首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Using immunogold electron microscopy, we have investigated the relative distribution of two types of vacuolar sorting receptors (VSR) and two different types of lumenal cargo proteins, which are potential ligands for these receptors in the secretory pathway of developing Arabidopsis embryos. Interestingly, both cargo proteins are deposited in the protein storage vacuole, which is the only vacuole present during the bent-cotyledon stage of embryo development. Cruciferin and aleurain do not share the same pattern of distribution in the Golgi apparatus. Cruciferin is mainly detected in the cis and medial cisternae, especially at the rims where storage proteins aggregate into dense vesicles (DVs). Aleurain is found throughout the Golgi stack, particularly in the trans cisternae and trans Golgi network where clathrin-coated vesicles (CCVs) are formed. Nevertheless, aleurain was detected in both DV and CCV. VSR-At1, a VSR that recognizes N-terminal vacuolar sorting determinants (VSDs) of the NPIR type, localizes mainly to the trans Golgi and is hardly detectable in DV. Receptor homology-transmembrane-RING H2 domain (RMR), a VSR that recognizes C-terminal VSDs, has a distribution that is very similar to that of cruciferin and is found in DV. Our results do not support a role for VSR-At1 in storage protein sorting, instead RMR proteins because of their distribution similar to that of cruciferin in the Golgi apparatus and their presence in DV are more likely candidates. Aleurain, which has an NPIR motif and seems to be primarily sorted via VSR-At1 into CCV, also possesses putative hydrophobic sorting determinants at its C-terminus that could allow the additional incorporation of this protein into DV.  相似文献   

2.
In developing pea cotyledons, storage proteins are sorted viadense vesicles into the protein storage vacuole. Formation ofthese unique transport vesicles is characterized by aggregationof their cargo proteins. Protein sorting into dense vesiclesis pH dependent. In order to gain insight into the molecularbasis of storage protein sorting, a membrane binding assay wasdeveloped which allows for a detailed biochemical analysis ofbinding events. Employing this assay it was possible to showthat storage proteins bind in a pH-dependent manner to the membranesof the secretory pathway with a pH optimum in the range of thelumenal pH of the Golgi cisternae. Through reconstitution experiments,it was possible to demonstrate further that this recruitmentoccurs via the interaction of peripheral rather than intrinsicmembrane proteins. Results of co-immunoprecipitation experimentspoint to interactions between different storage proteins inthe secretory system. These results are discussed in terms ofthe aggregation-mediated sorting of storage proteins into maturingdense vesicles. Key words: Dense vesicles, Golgi apparatus, legumin, pea, receptor, sorting Received 22 January 2008; Revised 22 January 2008 Accepted 23 January 2008  相似文献   

3.
Summary Whether both casein and noncasein (serum or whey) proteins of milk are contained within the same secretory vesicles of milk secreting mammary epithelial cells was explored. Antibodies to a major casein and to -lactalbumin of rat milk were localized in thin sections with colloidal gold-conjugated second antibodies. Antibodies to the casein component bound to an antigen present within lumina of Golgi apparatus cisternae and within secretory vesicles. This antigen was also recognized in structures within secretory vesicles and within alveolar lumina which were ultrastructurally identified as casein micelles. Antigens recognized by antibodies to -lactalbumin also were present in Golgi apparatus cisternae and within secretory vesicles. Both anti-casein and anti--lactalbumin antibodies recognized antigens within the same secretory vesicles. These observations show that one major noncasein protein of rat's milk is present in casein-containing secretory vesicles.  相似文献   

