首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cholesteryl ester transfer protein (CETP) deficiency is one of the most important and common causes of hyperalphalipoproteinemia (HALP) in the Japanese. CETP deficiency is thought to be a state of impaired reverse cholesterol transport, which may possibly lead to the development of atherosclerotic cardiovascular disease despite high HDL-cholesterol (HDL-C) levels. Thus, it is important to investigate whether HALP is caused by CETP deficiency. In the present study, we identified two novel missense mutations in the CETP gene among 196 subjects with a marked HALP (HDL-C > or = 2.59 mmol/l = 100 mg/dl). The two missense mutations, L151P (CTC-->CCC in exon 5) and R282C (CGC-->TGC in exon 9), were found in compound heterozygous subjects with D442G mutation, whose plasma CETP levels were significantly lower when compared with those in D442G heterozygous subjects. In COS-7 cells expressing the wild type and mutant CETP, these two mutant CETP showed a marked reduction in the secretion of CETP protein into media (0% and 39% of wild type for L151P and R282C, respectively). These results suggested that two novel missense mutations cause the decreased secretion of CETP protein into circulation leading to HALP. By using the Invader assay for seven mutations, including two novel mutations of the CETP gene, we investigated their frequency among 466 unrelated subjects with HALP (HDL-C > or = 2.07 mmol/l = 80 mg/dl). Two novel mutations were rare, but L151P mutation was found in unrelated subjects with a marked HALP. Furthermore, we demonstrated that CETP deficiency contributes to 61.7% and 31.4% of marked HALP and moderate HALP in the Japanese, respectively.  相似文献   

3.
Genome-wide association studies show that cholesteryl ester transfer protein (CETP) single nucleotide polymorphisms (SNPs) are more strongly associated with HDL cholesterol (HDL-C) concentrations than any other loci across the genome. However, gene-environment interactions for clinical applications are still largely unknown. We studied gene-environment interactions between CETP SNPs and dietary fat intake, adherence to the Mediterranean diet, alcohol consumption, smoking, obesity, and diabetes on HDL-C in 4,210 high cardiovascular risk subjects from a Mediterranean population. We focused on the −4,502C>T and the TaqIB SNPs in partial linkage disequilibrium (D''= 0.88; P < 0.001). They were independently associated with higher HDL-C (P < 0.001); this clinically relevant association was greater when their diplotype was considered (14% higher in TT/B2B2 vs. CC/B1B1). No gene-gene interaction was observed. We also analyzed the association of these SNPs with blood pressure, and no clinically relevant associations were detected. No statistically significant interactions of these SNPs with obesity, diabetes, and smoking in determining HDL-C concentrations were found. Likewise, alcohol, dietary fat, and adherence to the Mediterranean diet did not statistically interact with the CETP variants (independently or as diplotype) in determining HDL-C. In conclusion, the strong association of the CETP SNPs and HDL-C was not statistically modified by diet or by the other environmental factors.  相似文献   

4.
High-density lipoprotein cholesterol (HDL-C) is a known inverse predictor of coronary heart disease (CHD) and is thus a potential therapeutic target. Cholesteryl ester transfer protein (CETP) is a key protein in HDL-C metabolism such that elevated CETP activity is associated with lower HDL-C. Currently available HDL-C raising drugs are relatively ineffective and evidence suggesting the role of CETP in HDL-C levels has promoted the development of CETP inhibitors as potential therapeutic agents for CHD. We investigated three SNPs in the CETP gene in two cross-sectional community-based populations (n = 1,574 and 1,109) and a population of 556 CHD patients to determine if reduced CETP activity due to genetic variations in the CETP gene would increase HDL-C levels and reduce the risk of CHD. CETP genotypes and haplotypes were tested for association with lipid levels, CETP activity and risk of CHD. Multivariate analysis showed the common AAB2 haplotype defined by the G-2708A, C-629A and TaqIB polymorphisms, was consistently associated with reduced CETP activity and increased HDL-C levels. A mean increase in HDL-C levels of 0.16–0.24 mmol/l was observed in individuals with two copies of the AAB2 haplotype relative to non AAB2 carriers across all three populations (P < 0.001). A case-control study of males indicated no association between single SNPs or haplotypes and the risk of CHD. These results suggest that raising HDL-C via CETP inhibition may not alter risk of CHD. Randomized control trials are needed to determine whether CETP inhibition will in reality reduce risk of CHD by raising HDL-C. Pamela A. McCaskie and John P. Beilby contributed equally to this work.  相似文献   

