an interaction between silicon and arginine; the concentrations were decreased by silicon deprivation in those animals not fed supplemental arginine. The change in germanium is consistent with a previous finding by us suggesting that this element may be physiologically important, especially as related to bone DNA concentrations. The femoral and vertebral mineral findings support the contention that silicon has a physiological role in bone formation and that arginine intake can affect that role. The U.S. Department of Agriculture, Agricultural Research Service, Northern Plains Area is an equal opportunity/affirmative action employer, and all agency services are available without discrimination. Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products that may be suitable.  相似文献   

6.
Effects of germanium and silicon on bone mineralization   总被引:1,自引:0,他引:1  
The chemical properties of Ge are similar to Si. This study investigated whether Ge can substitute for, or is antagonistic to, Si in bone formation. Sixty male weanling Sprague-Dawley rats were randomly assigned to treatment groups of 12 and 6 in a 2×4 factorially arranged experiment. The independent variables were, per gram fresh diet, Si (as sodium metasilicate) at 0 or 25 μg and Ge (as sodium germanate) at 0, 5, 30 or 60 μg. Results confirmed that Ge does not enhance Si deprivation and provided evidence that Ge apparently can replace Si in functions that influence bone composition. When Si was lacking in the diet, calcium and magnesium concentrations of the femur were decreased; this was reversed by feeding either Ge and/or Si. Similar effects were found for zinc, sodium, iron, manganese, and potassium of vertebra. There were some responses to Si deprivation that Ge could not reverse: Ge did not increase femur copper, sodium, or phosphorus or decrease molybdenum of vertebra, effects that were eveked by Si supplementation. Additionally, some findings suggested that 60 μg Ge/g diet could be a toxic intake for the rat. On the other hand, some responses induced by Ge indicate that this element may be acting physiologically other than as a substitute for Si. Germanium itself affected bone composition. Germanium supplementation decreased Si and molybdenum in the femur and increased DNA in tibia. Regardless of the amount of Si fed, animals fed 30 μg Ge/g diet had increased tibial DNA compared to animals fed 0 or 60 μg Ge; however, tibial DNA of animals fed 30 μg Ge was not statistically different from those animals fed 5 μg Ge. Thus, Ge may be of nutritional importance.  相似文献   

7.
Female and male rats weighing about 170 g and 200 g, respectively, were fed diets (approximately 70 microg boron/kg) in a factorial arrangement with supplemental boron at 0 (deficient) and 3 (adequate) mg/kg and canola oil or palm oil at 75 g/kg of diet as variables. After 5 weeks, six females in each treatment were bred. Dams and pups continued on their respective dietary treatments through gestation, lactation and post-weaning. Thirteen weeks after weaning, plasma and bones were collected from 12 male and 12 female offspring in each treatment. Boron supplementation increased femur strength measured by the breaking variable bending moment; tibial calcium and phosphorus concentrations; and plasma alkaline phosphatase. Femur breaking stress was greatest in boron-supplemented rats fed canola oil, and lowest in boron-deprived females fed canola oil; this group also exhibited the lowest femur bending moment. Minerals associated with bone organic matrix, zinc and potassium, were increased by boron supplementation in tibia. Plasma phospholipids were decreased by boron deprivation in females, but not males. Plasma cholesterol was decreased in boron-supplemented males by replacing canola oil with palm oil. The findings suggest that a diet high in omega-3 alpha-linolenic acid promotes femur strength best when the dietary boron is adequate.  相似文献   