4.
Summary Golgi bodies of immature carposporangia ofPolysiphonia sp. are composed of a polarized stack of six to ten curved cisternae. The cisternae are surrounded by 50–200 nm diameter slightly granular vesicles.Hypertrophied, fibrillar Golgi cisternae occur in mature carposporangia. Secretory vesicles originate from ends of cisternae and by complete vesiculation of terminal cisternae; 0.6–1.2 m diameter, fibrous vesicles, many with electron dense nucleoids are abundant throughout the cytoplasm of mature sporangia. Vesicles expand, fuse with each other and cluster around starch granules. Some vesicles secrete their content into the spore wall. Morphological analyses of starch granules as well as topographical relations between vesicles, starch granules and the adjacent cytoplasm suggest that these Golgi vesicles function like lysosomes. The significance of these observations is discussed in relation to the composition of plant cell walls and cellular expansion.  相似文献   

5.
A Driouich  G F Zhang    L A Staehelin 《Plant physiology》1993,101(4):1363-1373
Brefeldin A (BFA), a specific inhibitor of Golgi-mediated secretion in animal cells, has been used to study the organization of the secretory pathway and the function of the Golgi apparatus in plant cells. To this end, we have employed a combination of electron microscopical, immunocytochemical, and biochemical techniques to investigate the effects of this drug on the architecture of the Golgi apparatus as well as on the secretion of proteins and complex cell wall polysaccharides in sycamore maple (Acer pseudoplatanus) suspension-cultured cells. We have used 2.5 and 7.5 micrograms/mL of BFA, which is comparable to the 1 to 10 micrograms/mL used in experiments with animal cells. Electron micrographs of high-pressure frozen and freeze-substituted cells show that although BFA causes swelling of the endoplasmic reticulum cisternae, unlike in animal cells, it does not induce the disassembly of sycamore maple Golgi stacks. Instead, BFA induces the formation of large clusters of Golgi stacks, an increase in the number of trans-like Golgi cisternae, and the accumulation in the cytoplasm of very dense vesicles that appear to be derived from trans Golgi cisternae. These vesicles contain large amounts of xyloglucan (XG), the major hemicellulosic cell wall polysaccharide, as shown by immunocytochemical labeling with anti-XG antibodies. All of these structural changes disappear within 120 min after removal of the drug. In vivo labeling experiments using [3H]leucine demonstrate that protein secretion into the culture medium, but not protein synthesis, is inhibited by approximately 80% in the presence of BFA. In contrast, the incorporation of [3H]fucose into N-linked glycoproteins, which occurs in trans-Golgi cisternae, appears to be affected to a greater extent than the incorporation of [3H]xylose, which has been localized to medial Golgi cisternae. BFA also affects secretion of complex polysaccharides as evidenced by the approximate 50% drop in incorporation of [3H]xylose and [3H]fucose into cell wall hemicelluloses. Taken together, these findings suggest that at concentrations of 2.5 to 7.5 mu g/mL BFA causes the following major changes in the secretory pathway of sycamore maple cells: (a) it inhibits the transport of secretory proteins to the cell surface by about 80% and of hemicelluloses by about 50%; (b) it changes the patterns of glycosylation of N-linked glycoproteins and hemicelluloses; (c) it reduces traffic between trans Golgi cisternae and secretory vesicles; (d) it produces a major block in the transport of XG-containing, dense secretory vesicles to the cell surface; and (e) it induces the formation of large aggregates of Golgi apparatus of plant and animal cels share many functional and structural characteristics, the plant Golgi apparatus possesses properties that make its response to BFA unique.  相似文献   