5.
We previously described the pattern of sequence variation in gp120 following persistent infection of rhesus monkeys with the pathogenic simian immunodeficiency virus SIVmac239 molecular clone (D.P.W. Burns and R.C. Desrosiers, J. Virol. 65:1843, 1991). Sequence changes were confined largely to five variable regions (V1 to V5), four of which correspond to human immunodeficiency virus type 1 (HIV-1) gp120 variable regions. Remarkably, 182 of 186 nucleotide substitutions that were documented in these variable regions resulted in amino acid changes. This is an extremely nonrandom pattern, which suggests selective pressure driving amino acid changes in discrete variable domains. In the present study, we investigated whether neutralizing-antibody responses are one selective force responsible at least in part for the observed pattern of sequence variation. Variant env sequences called 1-12 and 8-22 obtained 69 and 93 weeks after infection of a rhesus monkey with cloned SIVmac239 were recombined into the parental SIVmac239 genome, and variant viruses were generated by transfection of cultured cells with cloned DNA. The 1-12 and 8-22 recombinants differ from the parental SIVmac239 at 18 amino acid positions in gp120 and at 5 and 10 amino acid positions, respectively, in gp41. Sequential sera from the monkey infected with cloned SIVmac239 from which the 1-12 and 8-22 variants were isolated showed much higher neutralizing antibody titers to cloned SIVmac239 than to the cloned 1-12 and 8-22 variants. For example, at 55 weeks postinfection the neutralizing antibody titer against SIVmac239 was 640 while those to the variant viruses were 40 and less than 20. Two other rhesus monkeys infected with cloned SIVmac239 showed a similar pattern. Rhesus monkeys were also experimentally infected with the cloned variants so that the type-specific nature of the neutralizing antibody responses could be verified. Indeed, each of these monkeys showed neutralizing-antibody responses of much higher titer to the homologous variant used for infection. These experiments unambiguously demonstrate that SIV mutants resistant to serum neutralization arise during the course of persistent infection of rhesus monkeys.  相似文献   

6.
The known genetic variants determining plasma HDL cholesterol (HDL-C) levels explain only part of its variation. Three hundred eighty-four single nucleotide polymorphisms (SNPs) across 251 genes based on pathways potentially relevant to HDL-C metabolism were selected and genotyped in 3,575 subjects from the Doetinchem cohort, which was examined thrice over 11 years. Three hundred fifty-three SNPs in 239 genes passed the quality-control criteria. Seven SNPs [rs1800777 and rs5882 in cholesteryl ester transfer protein (CETP); rs3208305, rs328, and rs268 in LPL; rs1800588 in LIPC; rs2229741 in NRIP1] were associated with plasma HDL-C levels with false discovery rate (FDR) adjusted q values (FDR_q) < 0.05. Five other SNPs (rs17585739 in SC4MOL, rs11066322 in PTPN11, rs4961 in ADD1, rs6060717 near SCAND1, and rs3213451 in MBTPS2 in women) were associated with plasma HDL-C levels with FDR_q between 0.05 and 0.2. Two less well replicated associations (rs3135506 in APOA5 and rs1800961 in HNF4A) known from the literature were also observed, but their significance disappeared after adjustment for multiple testing (P = 0.008, FDR_q = 0.221 for rs3135506; P = 0.018, FDR_q = 0.338 for rs1800961, respectively). In addition to replication of previous results for candidate genes (CETP, LPL, LIPC, HNF4A, and APOA5), we found interesting new candidate SNPs (rs2229741 in NRIP1, rs3213451 in MBTPS2, rs17585739 in SC4MOL, rs11066322 in PTPN11, rs4961 in ADD1, and rs6060717 near SCAND1) for plasma HDL-C levels that should be evaluated further.  相似文献   

