首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cortices of sea-urchin eggs were studied by electron microscopy to identify the structure responsible for the rise in tension at the egg surface prior to cleavage. During anaphase the tension increased and fine filaments of 70–90 Å in diameter appeared in the cell cortex forming a thin mesh-work beneath the cell membrane. The meshwork spread all around the egg cortex without reference to the mitotic axis and the number of filaments seemed to increase up to telophase. Immediately before appearance of the cleavage furrow, the meshwork in the anticipated furrow region became dense. As the furrow appeared the tension began to decrease and the meshwork disappeared. In the progressing furrow region fine filaments of the same size as that of the meshwork-filament were oriented in a bundle to form a contractile ring. Treatment with cytochalasin B suppressed both the tension increase and the formation of the filamentous meshwork. These results suggest that the component filament of the meshwork is an actin microfilament, and that the tension increase at anaphase is due to formation of a meshwork of actin microfilaments from which a contractile ring is subsequently derived at late telophase.  相似文献   

2.
Three types of models have been proposed about how the mitotic apparatus determines the position of the cleavage furrow in animal cells. In the first and second types, the contractile ring appears in a cortical region that least and most astral microtubules reach, respectively. The third type is that the spindle midzone positions the contractile ring. In the previous study, a new model was proposed through analyses of cytokinesis in sand dollar and sea urchin eggs. Gradients of the surface density of microtubule plus ends are assumed to drive membrane proteins whose accumulation causes the formation of contractile-ring microfilaments. In the present study, the validity of each model is examined by simulating the furrow formation in conical sand dollar eggs with the mitotic apparatus oriented perpendicular to the cone axis. The new model predicts that unilateral furrows with cleavage planes roughly parallel to the spindle axis appear between the mitotic apparatus and the vertex besides the normally positioned furrow. The predictions are consistent with the observations by Rappaport & Rappaport (1994, Dev. Biol.164, 258-266). The other three types of models do not predict the formation of the ectopic furrows. Furthermore, it is pointed out that only the new model has the ability to explain the geometrical relationship between the mitotic apparatus and the contractile ring under various experimental conditions. These results strongly suggest the real existence of the membrane proteins postulated in the model.  相似文献   

3.
Astral microtubules are elongated greatly during anaphase and telophase in sea urchin eggs. The surface density of microtubules reaching the cell surface can be defined at each surface point. Gradients of the surface-density function were assumed to drive membrane proteins whose accumulation causes the formation of contractile-ring microfilaments. An equation was constructed to calculate the movements of the membrane proteins on a curved surface. The equation was applied to eggs compressed between a coverslip and a glass slide by regarding the egg shape as an oblate spheroid. The simulations explained the observations that contractile-ring microfilaments locally appeared and then developed into a complete ring in compressed eggs. When one aster in the mitotic apparatus stopped growing during anaphase, the equation predicted that the zone of contractile-ring microfilaments is displaced toward the inactivated aster, curves in the view from above and tapers off toward the cell edge. The curve gets sharper as eggs are compressed more greatly and as microtubules from the growing aster penetrate more deeply into the opposite hemisphere. The predictions were compared with the observations by Ishii and Shimizu in 1995 and by Hamaguchi in 1998 regarding the furrow formation by the asymmetric mitotic apparatus.  相似文献   

4.
Localization of Tetrahymena profilin was examined by an immunofluorescence method. In interphase Tetrahymena cells, immunofluorescence for profilin was diffusely distributed in the cytoplasm, while in dividing cells, additional intense fluorescence was observed in the division furrow. From the result of immunofluorescence localization using cytoskeletal cell models, a significant fraction of profilin appeared to become insoluble in association with a cytoskeletal structure just beneath the division furrow during cytokinesis, although remaining profilin existed as a soluble form in the cytoplasm. Double immunofluorescence staining with anti-profilin and anti-actin antibodies revealed that the localization of profilin in the division furrow coincided with that of contractile ring microfilaments in terms of both position and timing. This is the first report describing the coexistence of profilin with actin filaments in the division furrow, implying the possible involvement of profilin in assembly and disassembly of contractile ring microfilaments in the process of cytokinesis.  相似文献   