8.
Two experiments were conducted with weanling Sprague–Dawley rats to determine whether changes in S-adenosylmethionine utilization or metabolism contribute to the diverse responses to boron deprivation. In both experiments, four treatment groups of 15 male rats were fed ground corn-casein based diets that contained an average of 0.05 mg (experiment 1) or 0.15 mg (experiment 2) boron/kg. In experiment 2, some ground corn was replaced by sucrose and fructose to increase oxidative stress. The dietary variables were supplemental 0 (boron-deprived) or 3 (boron-adequate) mg boron/kg and different fat sources (can affect the response to boron) of 75 g corn oil/kg or 65 g fish (menhaden) oil/kg plus 10 linoleic acid/kg. When euthanized at age 20 (experiment 1) and 18 (experiment 2) weeks, rats fed the low-boron diet were considered boron-deprived because they had decreased boron concentrations in femur and kidney. Boron deprivation regardless of dietary oil increased plasma cysteine and homocysteine and decreased liver S-adenosylmethionine, S-adenosylhomocysteine, and spermidine. Plasma concentration of 8-iso-prostaglandin F (indicator of oxidative stress) was not affected by boron, but was decreased by feeding fish oil instead of corn oil. Fish oil instead of corn oil decreased S-adenosylmethionine, increased spermidine, and did not affect S-adenosylhomocysteine concentrations in liver. Additionally, fish oil versus corn oil did not affect plasma homocysteine in experiment 1, and slightly increased it in experiment 2. The findings suggest that boron is bioactive through affecting the formation or utilization of S-adenosylmethionine. Dietary fatty acid composition also affects S-adenosylmethionine formation or utilization, but apparently through a mechanism different from that of boron.  相似文献   

9.
The mineral imbalances in magnesium-deficient rats with dietary iron overload were studied. Forty-four male Wister rats were divided into six groups and fed six diets, two by three, fully crossed: magnesium adequate or deficient, and iron deficient, adequate, or excess. The concentrations of iron, magnesium, calcium, and phosphorus in tissues of the rats were measured. The results were as follows: (1) The excess iron intake reinforced the iron accumulation in liver and spleen of magnesium deficient rats; (2) The saturation of iron binding capacity was enormously elevated in the magnesium deficient rats fed excess iron; and (3) Dietary iron deprivation diminished the degree of calcium deposition in kidney of magnesium deficient rats. These results suggest that magnesium-deprived-rats have abnormal iron metabolism losing homeostatic regulation of plasma iron, and magnesium deficient rats with dietary iron overload may be used as an experimental hemochromatosis model.  相似文献   

10.
Antagonistic interactions between silicon and aluminum occur in living organisms. Thus, an experiment was performed to ascertain whether high dietary aluminum would accentuate the signs of silicon deprivation in rats and conversely whether silicon deprivation would accentuate the response to high dietary aluminum. The experiment was factorially arranged with two variables: silicon as sodium metasilicate, 0 or 40 μg/g diet, and aluminum as aluminum citrate, 0 or 500 μg/g diet. After 9 wk, body weights and plasma urea nitrogen were higher and plasma concentrations of threonine, serine, glycine, cystine, and methionine were lower in silicon-adequate than silicon-deprived rats. High dietary aluminum significantly decreased plasma phenylalanine. An interaction between aluminum and silicon affected plasma triglyceride, cholesterol, and phosphorus concentrations. High dietary aluminum decreased these variables when silicon was absent from the diet, but increased them when silicon was present. Skull iron and silicon concentrations were decreased and iron and zinc concentrations in the femur were increased by the addition of 500 μg Al/g diet. High dietary aluminum decreased tibia density in silicon-adequate rats, but increased tibial density in silicon-deprived rats. The findings indicate that in rats, high dietary aluminum can affect the response to silicon deprivation and dietary silicon can affect the response to high dietary aluminum.  相似文献   

11.
Because vitamin B12 and Ni are known to interact and because of the similar metabolic roles of vitamin B12 and folate, an experiment was performed to determine the effect of dietary folate on Ni deprivation in rats. A 2×2 factorially arranged experiment used groups of nine weanling Sprague-Dawley rats. Dietary variables were Ni, as NiCl2·6H2O, 0 or 1 μg/g; and folic acid, 0 or 2 mg/kg. The basal diet, based on skim milk, contained less than 20 ng Ni/g. After 54 d, an interaction between dietary Ni and folate affected several variables including erythrocyte folate, plasma amino acids, and femur trace elements. For example, folate deprivation decreased erythrocyte folate; folate supplementation to the Ni-supplemented rats caused a larger increase in erythrocyte folate concentration than did folate supplementation to the Ni-deprived rats. Also, dietary Ni affected several plasma amino acids important in one-carbon metabolism (e.g., Ni deprivation increased the plasma concentrations of glycine and serine). This study shows that dietary Ni, folate, and their interaction can affect variables associated with one-carbon metabolism. This study does not show a specific site of action of Ni but it indicates that Ni may be important in processes related to the vitamin B12-dependent pathway in methionine metabolism, possibly one-carbon metabolism. US Department of Agriculture, Agricultural Research Service, Northern Plans Area is an equal opportunity/affirmative action employer and all agency services are available without discrimination.  相似文献   