6.
T. Akashi  T. Kanbe  K. Tanaka 《Protoplasma》1997,197(1-2):45-56
Summary Candida albicans, a dimorphic yeast, has the abililty to switch its growth form between budding growth and hyphal growth. Since fungal growth involves secretory processes, spatial control of secretion should play a crucial role in such a morphogenetic transition. Brefeldin A (BFA), an inhibitor of the membrane trafficking system of eukaryotes, increases the occurrence of Golgi-like cisternae in the yeast. In the present study, BFA was used to obtain further insights into the spatial organization of secretory processes in hyphal growth ofC. albicans. BFA completely inhibited the formation and growth of germ tubes at a concentration of 35 M or higher. Electron microscopy of BFA-untreated germinated cells revealed many vesicles in the apical region and Golgi-like cisternae in the cytoplasm. In cells treated with 35 M BFA, the vesicles disappeared from the apical region, and, instead, stacked membrane cisternae and membrane-enclosed spherical dense bodies accumulated in the subapical region. These accumulated structures were positive for both polysaccharide staining and immunocytochemical staining with antibodies raised against cell surface antigens ofC. albicans, as were Golgi cisternae in BFA-untreated cells. In cells treated with a higher concentration of BFA (140 M), the structures that appeared in cells treated with 35 M BFA were no longer observed and the endoplasmic reticulum was extended and positive for polysaccharide staining. These results suggested that BFA affects different steps of membrane trafficking in a concentration-dependent manner. The accumulated structures induced by 35 M BFA seemed to be the altered forms of Golgi cisternae. Their accumulation in the subapical region of the germ tube might indicate that the step(s) in membrane trafficking that are associated with the Golgi pathway are vectorially organized in hyphal growth ofC. albicans.Abbrevations BFA brefeldin A - BSA bovine serum albumin - CBB Coomassie brilliant blue - Con A concanavalin A - HRP horseradish peroxidase  相似文献   

7.
Summary The antibiotic fungal toxin brefeldin A (BFA) causes synthesis of additional cell wall material in adult differentiated onion inner epidermal cells at concentrations of 5–30 g/ml. This tertiary wall contains callose and is layered on the secondary cellulosic wall in a time- and dose-dependent manner. Initially, callose is found in pit fields in the form of small vesicular patches. With time and dose, depositions grow in size and form large plugs invaginating into the cell, where the adjacent cytoplasm forms bulky accumulations and contains many organelles including endomembranes. Within the cytoplasm, BFA exerts the characteristic morphological effects on the secretory system including changes of the Golgi stacks, formation of large vesicles, and proliferation of dilated cisternae of the endoplasmic reticulum. Higher concentrations of BFA (60 g/ml) lead to disintegration of the Golgi apparatus; they have no effects on the cell wall, no callose synthesis occurs. We conclude from these observations that BFA has two independent targets in onion cells. BFA acts on the plasma membrane, hence operating as an elicitor of plant defense reactions and thus activates callose synthesis. BFA acts also on the membranes of the secretory system and influences budding and fusion of vesicles at the endoplasmic reticulum and at the dictyosomes. These two mechanisms occur in parallel, suggesting that the secretory system still can play its presumed role in callose synthesis. Only when dictyosomes are completely disintegrated, no more callose is formed.Abbreviations BFA Brefeldin A - PM plasma membrane - GA Golgi apparatus - ER endoplasmic reticulum - GS glucan synthetase Dedicated to Professor Walter Gustav Url on the occasion of his 70th birthday  相似文献   

8.
M. L. Parker  C. R. Hawes 《Planta》1982,154(3):277-283
The ultrastructure and distribution of the Golgi apparatus in developing wheat endosperm was investigated using a zinc iodide-osmium tetroxide staining complex in conjunction with low and high voltage electron microscopy. Dictyosomes were numerous in starchy endosperm and aleurone at 15 days after anthesis, and during the period of rapid storage protein deposition 25 d after anthesis. Fewer dictyosomes were seen in maturing endosperm. Two types of vesicles were associated with the dictyosomes; small, heavily-stained vesicles were sited at the ends of fine tubules which extend from the cisternae, and larger less-stained vesicles were associated with the periphery of the cisternae. Stereo-pairs of micrographs up to 1 m thick were taken to demonstrate the interconnections between cisternal and tubular endoplasmic reticulum. Elements of tubular ER were closely associated with dictyosomes, but connections were not observed. These results are discussed in relation to the transport of endosperm storage proteins from their site of synthesis on the cisternal ER to their site of storage, the protein bodies.  相似文献   