5.
Experiments have been carried out to test the proposal that the pH increase at fertilization in sea urchin eggs promotes microvillar elongation. Results presented herein show that microvillar elongation and microfilament formation occurred when sea urchin eggs were incubated in sodium-free seawater containing the calcium ionophore A23187, a treatment which initiates activation, i.e., induces a transient increase in intracellular free calcium, but prevents subsequent cytoplasmic alkalinization. Within elongated microvilli and cortices of these eggs, microfilaments were arranged in a loose meshwork. However, if the pH of the egg cytoplasm was increased experimentally, microfilament bundles appeared within individual microvilli. These findings suggest that: (1) microvillar elongation and microfilament formation in the sea urchin egg at fertilization may occur when cytoplasmic alkalinization is inhibited, and (2) formation of the microvillus bundle of microfilaments at egg activation is pH sensitive. Additionally, if the cytoplasmic pH of unfertilized eggs was experimentally elevated by NH4Cl, microvilli failed to elongate. These data indicate that elevation of intracellular pH by this method is not sufficient to induce microvillar elongation.  相似文献   

6.
Synchronized cultures of Dictyostelium discoideum were used to study organizational changes of the cytoskeleton during mitotic cell division. The agar-overlay technique (Yumura et al.: J. Cell Biol. 99:894-899, 1984) was employed for immunofluorescence localization and video microscopic observation of living mitotic cells. The mitotic phase was defined by changes in chromosome configuration by using a double stain with the fluorescent dye DAPI. This study showed that the actin- and myosin-containing cytoskeleton was reversibly redistributed between the cortical ectoplasm and the endoplasm during prophase and telophase. Both actin and myosin filaments were dissociated from the cell cortex in prophase. Most of the actin and myosin was filamentous and remained in the endoplasm until telophase. Saltatory movements of organelles stopped suddenly, coincident with the breakdown of the cytoplasmic microtubule network. This change in the microtubule system was temporally coupled with the disappearance of actomyosin from the cortex. At the same time, the local vibrating movement of particles almost stopped, suggesting that the viscoelastic nature of the endoplasm was altered. In the late anaphase, actin and myosin relocalized to the cortical ectoplasm. Early in this phase, myosin filaments were localized specifically at the anticipated cleavage furrow region of the cleavage furrow, whereas actin filaments were redistributed more uniformly in the cell cortex, with an extremely large accumulation in the polar pseudopods. Subsequently the actin formed an orderly parallel array of cables along with myosin filaments in the contractile ring. The spatial segregation of actin and myosin in late anaphase was clearly demonstrated by multipolar cell division of artificially induced giant cells. Actin was relocalized in both the polar and the proximal constricting regions whereas myosin was only localized in the center of each pair of daughter microtubule networks where the cleavage furrow was formed. This study demonstrates that actin and myosin are reorganized by a temporally coordinated but spatially different mechanism during cytokinesis of Dictyostelium.  相似文献   

7.
Thin-section electron microscope analysis of rat and rabbit-cultured granulosa cells treated with concanavalin A (Con A) at 37 degrees C revealed coordinated changes in the cytoplasmic disposition of microfilaments, thick filaments, and microtubules during cap formation and internalization of lectin-receptor complexes. Con A-receptor clustering is accompanied by an accumulation of subplasmalemmal microfilaments which assemble into a loosely woven ring as patches of receptor move centrally on the cell surface. Periodic densities appear in the microfilament ring which becomes reduced in diameter as patches coalesce to form a single central cap. Microtubules and thick filaments emerge associated with the capped membrane. Capping is followed by endocytosis of the con A-receptor complexes. During this process, the microfilament ring is displaced basally into the cytoplasm and endocytic vesicles are transported to the paranuclear Golgi complex along microtubules and thick filaments. Eventually, these vesicles aggregate near the cell center where they are embedded in a dense meshwork of thick filaments. Freeze-fracture analysis of Con A-capped granulosa cells revealed no alteration in the arrangement of peripheral intramembrane particles but large, smooth domains were conspicuous in the capped region of the plasma membrane. The data are discussed with reference to the participation of microtubules and microfilaments in the capping process.  相似文献   