12.
Postmenopausal women may benefit from dietary interventions in order to increase bone strength and prevent fractures. Dietary boron (B) may be beneficial for optimal calcium metabolism and, as a consequence, optimal bone metabolism. The present study evaluated the effects of boron, in the form of boric acid, with or without 17β-estradiol (E2) supplementation (via subcutaneous implant), in ovariectomized (OVX) aged 13-mo-old F-344 rats. Boric acid was administered by gavage at a subtoxic dose (8.7 mg B/kg/d) for 40 d. Results indicate that serum level of minerals as well as osteocalcin (a marker of bone resorption) are dependent to a greater extent on the hormonal status of the animals than on boron supplementation. Boron treatment increased the E2-induced elevation of urinary calcium and magnesium. Bone mineral density (BMD) of the L5 vertebra and proximal femur was highest in the E2-treated groups; no increase in BMD was conferred by boron treatment. By histomorphometry of the proximal tibial metaphysis, osteoblastic, osteoid, and eroded surfaces were significantly suppressed by E2 treatment, but not by boron treatment. In biomechanical testing of femur and vertebra, neither E2 nor boron treatment significantly increased bone strength. At the levels given, boron alone provided no protection against OVX-induced osteopenia. In addition, combination therapy (B + E2) provided no additional benefits over those of 17β-estradiol treatment alone in this aged rat model.  相似文献   

13.
Summary Two experiments on cacao seedlings grown in sand culture are described, the first of which was concerned with variations in the levels of nitrogen, phosphorus, potassium, calcium, magnesium and sulfur (the macronutrient experiment) and the second dealing with variations in the levels of iron, copper, zinc, boron, manganese, and molybdenum (the micronutrient experiment).Many of the deficiency symptoms obtained were similar to those reported in the literature and they have not been described again. However, additional information is provided for symptoms of phosphorus, potassium, calcium, iron, manganese, copper, boron, and molybdenum deficiencies.The effects of all treatments on the dry weights of leaves, stems, and roots are presented. The effects of the macronutrient treatments on the levels of nitrogen, phosphorus, potassium, calcium, and magnesium in the leaves of eight month old plants and the effects of micronutrient treatments on the levels of nitrogen, phosphorus, potassium, calcium, magnesium, iron, manganese, copper, zinc, boron, molybdenum, sodium, and aluminium in the leaves of eleven-month-old plants are presented and discussed.  相似文献   

14.
Tissue and organ deposition and blood parameters were evaluated as indices of mineral and trace element absorption in rats. The absorption of elements was quantified in relation to nitrogen retention, i.e., considering the weight gain and new tissue synthesis. A rapeseed meal diet was supplied with three levels of calcium, two levels of zinc, and two levels of copper in a factorial design. In general, an increase in dietary mineral content increased the relative absorption, which in turn, increased the tissue deposition progressively. Striated muscle, however, did not respond to either an increased calcium or zinc supply. Furthermore, an increased calcium absorption caused a depression of the fractional phosphorus and magnesium content of femur bones. The copper content of the kidneys and the heart muscle was directly proportional to the amount of absorbed zinc and iron, respectively. The iron content of tissues was, in general, inversely proportional to zinc absorption and showed a tendency to be directly proportional to copper absorption. The zinc level in tissues was, in a similar way, inversely correlated to measured calcium absorption. In conclusion, interactions between elements do not only affect the intestinal element absorption, but also the distribution of already absorbed elements in tissues and organs.  相似文献   

