首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Danilov  Roman A.  Ekelund  Nils G. A. 《Hydrobiologia》2001,444(1-3):203-212
Impacts of solar radiation, humic substances and nutrients on phytoplankton abundance at different depths were investigated in a temperate dimictic lake, Lake Solumsjö. Penetration of solar radiation profiles at different depths, represented as light attenuation coefficient (K d) were examined. Water sampling and downward irradiance of photosynthetically active radiation (PAR), ultraviolet-A (UV-A, 320–400 nm) and ultraviolet-B (UV-B, 280–320 nm) radiation were performed once a week and at three different times of the day (08.00, 12.00 and 16.00 hrs, local time) between September 13 and November 1, 1999. During the period of investigation, solar radiation above the water surface declined from 474 to 94 mol m–2 s–1 for PAR, from 1380 to 3.57 W m–2 for UV-A and from 13.1 to 0.026 W m–2 for UV-B, respectively. The attenuation coefficient (K d) for UV-B radiation ranged from 3.7 to 31 m–1 and UV-B radiation could not be detected at depths greater than 0.25 m. Humic substances measured at 440 nm ranged from 35.5 to 57.7 Pt mg l–1. Mean values of biomass, estimated from chlorophyll a, in the whole water column (0–10 m) varied between 2.3 and 5.6 g l–1 and a diel fluctuation was observed. During stratified conditions, high levels of iron (1.36 mg l–1) and manganese (4.32 mg l–1) were recorded in the hypolimnion, suggesting that the thermocline played a major role in the vertical distribution of phytoplankton communities in Lake Solumsjö. The high levels of iron and manganese stimulated the growth of Trachelomonas volvocinopsis in the hypolimnion at a depth of 10 m. Negative impacts of UV-B radiation on phytoplankton in lake Solumsjö are reduced due to the high levels of humic substances and the high degree of solar zenith angle at the latitude studied.  相似文献   

2.
Santas  Regas  Koussoulaki  A.  Häder  D.-P. 《Plant Ecology》1997,128(1-2):93-97
Daily and weekly fluctuations of PAR, UV-A, and UV-B have been continuously monitored for 5 months in Ancient Korinthos, Greece (37°58 N, 23°0 E) using a calibrated instrument based on 3 sharp band sensors. Daily dose ranged between 521–12 006 kJ m-2 for PAR; 52–1, 239 kJ m-2 for UV-A; and 0.66–22.5 kJ m2 for UV-B. Weekly dose ranged between 16 778-81 788 kJ m-2 for PAR; 1 406–8 517 kJ m-2 for UV-A; and 18–151 kJ m-2 for UV-B. UV-B/PAR and UV-A/PAR ratio distribution, however, does not follow closely PAR fluctuations. Generally, the UV-B/PAR and UV-A/PAR ratios were high in bright light conditions (2.1×10-3, 118×10-3) and low in darker weeks (0.9×10-3, 63×10-3. The UV-B/UV-A ratio exhibits smaller fluctuations with season (20x1×10-3, 12×10-3). Attention is drawn to the effects of sudden changes in ambient radiation and to the ratios of UV-B, UV-A, and PAR.  相似文献   

3.
Harding  William R. 《Hydrobiologia》1997,344(1-3):87-102
This paper reports on a two-year analysis of the wind climateand its effect on phytoplankton primary production in ashallow (mean depth = 1.9 m), hypertrophic South Africancoastal lake, Zeekoevlei. The lake is subject to continuousmixing of the euphotic zone (Z eu = 0.8 m), andcomplete mixing of the water column to the mean depth on adaily basis. Median annual wind speeds, prevailing fromeither the north or the south, were 6.4 m s–1. There wasan almost total absence of calms, measured as hourly meanwind speeds of <1 m s–1. Notwithstanding the highfrequency of mixing, the lake supports a dense population ofphytoplankton, dominated by Cyanophyte and Chlorophytespecies. Mean concentrations of chlorophyll-a were240 g l–1. The attenuation of photosyntheticallyavailable radiation, PAR, was high, with mean K dvalues of 6.4 m–1 and water transparencies of <0.5 m.Levels of primary productivity, determined using the lightand dark bottle oxygen method, were very high, comparable toor exceeding that of the most productive systems yet studied.Maximum volumetric productivity ranged from 525 to 1524 mg Cm–3 h–1, and was confined to the upper 0.5 m of thewater column. Daily areal productivity, P d,varied between 1.2 and 4.3 g C m–2 d–1, and that ofthe maximum chlorophyll-a specific photosynthetic rate,P B max, between 1.6 and 7.9 mg C (mgChl-a)–1 h–1. Primary production was limited bywater temperature and the attenuation of PAR. The highfrequency of wind-induced mixing resulted in regular mixingof the phytoplankton through the euphotic zone, and reducedthe overall importance of P max at a single layer inthe depth profile. Similarly, the regularity of mixing wasrecognized as a limitation of the incubation of bottle chainsto determine primary production levels.  相似文献   