8.
The blastodisc formation in the zebrafish, Brachydanio rerio , was obstructed by treatment with 1.0 μg/ml of cytochalasin B (CB), but not by 1.0 μg/ml of colchicine. The cortex in normal eggs contained a meshwork of microfilaments associated with the plasma membrane. The cortex was thicker at the vegetal pole and thinner at the animal pole of the egg. In CB treated eggs the cortex contained masses of microfilaments detached in places from the plasma membrane. Microtubules were never observed in the cortex of eggs with or without CB treatment. These results suggest that ooplasmic segregation, which results in blastodisc formation, is carried out by activity of the cortex, which contains CB sensitive microfilaments.  相似文献   

9.
Surface and shape changes during cell division   总被引:2,自引:0,他引:2  
Summary Rat kangaroo cells (PtK2) were studied with scanning and transmission electron microscopy in order to correlate shape changes during the cell cycle with the presence or absence of microvilli and stress fibers. During interphase, bundles of actin are prominent in the cytoplasm, and microvilli are localized over and around the centrally positioned nucleus. As mitosis begins, the interphase bundles of actin and the microvilli disappear, but the mitotic cells maintain a flattened shape. At metaphase the cell is still so flat that both the chromosomes and spindle apparatus are visible through the intact cell membrane. Microvilli reappear in late anaphase above the chromosomes and poles. Before cleavage begins, microvilli increase in number until they cover the apical surface of the cell. At the same time, the cell increases in height so that the chromosomes and mitotic apparatus can no longer be detected through the cell membrane. During cleavage, microvilli continue to cover the cell in a uniform manner but become greatly diminished in number after cytokinesis is completed and the cells flatten and enter interphase. It is suggested that the microvilli organize a network of actin filaments which interact with cortical myosin to produce the cell rounding prior to cleavage.  相似文献   

10.
Rhodaminyl-labeled phalloidin is used to demonstrate the distribution of microfilaments during fertilization and early development in eggs of the sea urchins Arbacia punctulata and Lytechinus variegatus. The surface of unfertilized eggs have numerous punctate fluorescence sites at which rhodaminyl phalloidin binds, indicating the presence of actin oligomers or polymers. During fertilization this punctate pattern of fluorescence begins to change. Within thirty seconds of insemination, the fertilization cone is first detectable with this technique as an erect structure on the surface of the egg. The fertilization cone grows to a maximum size by 8–9 minutes, and is resorbed by 16 minutes after insemination. The surface of the fertilized egg displays numerous fluorescent fibers by 10 minutes after insemination rather than the punctate fluorescence observed in unfertilized eggs, indicative of the burst of microfilament assembly resulting in microvillar elongation. The elongated microfilaments persist through cytokinesis. Staining is also detected throughout the cortices of unfertilized, fertilized, and cleaving eggs. Cytochalasin E (10 μM, 30 min) prevents microfilament elongation and cytokinesis and reduces the cortical staining intensity after fertilization. At cleavage, contractile rings, appearing as narrow equatorial bundles of fibers, have been detected in Lytechinus variegatus as transient structures.  相似文献   

11.
The effects of the phosphatase inhibitors, okadaic acid (OA), adenosine 5'-O-(3-thiotriphosphate) (ATPgammaS), and calyculin A (CL-A) on anaphase chromosome movement, cytokinesis, and cytoskeletal structures at cell division were examined by being microinjected into mitotic sand dollar eggs. When OA was injected, chromosome movement was inhibited and, moreover, chromosomes were ejected from the polar regions of the mitotic apparatus. By immunofluorescence, microtubules were observed to be severed in the OA-injected eggs, causing the smooth cell surface to be changed to an irregular surface. When ATPgammaS and CL-A were injected, the effect on cell shape was remarkable: In dividing eggs, furrowing stopped within several seconds after injection, small blebs appeared on the cell surface and became large, spherical or dumbbell cell shapes then changed to irregular forms, and subsequently cytoplasmic flow occurred. Microfilament detection revealed that actin accumulation in the cortex, which was not limited to the furrow cortex, occurred shortly after injection. Cortical accumulation of actin is thought to induce force generation and random cortical contraction, and accordingly to result in bleb extrusion from the cortex. Consequently, the phosphatase inhibitors inhibited the transition from mitosis to interphase by mediating cortical accumulation of actin filaments and/or fragmentation of microtubules.  相似文献   