7.
The human melatonin 1a (hMella) receptor gene was screened for mutations using genomic DNA samples from patients with circadian rhythm sleep disorders and control subjects by single strand conformational polymorphism analysis (SSCP). We found seven mutations, two of which predict amino acid changes R54W and A157V, respectively. The prevalence of the R54W variant and that of the A157V variant were several times more common in non-24-h sleep-wake syndrome subjects than among control subjects, although the incidence was not significant in our study group. When expressed in COS-7 cells, the R54W mutant receptor exhibited significantly reduced B(max) and slightly enhanced affinity (reduced K(d)) compared to the wild type receptor, while the A157V variant receptor showed similar binding characteristics to the wild type. The identification of variants in the hMella receptor will provide a useful tool for analyzing genetic predisposition toward various diseases related to melatonin function and to clarify the physiological role of melatonin receptors in humans.  相似文献   

8.
Mitochondrial DNA polymerase, POLG, is the sole DNA polymerase found in animal mitochondria. In humans, POLGα W748S in cis with an E1143G mutation has been linked to a new type of recessive ataxia, MIRAS, which is the most common inherited ataxia in Finland. We investigated the biochemical phenotypes of the W748S amino acid change, using recombinant human POLG. We measured processive and non-processive DNA polymerase activity, DNA binding affinity, enzyme processivity, and subunit interaction with recombinant POLGβ. In addition, we studied the effects of the W748S and E1143G mutations in primary human cell cultures using retroviral transduction. Here, we examined cell viability, mitochondrial DNA copy number, and products of mitochondrial translation. Our results indicate that the W748S mutant POLGα does not exhibit a clear biochemical phenotype, making it indistinguishable from wild type POLGα and as such, fail to replicate previously published results. Furthermore, results from the cell models were concurrent with the findings from patients, and support our biochemical findings.  相似文献   

9.
Single nucleotide polymorphisms (SNPs) are the most common form of human genetic variation. Non-synonymous SNPs (nsSNPs) change an amino acid. Organic anion transporters (OATs) play an important role in eliminating or reabsorbing endogenous and exogenous organic anionic compounds. Among OATs, hOAT4 mediates high affinity transport of estrone sulfate and dehydroepiandrosterone sulfate. The rapid bone loss that occurs in post-menopausal women is mainly due to a net decrease of estrogen. In the present study we searched for SNPs within the exon regions of hOAT4 in Korean women osteoporosis patients. Fifty healthy subjects and 50 subjects with osteoporosis were screened for genetic polymorphism in the coding region of SLC22A11 (hOAT4) using GC-clamp PCR and denaturing gradient gel electrophoresis (DGGE). We found three SNPs in the hOAT4 gene. Two were in the osteoporosis group (C483A and G832A) and one in the normal group (C847T). One of the SNPs, G832A, is an nsSNP that changes the 278th amino acid from glutamic acid to lysine (E278K). Uptake of [3H] estrone sulfate by oocytes injected with the hOAT4 E278K mutant was reduced compared with wild-type hOAT4. Km values for wild type and E278K were 0.7 microM and 1.2 microM, and Vmax values were 1.8 and 0.47 pmol/oocyte/h, respectively. The present study demonstrates that hOAT4 variants can causing inter-individual variation in anionic drug uptake and, therefore, could be used as markers for certain diseases including osteoporosis.  相似文献   

10.
The Metabochip is a custom genotyping array designed for replication and fine mapping of metabolic, cardiovascular, and anthropometric trait loci and includes low frequency variation content identified from the 1000 Genomes Project. It has 196,725 SNPs concentrated in 257 genomic regions. We evaluated the Metabochip in 5,863 African Americans; 89% of all SNPs passed rigorous quality control with a call rate of 99.9%. Two examples illustrate the value of fine mapping with the Metabochip in African-ancestry populations. At CELSR2/PSRC1/SORT1, we found the strongest associated SNP for LDL-C to be rs12740374 (p = 3.5 × 10(-11)), a SNP indistinguishable from multiple SNPs in European ancestry samples due to high correlation. Its distinct signal supports functional studies elsewhere suggesting a causal role in LDL-C. At CETP we found rs17231520, with risk allele frequency 0.07 in African Americans, to be associated with HDL-C (p = 7.2 × 10(-36)). This variant is very rare in Europeans and not tagged in common GWAS arrays, but was identified as associated with HDL-C in African Americans in a single-gene study. Our results, one narrowing the risk interval and the other revealing an associated variant not found in Europeans, demonstrate the advantages of high-density genotyping of common and rare variation for fine mapping of trait loci in African American samples.  相似文献   