15.
The reported beneficial effects of boron on mineralized tissues in animals and humans vary. Thus, a study was performed to assess whether the variability was the result of different forms of boron supplementation, method of supplementation, and increased adiposity of the rabbit experimental model.Thirty-one female New Zealand White rabbits, (aged 8 months, 2–2.5 kg weight) were fed a grain-based high energy diet containing 11.76 MJ/kg (2850 kcal/kg) and 3.88 mg boron/kg. The rabbits were randomly divided into four treatment groups: Control group was not supplemented with boron (n:7; C), and three groups supplemented with 30 mg boron/L in drinking water in the forms of borax decahydrate (Na2O4B7 10H2O, n:10; BD), borax anhydrous (Na2O4B7, n:7; Bah) or boric acid (H2BO3, n:7; BA). Cone beam micro computed tomographic (micro-CT), histological and elemental analysis was used to evaluate the bones/teeth.Results of the experiments demonstrated that boron supplementation had beneficial effects on mineralized tissue but varied with the type of treatment. Mineral density of the femur was increased by the Bah and BA treatments (p < 0.001), but only BA increased mineral density in the tibia (p = 0.015). In incisor teeth, mineral density of dentin was increased by all boron treatments (p < 0.001), and mineral density of enamel was increased by the BD and Bah treatments. Mineral analysis found that all boron treatments increased the boron concentration in tibia and femur. In the tibia, both the BD and Bah treatments decreased the iron concentration, and the BD treatment decreased the magnesium concentration. Sodium and zinc concentrations in the tibia were decreased by the Bah and BA treatments. The boron treatments did not significantly affect the calcium, copper, molybdenum, potassium phosphorus, and sulfur concentrations.The findings show that boron supplementation can have beneficial effects on mineralized tissues in an animal model with increased adiposity, which is a model of increased inflammatory stress. However, this effect varies with the form of boron supplemented, the method of supplementation, and the mineralized tissue examined.  相似文献   

16.
In two fully crossed, three-way, two by three by three, factorially arranged experiments, female weanling rats were fed a basal diet supplemented with iron at 15 and 45 μg/g, nickel at 0, 5, and 50 μg/g and copper at 0, 0.5, and 5 μg/g (Expt. 1) or 0, 0.25, and 12 μg/g (Expt. 2). Expt. 1 was terminated at 11 weeks, and Expt. 2 at 8 weeks because, at those times, some rats fed no supplemental copper and the high level of nickel began to lose weight, or die from heart rupture. The experiments showed that nickel interacted with copper and this interaction was influenced by dietary iron. If copper deficiency was neither very severe or mild, copper deficiency signs of elevated levels of total lipids and lipid phosphorus in liver and plasma, and cholesterol in plasma, were made more severe by supplemental dietary nickel. Rats in which nickel supplementation exacerbated copper deficiency did not exhibit a depressed level of copper in liver and plasma. Also, although iron deprivation enhanced the interaction between nickel and copper, iron deprivation did not significantly depress the level of copper in liver and plasma. The findings confirmed that, in rats, a complex relationship exists between nickel, copper, and iron, thus indicating that both the iron and copper status of experimental animals must be controlled before data about nickel nutriture and metabolism can be compared among studies.  相似文献   

17.
We investigated the effects of dietary iron deficiency on bone metabolism by measuring markers of bone turnover in rats. Twelve 3-week-old male Wistar-strain rats were fed a control diet or an iron-deficient diet for 4 weeks. Dietary iron deficiency decreased hemoglobin concentration and increased heart weight. Serum osteocalcin concentration, bone mineral content, bone mineral density, and mechanical strength of the femur were significantly lower in the iron-deficient group than in the control group. These results suggested that dietary iron deficiency affected bone, which might have been due to a decrease in bone formation in rats.  相似文献   