12.
A burst of endocytosis accompanying microvillar elongation follows cortical granule exocytosis in normal sea urchin development. By 5 min postfertilization the burst is over and a lower level of endocytosis ensues (constitutive phase). To determine whether microvillar elongation and initiation of endocytosis are necessary concommitants of cortical granule exocytosis we utilized Chase's (1967, Ph.D. thesis, University of Washington, Seattle) high-hydrostatic pressure technique to block the latter and then examined developing eggs for endocytosis and microvillar elongation. To accomplish this, eggs were fertilized, after which hydrostatic pressure was quickly raised to 6000-7000 psi at the start of cortical granule exocytosis and maintained for 5 min. Only the cortical granules immediately surrounding the sperm penetration site were secreted (about 3% or less of the egg's total number of cortical granules). Blockage of major cortical granule exocytosis had the following consequences on surface events during first division: (1) The endocytosis burst normally associated with cortical granule exocytosis was effectively eliminated as was early microvillar elongation and elevation. Both occurred to a limited extent around the sperm penetration site which resulted in a highly localized surface transformation. (2) By 20 min after fertilization endocytosis began over the rest of the egg surface in the absence of any further cortical granule exocytosis. (3) Subsequently, during a 30-min period starting midway between fertilization and first cleavage microvilli more than doubled in length and endocytosis levels increased severalfold. These events brought about a complete surface transformation similar to that which normally occurs in early development but in the absence of cortical granule exocytosis. By first cleavage surfaces and cortices of high-pressure-treated and control eggs were nearly indistinguishable except for the presence of cortical granules in cortices of the former. Pressure-treated eggs cleaved normally and developed to larval forms overnight. The period of late surface transformation in high-pressure-treated Strongylocentrotus purpuratus eggs corresponds in timing and some of its characteristics to second phase microvillar elongation observed in normal development in this species and also in S. droebachiensis development. These observations suggest, therefore, that microvillar elongation and endocytosis are necessary membrane remodelling events which must occur for normal development even in the absence of membrane addition from the cortical granules.  相似文献   

13.
The first cleavage furrow in eggs of Arbacia (sea urchin) is accompanied by a uniform ring of aligned microfilaments, called the contractile ring. Individual contractile ring filaments measure 35–60 A and occasionally appear "hollow." The contractile ring exists from about 20 sec after anaphase to the end of furrowing activity, i.e., 6–7 min at 20°C. It is closely associated with the plasma membrane at all times, and is probably assembled there. It is about 8 µ wide and 0.2 µ thick throughout cleavage. Its volume decreases, however, suggesting a contraction-related disassembly of contractile ring filaments, rather than a sliding-filament mechanism in the strict sense. Cytochalasin B (>10-6 M) arrests cleavage within 60 sec, by which time contractile ring filaments are no longer visible ultrastructurally. The furrow may be seen to recede within this time. Karyokinesis is unaffected. Simultaneous disruption of furrowing activity and of the contractile ring largely confirms the vital role of the contractile ring as the organelle of cell cleavage.  相似文献   

14.
Summary Blastomeres isolated from two-cell mouse embryos were cultured until they started to cleave. When the cleavage furrow developed they were subjected to cytochalasin B (CB) and were studied with the electron microscope. The initial response to CB is that the furrow is more folded and microvillous than in the control. Later the blastomeres round up. The protrusions covered with abundant long microvilli are found scattered within their equatorial surface. Extraction with glycerol solution before fixation permits visualization of condensations of felt-like filamentous material in contact with the cleavage furrow during the initial response to CB and in the protrusions of rounded cells. We consider clumping of filaments in surface protrusions to be a specific response to CB treatment of the contractile ring.Some of the previous papers by this author have been published under the name Opas  相似文献   