9.
Developing pea cotyledons contain functionally different vacuoles, a protein storage vacuole and a lytic vacuole. Lumenal as well as membrane proteins of the protein storage vacuole exit the Golgi apparatus in dense vesicles rather than in clathrin-coated vesicles (CCVs). Although the sorting receptor for vacuolar hydrolases BP-80 is present in CCVs, it is not detectable in dense vesicles. To localize these different vacuolar sorting events in the Golgi, we have compared the distribution of vacuolar storage proteins and of alpha-TIP, a membrane protein of the protein storage vacuole, with the distribution of the vacuolar sorting receptor BP-80 across the Golgi stack. Analysis of immunogold labeling from cryosections and from high pressure frozen samples has revealed a steep gradient in the distribution of the storage proteins within the Golgi stack. Intense labeling for storage proteins was registered for the cis-cisternae, contrasting with very low labeling for these antigens in the trans-cisternae. The distribution of BP-80 was the reverse, showing a peak in the trans-Golgi network with very low labeling of the cis-cisternae. These results indicate a spatial separation of different vacuolar sorting events in the Golgi apparatus of developing pea cotyledons.  相似文献   

10.
G Hinz  S Hillmer  M Baumer    I Hohl  I 《The Plant cell》1999,11(8):1509-1524
In the parenchyma cells of developing legume cotyledons, storage proteins are deposited in a special type of vacuole, known as the protein storage vacuole (PSV). Storage proteins are synthesized at the endoplasmic reticulum and pass through the Golgi apparatus. In contrast to lysosomal acid hydrolases, storage proteins exit the Golgi apparatus in 130-nm-diameter electron-dense vesicles rather than in clathrin-coated vesicles. By combining isopycnic and rate zonal sucrose density gradient centrifugation with phase partitioning, we obtained a highly enriched dense vesicle fraction. This fraction contained prolegumin, which is the precursor of one of the major storage proteins. In dense vesicles, prolegumin occurred in a more aggregated form than it did in the endoplasmic reticulum. The putative vacuolar sorting receptor BP-80 was highly enriched in purified clathrin-coated vesicles, which, in turn, did not contain prolegumin. The amount of BP-80 was markedly reduced in the dense vesicle fraction. This result was confirmed by quantitative immunogold labeling of cryosections of pea cotyledons: whereas antibodies raised against BP-80 significantly labeled the Golgi stacks, labeling of the dense vesicles could not be detected. In contrast, 90% of the dense vesicles were labeled with antibodies raised against alpha-TIP (for tonoplast intrinsic protein), which is the aquaporin specific for the membrane of the PSV. These results lead to the conclusions that storage proteins and alpha-TIP are delivered via the same vesicular pathway into the PSVs and that the dense vesicles that carry these proteins in turn do not contain BP-80.  相似文献   

11.
The cargo in vacuolar storage protein transport vesicles is stratified   总被引:2,自引:2,他引:0  
Developing pea seeds contain two functionally distinct vacuoles--lytic vacuoles and protein storage vacuoles (PSV). The Golgi apparatus of these cells has to discriminate between proteins destined for these vacuolar compartments. Whereas it is known that sorting into the lytic vacuole is performed via the conserved clathrin-coated vesicle pathway, sorting of proteins into the protein storage vacuole remains enigmatic. In developing pea cotyledons, the major storage proteins are sorted via 'dense vesicles'. In this report we examined the sorting of a minor protein of the protein storage vacuole, the sucrose-binding-protein homolog (SBP), along the secretory pathway employing immunoelectron microscopy on cryosectioned pea cotyledons. SBP follows the same vesicular route into the PSV as the main storage proteins legumin and vicilin, via the dense-vesicles. Furthermore, legumin and SBP are sorted together into the same dense vesicle population at the stack. Although soluble cargo proteins of the dense vesicles, they show a stratified distribution in the lumen of the dense vesicles. Whereas the legumin label is equally distributed across the lumen, the SBP label is concentrated at the membrane of the vesicle. This observation is discussed with respect to a putative receptor-mediated sorting of the proteins into the dense vesicles.  相似文献   