11.
12.
Reports of two independent studies suggest that familial hyperalphalipoproteinaemia (FHALP) may be caused by a deficiency of cholesteryl ester transfer/exchange activity (CETP). We also have studied CETP in the plasma of an Italian FHALP kindred. The study group was divided into blood relatives with greater than 1.70 mM high-density-lipoprotein cholesterol (HDL-C) (group I, n = 9), with less than 1.70 mM-HDL-C (group II, n = 12) and in spouses (group III, n = 6). Two different assays were performed to measure CETP activity. In method A the interfering endogenous lipoproteins in the plasma samples were removed by poly(ethylene glycol) precipitation or by ultracentrifugation at a relative density (d) of 1.180. The CETP-activity of these samples was measured in a system consisting of fixed amounts of HDL and cholesteryl [1-14C]oleate-labelled low-density lipoproteins (LDL). In method B, trace amounts of HDL (radiolabelled with cholesteryl [1-14C]oleate) were incubated with plasma for 3 h at 37 degrees C and the distribution of the label among lipoproteins was measured (CET activity). The results can be summarized as follows. The mean CETP activities measured by method A were 187, 213 and 243 nmol/h per ml in groups I, II and III respectively. The proband with the highest HDL-C (4.98 mM) had a CETP activity of 231 nmol/h per ml. The corresponding CET activities measured by method B and expressed as percentage transfer/h were 4.3, 8.0 and 11.2 in groups I-III. The proband with HDL-C = 4.98 mM had a value of only 1.7%/h. There was a strong negative correlation between percentage CE transfer and HDL-C concentration. Calculating these data in terms of CE exchange (nmol/h per ml), groups I, II and III exhibited mean activities of 86, 124 and 110 nmol/h per ml respectively; for the proband this value was 80 nmol/h per ml. Only a slight correlation was found between these values and the HDL-C value. Thus by both methods, (A), measuring the CETP activity per se and (B), measuring the activity in whole plasma (reflecting the activity of the protein and the concentration and composition of lipoproteins), no major differences could be found between the three groups. In our family, therefore, no connection between FHALP and CETP deficiency could be found. It is concluded that, for hyper- and dys-lipoproteinaemic samples, a careful selection of the assay procedure as well as the mode of calculating results is essential. Since this may not hold the previous studies, the supposed connection between FHALP and CETP deficiency is challenged.  相似文献   

13.
Two peptidoglycan hydrolases were isolated from the autolytic mutant Salmonella typhimurium DA361 (envD). One of them, resistant to penicillin, was found free in the supernatant of partially purified envelopes sedimented by ultracentrifugation, and the other bound to the envelopes proved to be sensitive to the antibiotic. Both were able to hydrolyse in vitro high molecular weight non-specific peptidoglycan isolated from E. coli W7 labelled with [14C]diaminopimelic acid. Similar enzymatic activities were separated also from S. typhimurium DA362 (envD+) a non-lytic isogenic pair of the above and from the wild type strain LT-2. All of the hydrolytic activities reported here were strongly inhibited when DNA was added to the assay systems. The peptidoglycan hydrolases isolated from the autolytic mutant suffered a competitive inhibition while those from the non-lytic strains were apparently inhibited in uncompetitive modal relationship. It is postulated that the inhibitory effect may bear affinity with the preservation of DNA sites of attachment to cell membranes sustaining peptidoglycan structure and functions.  相似文献   