15.
The effects of selected concentrations of cytochalasins B (1-10 micrograms/ml; CB) and D (10, 50 micrograms/ml; CD) on the morphology and fertilization of zebra danio (Brachydanio) eggs were studied primarily with light and scanning electron microscopy. Eggs pretreated with either CB (10 micrograms/ml) or CD (10, 50 micrograms/ml) prepared in Fish Ringer's solution-0.5% DMSO showed a flattened shape, alterations in the form of surface microplicae and microvilli, and occasional spontaneous exocytosis of cortical granules. All eggs preincubated in either CB or CD were activated upon transfer to tap water, showing cortical granule exocytosis, elevation of the chorion, and formation of a fertilization cone. When eggs were pretreated for 5 minutes with 1-5 micrograms/ml CB or 10 micrograms/ml CD and inseminated, they incorporated the fertilizing sperm and typically developed to the two-cell stage. A single sperm cell attached to and fused with the sperm entry site microvilli but failed to enter the cytoplasm in eggs preincubated with 10 micrograms/ml CB. Eggs that were immersed continuously in either CB (10 micrograms/ml) or CD (50 micrograms/ml) 15 seconds after insemination also failed to incorporate the fertilizing sperm. Treatment of eggs after insemination with CD (10 micrograms/ml), however, did not prevent sperm cell incorporation or fertilization cone formation. Our drug data suggest the presence of actin-containing filaments in the danio egg before and following fertilization. These filaments appear to play a role in maintaining the shape of the egg cell and its surface specializations and in the incorporation of the fertilizing sperm. The fertilization cone appears to form independently of actin polymerization.  相似文献   

16.
The distribution of polymerized actin in rat eggs fertilized in vitro was determined using NBD-phallacidin (NBD-ph). Unfertilized and fertilized eggs exhibited a 3-5-micron-thick band of fluorescence that encompassed the entire cortical cytoplasm. There was no dramatic increase in the staining of the cortex in association with any component of the fertilizing sperm during its incorporation into the egg. Unfertilized eggs and fertilized eggs obtained at intervals after sperm-egg fusion were treated with cytochalasin B (CB; 5 micrograms/ml) and subsequently stained with NBD-ph. Unfertilized eggs treated with CB exhibited a continuous ring of cortical staining identical to that seen in untreated eggs. Eggs treated with CB 15 min after sperm-egg fusion exhibited small gaps in the cortical staining pattern, whereas those exposed to CB 1 hr after fusion exhibited larger gaps and the staining pattern appeared punctate. This pattern could be seen throughout the remainder of the 7 hr period of sperm incorporation and for at least 13 hr thereafter. CB-treated fertilized eggs that were washed to remove the drug again exhibited uninterrupted cortical staining on treatment with NBD-ph. CB also induced the resorption of surface elevations that are normally seen on the eggs during sperm incorporation, but it did not affect the morphology of unfertilized eggs. The sensitivity to CB during fertilization coincides with the onset of a variety of egg shape changes that occur during the period of sperm incorporation (Battaglia and Gaddum-Rosse, Gamete Res., 10:107-118, 1984a).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
This study focuses on the dynamic reorganization of actin and myosin ("conventional" myosin, or myosin-II) during cytokinesis in D. discoideum. This is the first study identifying the birefringence of the spindle microtubules as well as three sets of microfilamentous structure in Dictyostelium. The change of organization in these fibrillar structures was followed in real-time with video microscopy, using a Universal Polarizing Microscope equipped with polarized-light (POL) and differential interference contrast (DIC) optics combined with digital image processing. High-frequency mitotic cells were obtained by semi-synchronous culture, and high-resolution observations were made by utilizing the agar-overlay method (Yumura et al.: Journal of Cell Biology 99:894-899, 1984). The molecular identity of the birefringent structures was determined by fluorescence microscopy. Through-focus observations were performed with an axial resolution of 0.3 micron depth of field. The actomyosin fibrils show a dramatic reorganization throughout mitosis. The fibrils at the leading lamellipodia disappear, and there is a striking assembly of the cortical actomyosin in pro-metaphase, which is accompanied by a decrease in cell volume. The cortical actomyosin gradually increases through anaphase. After late anaphase, very active polar lamellipodia, with an average life of less than 1 minute, are formed. We confirmed that the polar lamellipodia include actin, but not myosin-II. At the cleavage furrow, the microfilaments form two distinctive structures: circular contractile ring at the equator, and a cortical filament array parallel to the polar axis. Myosin is localized in the contractile ring, but not associated with the axial array of F-actin. Actomyosin in the contractile ring gradually transforms into cortical network at the posterior region of daughter cells. The constriction of the furrow is accompanied by a drastic efflux of water as evidenced by highly active contractile vacuole formation and turbulent motion of minute vesicles connected to the furrow. This study demonstrates the presence of a new microfilament structure, as well as the dynamic property of the contractile ring, and sheds new light on the contractile mechanisms underlying cytokinesis.  相似文献   