12.
I. Tsekos 《Protoplasma》1985,129(2-3):127-136
Summary The endomembrane system during carposporogenesis inChondria tenuissima was studied using electron microscopy and histochemistry. Profiles of the nucleus are convoluted, resulting in a highly increased surface area. Stacked cisternae are found within the peripheral part of the nucleus. Vesicles, tubules and membrane bound fibrillar bodies occur within the nucleoplasm. The endoplasmic reticulum surrounds the nuclear envelope.The endoplasmic reticulum and the Golgi apparatus, together with small transition vesicles, represent a functional unit. They form two different secretory substances during carposporogenesis. In young stages, carbohydrates are produced by normal dictyosomes within large, normal exocytotic Golgi vesicles. They do not react positively with PAS or Thiéry method and are believed to represent cell wall material. In later stages, the central area of the Golgi cisternae becomes filled with electron dense material. The individual cisternae are transformed into cored vesicles at the trans-face of the dictyosomes. The dense core of the vesicles is proteinaceous and stains with coomassie brilliant blue R. The peripheral fibrillar material is polysaccharidic and reacts positively using the Thiéry method. The contents of the cored vesicles are believed to participate in carpospore attachment. The ER gives rise to cytolysosomes in which starch grains are sequestrated and digested. Mucilaginous sacs seem to be similarly formed.  相似文献   

13.
Summary In mice most of the ependymal cells of the subcommissural organ (SCO cells) are densely packed with dilated cisternae of the endoplasmic reticulum (ER) containing either finely granular or flocculent materials. The well developed supra-nuclear Golgi apparatus consists of stacks of flattened saccules and small vesicles; the two or three outer Golgi saccules are moderately dilated and exhibit numerous fenestrations; occasional profiles suggesting the budding of coated vesicles and formation of membrane-bound dense bodies from the ends of the innermost Golgi saccules are seen. A few coated vesicles and membrane-bound dense bodies of various sizes and shapes are also found in the Golgi region.The contents of the dilated ER cisternae are stained with periodic acid-silver methenamine techniques. In the Golgi complex the two or three inner saccules are stained as deeply as the dense bodies, and the outer saccules are only slightly stained. The stained contents of ER cisternae are more electron opaque than those of the outer but less opaque than those of the inner Golgi saccules and the dense bodies.Acid phosphatase activities are localized in the dense bodies, some of the coated vesicles in the Golgi region, and in the one or two inner Golgi saccules.On the basis of these results the following conclusions have been reached: (1) In mouse SCO cells the finely granular and the flocculent materials in the lumen of ER cisternae contain a complex carbohydrate(s) which is secreted into the ventricle to form Reissner's fiber; (2) the secretory substance is assumed to be synthesized by the ER and stored in its cisternae, and the Golgi apparatus might play only a minor role, if any, in the elaboration of the secretory material; (3) most of the dense bodies in the mouse SCO cells are lysosomal in nature instead of being so-called dark secretory granules.Sponsored by the National Science Council, Republic of China.  相似文献   

14.
CHLAMYDOMONAS NOCTIGAMA has a non-motile Golgi apparatus consisting of several Golgi stacks adjacent to transitional ER. These domains are characterized by vesicle-budding profiles and the lack of ribosomes on the side of the ER proximal to the Golgi stacks. Immunogold labelling confirms the presence of COPI-proteins at the periphery of the Golgi stacks, and COPII-proteins at the ER-Golgi interface. After addition of BFA (10 microg/ml) a marked increase in the number of vesicular profiles lying between the ER and the Golgi stacks is seen. Serial sections of cells do not provide any evidence for the existence of tubular connections between the ER and the Golgi stacks, supporting the notion that COPI- but not COPII-vesicle production is affected by BFA. The fusion of COPII-vesicles at the CIS-Golgi apparatus apparently requires the presence of retrograde COPI-vesicles. After 15 min the cisternae of neighbouring Golgi stacks begin to fuse forming "mega-Golgis", which gradually curl before fragmenting into clusters of vesicles and tubules. These are surrounded by the transitional ER on which vesicle-budding profiles are still occasionally visible. Golgi remnants continue to survive for several hours and do not completely disappear. Washing out BFA leads to a very rapid reassembly of Golgi cisternae. At first, clusters of vesicles are seen adjacent to transitional ER, then "mini Golgis" are seen whose cisternae grow in length and number to produce "mega Golgis". These structures then divide by vertical fission to produce Golgi stacks of normal size and morphology roughly 60 min after drug wash-out.  相似文献   