14.
A partial DNA library of Streptomyces ansochromogenes 7100 was constructed by using plasmid plJ702 as vector and white mutant W19 as recipient. About 3 000 clones were obtained, two of which gave rise to the grey phenotype as wild type 7100. The plasmids were isolated from two transformants. The result indicated that the 5.2 kb and 5.8 kb DNA fragments were inserted into plJ702. The resulting recombinant plasmids were designated as pNL-1 and pNL-2 respectively. The 1.25 kb Pstl l-Apa l DNA fragment from pNL-1 was recognized as its complementarity to W19 strain. The nucleotide sequence of the 3.0 kb Pst I DNA fragment including 1.25 kb was determined and analyzed. The result indicated that this DNA fragment contains one complete open reading frame (ORF1) which encodes a protein with 295 amino acid residues, and this gene was designated as sawB. The deduced protein has 81% amino acid identities in comparison with that encoded by whiH in Streptomyces coelicolor. The function of sawB gene was studied by usi  相似文献   

15.
The dopamine D4 receptor (DRD4) gene exhibits a large amount of expressed polymorphism in humans. To understand the evolutionary history of the first exon of DRD4-which in humans contains a polymorphic 12bp tandem duplication, a polymorphic 13bp deletion, and other rare variants-we examined the homologous exon in thirteen other primate species. The great apes possess a variable number of tandem repeats in the same region as humans, both within and among species. In this sense, the 12bp tandem repeat of exon 1 is similar to the 48bp VNTR of exon 3 of DRD4, previously shown to be polymorphic in all primate species examined. The Old World monkeys show no variation in length, and a much higher conservation of amino acid sequence than great apes and humans. The New World monkeys show interspecific differences in length in the region of the 12bp polymorphism, but otherwise show the higher conservation seen in Old World monkeys. The different patterns of variation in monkeys compared to apes suggest strong purifying selective pressure on the exon in these monkeys, and somewhat different selection, possibly relaxed selection, in the apes.  相似文献   

16.
The fatty acid composition of yeast lipid was manipulated by using auxotrophic strain of S.cerevisiae, KD115, which requires unsaturated fatty acid (UFA) for its growth. It was possible to specifically enrich the yeast with different fatty acyl residues. As compared to wild type strain (S288C), the uptake of amino acids viz., L-alanine, glycine, L-glutamic acid, L-valine in KD115 was drastically reduced, however, the uptake of L-leucine and L-lysine was not affected by the change in lipid unsaturation. Kinetic studies revealed that KT and Jmax values for L-alanine were altered whereas for L-lysine they remained unaffected by UFA modification. Furthermore, unsaturation index for wild type cells was found to be fairly constant while it was variable in KD115 supplemented with different UFAs. It is observed that the variation in amino acid permeases activity which was affected by fluctuations in fatty acyl composition corresponds more to degree of unsaturation rather than growth stage of KD115.  相似文献   

17.
Cholesteryl ester transfer protein (CETP) inhibitors increase high density lipoprotein-cholesterol (HDL-C) in animals and humans, but whether CETP inhibition will be antiatherogenic is still uncertain. We tested the CETP inhibitor torcetrapib in rabbits fed an atherogenic diet at a dose sufficient to increase HDL-C by at least 3-fold (207 +/- 32 vs. 57 +/- 6 mg/dl in controls at 16 weeks). CETP activity was inhibited by 70-80% throughout the study. Non-HDL-C increased in both groups, but there was no difference apparent by the study's end. At 16 weeks, aortic atherosclerosis was 60% lower in torcetrapib-treated animals (16.4 +/- 3.4% vs. 39.8 +/- 5.4% in controls) and aortic cholesterol content was reduced proportionally. Sera from a separate group of rabbits administered torcetrapib effluxed 48% more cholesterol from Fu5AH cells than did sera from control animals, possibly explaining the reduced aortic cholesterol content. Regression analyses indicated that lesion area in the torcetrapib-treated group was strongly correlated with the ratio of total plasma cholesterol to HDL-C but not with changes in other lipid or lipoprotein levels. CETP inhibition with torcetrapib retards atherosclerosis in rabbits, and the reduced lesion area is associated with increased levels of HDL-C.  相似文献   