4.
Limnological investigations in the area of Anvers Island,Antarctica   总被引:2,自引:2,他引:0  
We compared primary productivity, physical features, and chemical and biological composition of two small lakes possessing different trophic states during January, 1970 at Anvers Island, Antarctica. Both lakes, less than 500 meters apart, had partial ice cover the entire season and were underlain with a similar silica-rich granite. Striking dissolved chemical differences were Cl– (7.5 and 35.0), NH +4 –N (0.1 and 2.5), and total PO 4 –P (0.03 and 1.7 mg/l) respectively for lake nos. 1 and 2. Extractable total chlorophyll in subsurface water ranged from 15–41 mg/m2 in lake no. 1 and 35–112 mg/m3 in lake no. 2 during the three week study period. Ranges in net photosynthesis were 0.78–3.5 (Lake no. 1) and 9.0–72.0 mgC/m2/hr (Lake no. 2). Diel ranges for chlorophyll and carbon fixation also fell within these values. We hypothesize that enrichment of lake no. 2 with PO 4 –P and NH +4 –N may account for its higher trophic state.This research was supported by National Science Foundation grant GA-16768.  相似文献   

5.
Three shallow, lowland lochs (lakes) in the Tayside region of Scotland, experiencing the same climatic regime, were found to be dimictic lakes showing similar clinograde oxygen distributions in summer. Land use differences in their catchments were shown to result in estimated total nutrient surface loadings from 0.3 to 32 g m–2 a–1 phosphorus and from 4 to 240 g m–2 a–1 nitrogen. The major ions in the lochs were calcium and carbonate, but with elevated sulphate levels in all three lochs and an increase in sodium, chloride and sulphate in Forfar loch, which was affected by sewage effluent. Conductivity and total alkalinity showed marked increases with greater intensity of land use, from 64 to 439 µS cm–1 and 0.5–3 meq l–1 Maximum winter loch concentrations of soluble reactive phosphorus ranged from 60 to just under 5 000 mg m–3 and of inorganic nitrogen from 500 to 10500 mg m–3. Maximum chlorophyll a ranged from 20 to 250 mg m–3 and comparisons indicated that above winter levels of 5000 mg m–3 N and 500 mg m–3 P, the nutrient-chlorophyll relationships did not hold. Predictions of nutrient input, from land use categories and soil losses of N and P derived from other north temperate areas, were shown to be comparable with inputs calculated from loch measurements. Models predicting loch concentrations of phosphorus from inputs were comparable with measured concentrations, but predictions of chlorophyll and transparency became less accurate with higher nutrient levels. The lochs were mesotrophic (the Lowes), eutrophic (Balgavies) and hypertrophic (Forfar) under the several classification systems used. The implications of their nutrient status for lake management are discussed and the value of studying this unique lake series in a similar physical environment but with considerable chemical differences is considered.  相似文献   

6.
The S cycle in the water column of a small, soft-water lake was studied for 9 years as part of an experimental study of the effects of acid rain on lakes. The two basins of the lake were artificially separated, and one basin was experimentally acidified with sulfuric acid while the other served as a reference or control. Spatial and seasonal patterns of sulfate uptake by plankton (53–70 mmol m–2 yr–1), deposition of sulfur to sediments in settling seston (53 mmol m–2 yr–1), and sulfate diffusion (0–39 mmol m–2 yr–1) into sediments were examined. Measurements of inputs (12–108 mmol m–2 yr–1) and outputs (5.5–25 mmol m–2 yr–1) allowed construction of a mass balance that was then compared with rates of S accumulation in sediments cores (10–28 mmol m–2 yr–1) and measured fluxes of S into the sediments. Because of the low SO4 2– concentrations (µmole L–1) in the lake, annual uptake by plankton (53–70 mmol m–2 yr–1) represented a large fraction (>50%) of the SO4 2– inventory in the lake. Despite this large flux through the plankton, only small seasonal fluctuations in SO4 2– concentrations (µmole L–1) were observed; rapid mineralization of organic matter (half-life <3 months) prevented sulfate depletion in the water column. The turnover time for sulfate in the water column is only 1.4 yr; much less than the 11-yr turnover time of a conservative ion in this seepage lake. Sulfate diffusion into and reduction in the sediments (0–160 µmole m–2 d–1) caused SO4 2– depletion in the hypolimnion. Modeling of seasonal changes in lake-water SO4 2– concentrations indicated that only 30–50% of the diffusive flux of sulfate to the sediments was permanently incorporated in solid phases, and about 15% of sulfur in settling seston was buried in the sediments. The utility of sulfur mass balances for seepage lakes would be enhanced if uncertainty about the deposition velocity for both sulfate aerosols and SO2, uncertainty in calculation of a lake-wide rate of S accumulation in sediments, and uncertainty in the measured diffusive fluxes could be further constrained.  相似文献   