15.
The dense granules of the intracellular protozoan Toxoplasma gondii are secretory vesicles that play a major role in the structural modifications of the parasitophorous vacuole (PV) in which the parasite develops. The biogenesis of dense granules as well as the regulatory mechanisms controlling their specific exocytosis are still poorly understood. In this paper, we analyzed the secretory pathway of dense granule proteins (GRA proteins) in extracellular T. gondii through the effects of brefeldin A (BFA). Ultrastructural studies of BFA-treated parasites showed disassembly of the Golgi apparatus and accumulation of GRA proteins in a dilated vacuolar system connected to the nuclear envelope. BFA reversibly blocked the intracellular transport of the newly synthesized GRA proteins in a dose-dependent manner (blockade of 95% at 1 microg/ml of BFA). By contrast, discharge of GRA proteins from preformed dense granules was unaffected by BFA over a course of 60 min incubation. GRA protein secretion was dependent on incubation temperature as it only occurred above 26 degrees C and it could be stimulated by external factors. This stimulus might be provided by factor(s) present in the serum of the extracellular medium, as incubation of parasites in serum-free medium resulted in a dramatic decrease in protein secretion. Exocytosis can be restored in a dose-dependent fashion by serum addition (maximal stimulatory activity in the 30-200 kDa range) and was optimal at an extracellular pH of 6.5. Altogether, these results demonstrate that GRA proteins are exported through the Golgi apparatus via the classical secretory pathway and can be experimentally discharged from storage dense granules as regulated secretory proteins in response to specific stimulation, arguing in favor of a regulated component for dense granule exocytosis in T. gondii.  相似文献   

16.
Summary The vacuole is often termed the lytic compartment of the plant cell. The yeast cell also possesses a vacuole containing acid hydrolases. In animal cells these enzymes are localized in the lysosome. Recent research suggests that there is good reason to regard these organelles as homologous in terms of protein transport. Although sorting motifs for the recognition of vacuolar proteins within the endomembrane system differ between the three organelles, there is an underlying similarity in targeting determinants in the cytoplasmic tails of Golgi-based receptors. In all three cases these determinants appear to interact with adaptins of clathrin-coated vesicles which ferry their cargo first of all to an endosomal compartment. The situation in sorting and targeting of plant vacuolar proteins is complicated by the fact that storage and lytic vacuoles may exist together in the same cell. The origin of these two types of vacuole is also a matter of some uncertanity.Abbrevations AP assembly protein - ALP alkaline phosphatase - ARF adenosine diphosphate ribosylation factor - BiP immunoglobulin binding protein - CCV clathrin coated vesicle - CPY carboxypeptidase-Y - DPAP dipeptidyl aminopeptidase - ER endoplasmic reticulum - GApp Golgi apparatus - LAMPs lysosomal associated membrane protein(s) - LAP lysosomal acid phosphatase - LIMPs lysosomal integral membrane protein(s) - MPRs mannosyl 6-phosphate receptors - MVB multivesicular bodies - NSF N-ethylmaleimide sensitive fusion (protein) - PAT phosphinotricine acetyltransferase - PB protein body - PHA phytohemagglutinin - PM plasma membrane - PSV protein storage vacuole - SNAPs soluble NSF attachment protein(s) - SNAREs SNAP receptor(s) - TGN trans Golgi network - TIP tonoplast integral protein - VPS vacuolar protein sorting - ZIO zinc iodide/osmium  相似文献   