18.
Summary Sea urchin (Strongylocentrotus purpuratus) eggs were fixed, quick-frozen, deep-etched, and rotary-replicated, and the three-dimensional structure of the external surface of the egg visualized using stereo electron microscopy. The cell surface is coated with three layers of filaments: the sheetlike vitelline layer adhering closely to the plasma membrane, a second layer of oblique fibrils extending from microvillar tips to the vitelline layer below, and a third, outermost layer of horizontal filaments coursing in bundles over the microvillar tips. After fertilization, the newly elevated vitelline envelope is transformed into a three-layered structure, the central layer being a tightly knit network of fine filaments decorated on each side with a loose network of thicker fibrils. Subsequently, the envelope becomes coated with paracrystalline protein released from the cortical granules, and microvillar casts are reshaped into angular, jagged peaks having two to five sides. The final structure of the fertilization envelope consists of a thick central layer of compact fibrillar material that is coated on each side with thin plates of paracrystalline protein.  相似文献   

19.
Polar body formation is an essential step in forming haploid eggs from diploid oocytes. This process involves completion of a highly asymmetric cytokinesis that results in a large egg and two small polar bodies. Unlike mitotic contractile rings, polar body contractile rings assemble over one spindle pole so that the spindle must move through the contractile ring before cytokinesis. During time-lapse imaging of C. elegans meiosis, the contractile ring moved downward along the length of the spindle and completed scission at the midpoint of the spindle, even when spindle length or rate of ring movement was increased. Patches of myosin heavy chain and dynamic furrowing of the plasma membrane over the entire embryo suggested that global cortical contraction forces the meiotic spindle and overlying membrane out through the contractile ring center. Consistent with this model, depletion of myosin phosphatase increased the velocity of ring movement along the length of the spindle. Global dynamic furrowing, which was restricted to anaphase I and II, was dependent on myosin II, the anaphase promoting complex and separase, but did not require cortical contact by the spindle. Large cortical patches of myosin during metaphase I and II indicated that myosin was already in the active form before activation of separase. To identify the signal at the midpoint of the anaphase spindle that induces scission, we depleted two proteins that mark the exact midpoint of the spindle during late anaphase, CYK-4 and ZEN-4. Depletion of either protein resulted in the unexpected phenotype of initial ingression of a polar body ring with twice the diameter of wild type. This phenotype revealed a novel mechanism for minimizing polar body size. Proteins at the spindle midpoint are required for initial ring ingression to occur close to the membrane-proximal spindle pole.  相似文献   

20.
Mouse blastomeres in metaphase and in early and mid-cytokinesis were extracted with 50% glycerol, then deglycerinated and thin sectioned. A continuous layer of microfilaments was found in association with the plasma membrane. A loose network constitutes this layer during metaphase, whereas in early cytokinesis filaments tend to be packed more tightly and oriented parallel to the long axis of the cell. During mid-cytokinesis this arrangement is similar, except in the contractile ring which consists mainly of circumferentially arranged filaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号