18.
An experiment was performed to determine whether boron deprivation would adversely affect vertebra (trabecular) bone microarchitecture, and whether any adverse effect would be modified by dietary fatty acid composition. Female rats were fed diets containing 0.1 mg (9 μmol) boron/kg in a factorial arrangement with variables of supplemental boron at 0 (boron-deprived) or 3 (boron-adequate) mg (278 μmol)/kg and fat sources of 75 g safflower oil/kg or 65 g fish (menhaden) oil/kg plus 10 g linoleic acid/kg. After 6 weeks, six females per treatment were bred. Dams and pups continued on their respective diets through gestation, lactation, and after weaning. At age 21 weeks, the microarchitecture of the fourth lumbar vertebrae from 12 randomly selected pups from each treatment was determined by microcomputed tomography. Boron deprivation decreased bone volume fraction and increased trabecular separation and structural model index. Boron deprivation decreased trabecular thickness when the dietary oil was safflower. A three-point bending test for bone strength found that boron deprivation decreased the maximum force needed to break the femur. Feeding fish oil instead of safflower oil decreased connectivity density in vertebrae of boron-deficient but not in boron-adequate rats. Fish oil instead of safflower oil increased the maximum force to break and the bending moment of the femur, especially in rats fed adequate boron. The findings confirm that boron and fish oil are beneficial to cortical bone strength, and show that nutritional intakes of boron are beneficial for trabecular bone microarchitecture and influence the beneficial effects of fish oil on bone.  相似文献   

19.
In three fully crossed, three-way, two-by-two-by-four experiments, male weanling Long-Evans rats were fed a basal diet supplemented with vanadium (ammonium metavanadate)-at 0 and 1 μg/g, cystine at 3.0 and 8.5 mg/g, and iron (ferric sulfate) at 0 (Expts. 1 and 2) or 5 (Expt. 3), 15, 100, and 500 μg/g. After 6 wk, a relationship between vanadium and iron that was influenced by dietary cystine was found. The interaction among vanadium, iron, and cystine was demonstrated best by the hematocrit and hemoglobin findings, which were similar. In all Expts., hematocrits were depressed in rats fed the two lower levels of iron. In Expts. 2 and 3, vanadium deprivation exacerbated the depression of hematocrits in rats fed 15 μg iron and 3.0 mg cystine/g diet. In Expt. 1, the effect was similar, but less marked. On the other hand, in Expts. 1 and 3 when supplemental cystine was 8.5 mg/g, vanadium deprivation did not exacerbate, but tended to alleviate the depression of hematocrits in rats fed 15 μg iron/g diet. When dietary iron was 15 μg/g in Expt. 2, the exacerbation of the depression of hematocrits by vanadium deprivation was much less in rats fed 8.5 rather than 3.0 mg cystine/g diet. Dietary vanadium had little effect on depressed hematopoiesis in severely iron-deficient rats. The findings indicated that vanadium neither substitutes for iron at some metabolic site, nor stimulates iron absorption; but has a positive influence on the utilization of iron after absorption.  相似文献   

20.
Although some studies have reported an interaction between boron (B) and calcium (Ca2+) in higher plants, there is little evidence for a similar relationship in cyanobacteria. The present study was designed to determine the effect of a supplement of boron to Ca2+-deficient cultures of Anabaena PCC 7119 and Synechococcus PCC 7942. Grown under Ca2+ deprivation, Anabaena had a slow growth rate and a low photosynthetic pigment content that was related to an inhibition of photosynthesis. Ca2+-deficient cells showed a lack of cohesiveness of the heterocyst envelope layers, which was consistent with a rapid decline in nitrogenase activity. A supplement of B led to partial recovery from the effects caused by lack of Ca2+. Similarly, low Ca2+ had inhibitory effects on growth and metabolism of Synechococcus cultures. In this case, the effect of a B supplement depended on the concentration of Ca2+ in the growth medium. When Ca2+ was present at normal concentration. B was not required, at least no more than trace amounts. However, when the Ca2+ concentration decreased, B was required at increasing levels. An effect of boron on uptake and/or on the binding of Ca2+ in cyanobacteria is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号