17.
Brefeldin A (BFA), a fungal metabolite causing dysfunction of the Golgi apparatus in plant and animal cells, was used to investigate the role of secretory processes at the plasma membrane in auxin-mediated elongation growth of maize (Zea mays L.) coleoptiles. In abraded coleoptile segments BFA produced, within less than 30 min, a decrease in the incorporation of [3H]leucine into tightly bound cell-wall proteins, accompanied by an increased incorporation into the intracellular pool of putative cell-wall glycoproteins. Total protein synthesis was not affected. Electron micrographs revealed striking morphological changes in dictyosomes (especially vesiculation of trans-cisternae), accumulation of Golgi vesicles and dilation of the endoplasmic reticulum. These effects are taken as indication that BFA interferes with the secretion of cell-wall components. Elongation growth of coleoptile segments in the presence and absence of auxin was inhibited by 80% in 20 mg·l–1 BFA. If BFA was applied to segments growing in the presence of auxin, maximum inhibition was reached after about 30 min, indicating that the growth response depends on an uninterrupted supply of a cell-wall or plasma-membrane component (wall-loosening factor) delivered by the secretory pathway. After its secretion, this factor has a rather short growth-effective life time. The inhibition of auxin-mediated growth by BFA was accompanied by an elimination of auxin-induced cell-wall extensibility and by an inhibition of auxin-induced proton excretion. Fusicoccin-induced proton excretion was similarly affected by BFA. It is concluded that both the wall-loosening process underlying elongation growth as well as proton excretion depend on an intact secretory pathway from the Golgi apparatus to the cell wall; however, a causal relationship between these processes is not warranted by the data.Abbreviations BFA brefeldin A - FC fusicoccin - TCA trichloroacetic acid - WLF wall-loosening factor Supported by Deutsche Forschungsgemeinschaft (SFB 206). We thank Ms. B. Huvermann and Mrs. C. Plachy for conducting growth and proton excretion measurements.  相似文献   

18.
This report concerns the effects of Brefeldin A (BFA): i) on the Golgi complex and the ER of retrovirus-transformed murine erythroleukemia (MEL) cells and, ii) on the viral proteins these cells express. Golgi complexes were extensively disorganized by BFA. Within 5 min, most stacked cisternae were converted to vesicles scattered throughout the centrosphere region. By 30 min, the Golgi complexes were completely disassembled. Only clusters of small vesicles ("Golgi remnants") persisted in the vicinity of the centrioles and microtubule-organizing centers. Some of these small vesicles had a simple coat structure on their membranes. Over the next 1 to 2 h of BFA treatment, the number of vesicles in the Golgi area decreased concomitantly with the expansion of a predominantly smooth membrane portion of the ER, consisting of a network of dilated tubules in continuity with regular RER cisternae, annulate lamellae and the nuclear envelope. By electron microscopy, viral glycoproteins appeared to accumulate on the membranes of this network, and immature virions were found to bud preferentially into its cisternal space. Viral accumulations increased with time under BFA. The rest of the RER appeared normal, apparently unaffected by the drug. Preferential virion budding suggests that this expanding network is a chemically differentiated part of the ER. By immunofluorescence, antibodies to viral envelope proteins gave a punctate staining at the surface of control cells, presumably in the areas of virion budding, whereas relatively large intracellular masses of antigens were found in BFA-treated cells. We assume that these masses represent the differentiated parts of the ER. Taken together, these findings suggest that BFA blocks intracellular transport of newly synthesized cellular and viral proteins immediately distal to the distinct compartment of the ER in which virion budding preferentially occurs. BFA effects are rapidly and fully reversible. Within 1 min of the removal of the drug, stacks of Golgi cisternae began to reappear in the vicinity of the centrioles, and by 30 min, Golgi complexes regained their normal structural appearance.  相似文献   