18.
The hepatitis C virus (HCV) is a species of diverse genotypes that infect over 170 million people worldwide, causing chronic inflammation, cirrhosis and hepatocellular carcinoma. HCV genotype 3a is common in Brazil, and it is associated with a relatively poor response to current direct-acting antiviral therapies. The HCV NS3 protein cleaves part of the HCV polyprotein, and cellular antiviral proteins. It is therefore the target of several HCV drugs. In addition to its protease activity, NS3 is also an RNA helicase. Previously, HCV present in a relapse patient was found to harbor a mutation known to be lethal to HCV genotype 1b. The point mutation encodes the amino acid substitution W501R in the helicase RNA binding site. To examine how the W501R substitution affects NS3 helicase activity in a genotype 3a background, wild type and W501R genotype 3a NS3 alleles were sub-cloned, expressed in E. coli, and the recombinant proteins were purified and characterized. The impact of the W501R allele on genotype 2a and 3a subgenomic replicons was also analyzed. Assays monitoring helicase-catalyzed DNA and RNA unwinding revealed that the catalytic efficiency of wild type genotype 3a NS3 helicase was more than 600 times greater than the W501R protein. Other assays revealed that the W501R protein bound DNA less than 2 times weaker than wild type, and both proteins hydrolyzed ATP at similar rates. In Huh7.5 cells, both genotype 2a and 3a subgenomic HCV replicons harboring the W501R allele showed a severe defect in replication. Since the W501R allele is carried as a minor variant, its replication would therefore need to be attributed to the trans-complementation by other wild type quasispecies.  相似文献   

19.
We studied the association between high (HDL) and low-density (LDL) cholesterol concentrations and family-derived haplotypes based on six common SNPs in the cholesteryl-ester transfer protein (CETP) gene. We based our analysis on 201 founders from families recruited throughout Germany. The analysis revealed one subhaplotype block with complete, pairwise, linkage disequilibrium between 5 SNPs located in the promoter and intron 1. The sixth SNP was the well known 1405V polymorphism in exon 14, close to the 3' end of the gene. Four haplotypes accounted for 86% of the entire sample. We found that haplotype associations with HDL, LDL, and the LDL/HDL ratio were more robust than associations with individual SNPs. Moreover, the associations were robust for men, but not for women. Our data suggest an interaction between gender and genetic variation within the CETP gene.  相似文献   

20.
Cholesteryl ester transfer protein (CETP) is a hydrophobic plasma glycoprotein that mediates the transfer and exchange of cholesteryl ester (CE) and triglyceride (TG) between plasma lipoproteins, and also plays an important role in HDL metabolism. Previous studies have indicated that, compared to wild type mice, human CETP transgenic mice had significantly lower plasma HDL CE levels, which was associated with enhancement of HDL CE uptake by the liver. However, the mechanism of this process is still unknown. To evaluate the possibility that this might be directly mediated by CETP, we utilized CETP transgenic (CETPTg) mice with liver scavenger receptor BI (SR-BI) deficiency [i.e., PDZK1 gene knockout (PDZK1O)], and with receptor associated protein (RAP) overexpression, to block LDL receptor-related protein (LRP) and LDL receptor (LDLR). We found that (1) CETPTg/PDZK1O mice have significantly lower HDL-C than that of PDZK1 KO mice (36%, p<0.01); (2) CETPTg and CETPTg/PDZK1O mice have same HDL-C levels; (3) CETPTg/PDZK1O/RAP mice had significant lower plasma HDL-C levels than that of PDZK1O/RAP ones (50%, p<0.001); (4) there is no incremental transfer of HDL CE radioactivity to the apoB-containing lipoprotein fraction in mice expressing CETP; and (5) CETPTg/PDZK1O/RAP mice had significant higher plasma and liver [(3)H]CEt-HDL turnover rates than that of PDZK1O/RAP ones (50% and 53%, p<0.01, respectively). These results suggest that CETP expression in mouse increases direct removal of HDL CE in the liver and this process is independent of SR-BI, LRP, and possibly LDLR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号