19.
Summary Golgi apparatus in subapical regions of hyphae consist of paranuclear dictyosomes with 4–5 cisternae each. Transverse and tangential sections provide ultrastructural evidence for a three-dimensional architectural model of the Golgi apparatus and a stepwise mechanism for dictyosome multiplication. The dictyosomes are polarized, with progressive morphological and developmental differentiation of cisternae from the cis to the trans pole. Small membrane blebs and transition vesicles provide developmental continuity between the nuclear envelope and the adjacent dictyosome cisterna at the cis face. Cisternae are formed as fenestrated plates with extended tubular peripheries. The morphology of each cisterna depends on its position in the stack, consistent with a developmental gradient of progressive maturation and turnover of cisternae. Mature cisternae at the trans face are dissociated to produce spheroid and tubular vesicles. Evidence in support of a schematic sequence for increasing the numbers of dictyosomes comes from images of distinctive and unusual forms of Golgi apparatus in hyphal regions where nuclei and dictyosomes multiply, as follows: (a) The area of the nuclear envelope exhibiting forming-face activity next to a dictyosome expands, which in turn increases the size of cisternae subsequently assembled at the cis face of the dictyosome. (b) As subsequent large cisternae are formed and mature as they pass through the dictyosome, an entire dictyosome about twice normal size is built up. The number of cisternae per stack remains the same because of continuing turnover and loss of cisternae at the trans face, (c) This enlarged dictyosome becomes separated into two by a small region of the nuclear envelope next to the cis face that acquires polyribosomes and no longer generates transition vesicles, (d) As a consequence, assembly of new dictyosomes is physically separated into two adjacent regions, (e) As.the enlarged cisternae are lost to vesiculation at the trans pole, they are replaced by two separate stacks of cisternae with typical normal diameters, (f) The net result is two adjacent dictyosomes where one existed previously. Dictyosome multiplication is thus accomplished as part of the normal developmental turnover of cisternae, without interrupting the functioning of the Golgi apparatus as it continues to produce new secretory vesicles from mature cisternae at the trans face. Coordination of Golgi apparatus multiplication with nuclear division ensures that each daughter nucleus receives a complement of paranuclear dictyosomes.  相似文献   

20.
Summary The columnar cells in regions 3 and 4 of the ductus epididymidis in rabbits display ultrastructural features characteristic of absorbing cells. The stereocilia show basal anastomoses and often a fibrillar core continuous with a fibrillar web in the apical cytoplasm. Numerous invaginations of the slightly downy apical cell membrane and many thick-walled apical vesicles and vacuoles contain an opaque substance similar to that seen in the lumen. The vacuoles often contain small vesicles or bodies, probably formed from the vacuolar wall by budding. Numerous bodies or vacuoles with moderately dense contents are seen in the Golgi area and in the supranuclear and intranuclear cytoplasm in region 3. In region 4 they are denser and mainly seen above the nucleus. A high acid phosphatase activity was demonstrated in most dense and some light bodies. India ink introduced by way of the rete testis was taken up from the lumen into apical invaginations, vesicles and vacuoles and slowly transferred to denser bodies below the Golgi apparatus.These observations are interpreted as evidence for a resorption of substances from the lumen by a pinocytotic process, and for their storage and perhaps digestion in the dense bodies, which appear to have a lysosomal character. The Golgi apparatus is large with many vesicles of two types and empty cisternae but few typical Golgi vacuoles. The partly granular endoplasmic reticulum is very well developed and has opaque contents. Microtubules run from the terminal bar region into the Golgi area. Thick-walled vesicles occur throughout the cytoplasm, sometimes in continuity with the cell membrane. The basal parts of the cell borders often interdigitate.Supported by a grant from the Swedish State Medical Research Council.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号