7.
Phytoplankton production was measured in situ in Kainji lake from December 1970 to September 1972 using the oxygen light and dark bottle technique. Seasonal variations in solar radiation, transparency, temperature, and composition of subsurface light were also measured. Oxygen production per unit area varied from 220 to 4500 mg O2 m–2 day–1, the maximum production rate from 95 to 400 mg O2 m–3 h–1. Seasonal mixing of lake water and river water of varying turbidity changed the optical properties of the lake water and consequently affected phytoplankton production. The annual flood pattern was found to be an important factor regulating phytoplankton production in the lake.  相似文献   

8.
The effect of adding UV-A radiation (320–400 nm) to photosynthetically active radiation (PAR, 400–700 nm) during growth of the photosynthetic marine microalga Dunaliella bardawil was investigated in this work in terms of cell growth and carotenoid production. Although signs of slow cell growth (slight reduction of chlorophyll and protein content) were observed after 24 h of cell exposure to UV-A (40 mol photons m–2 s–1 and 70 mol photons m–2 s–1) plus 140 mol photons m–2 s–1 PAR , 84 h exposure to these UV-A conditions slightly stimulated cell growth and increased the photosynthetic efficiency of the exposed cultures. The enhanced cell growth was coupled with an increase in total carotenoid content. Besides -carotene as the major pigment, increases in the well-known antioxidants lutein and zeaxanthin of about 3-fold and 5-fold, respectively, were determined in cultures exposed to UV-A radiation of 70 mol photons m–2 s–1for 84 h. As a consequence, far from being negative to cell growth, low and medium UV-A radiation are stress factors that could be successfully applied to long-term processes for large scale carotenoid production using D. bardawil cultures with retention of cell viability. UV-A exposure has the advantage of being a factor either easily applied or removed as required, in contrast to other nutrient stresses, which require medium replacement for their application.  相似文献   

9.
C. W. Heath 《Hydrobiologia》1988,165(1):77-87
Primary production in Watts Lake, Vestfold Hills, Antarctica (68°36S, 78°13E), was measured from March 1981 to February 1982. Phytoplankton production peaked in autumn and spring, with a September maximum (340 mgC m–2 d–1), then declined in summer and was not detectable in winter. Benthic algal production peaked in summer at 74 mgC m–2 d–1), Production strategies differed, with the more efficient phytoplankton adapted to growth at low light, while benthic production increased with increasing light in summer. Estimation of annual production was 10.1 gC m–2 and 5.5 gC m–2 for the phytoplankton and benthos respectively.  相似文献   

10.
The organic carbon cycle of a shallow, tundra lake (mean depth 1.45 m) was followed for 5 weeks of the open water period by examining CO2 fluxes through benthic respiration and anaerobic decomposition, photosynthesis of benthic and phytoplankton communities and gas exchange at the air-water interface. Total photosynthesis (as consumption of carbon dioxide) was 37.5 mmole C m–2 d–1, 83% of which was benthic and macrophytic. By direct measurement benthic respiration exceeded benthic photosynthesis by 6.6 mmole C m–2 d–1. The lake lost 1.4 × 106 moles C in two weeks after ice melted by degassing C02, and 6.8 mmole C m–2 d–1 (1.5 × 106 moles) during the remainder of the open water period; 2.2 mmole C m2 d–1 of this was release Of CO2 stored in the sediments by cryoconcentration the previous winter. Anaerobic microbial decomposition was only 4% of the benthic aerobic respiration rate of 38 mmole C m–2 d–1. An annual budget estimate for the lake indicated that 50% of the carbon was produced by the benthic community, 20% by phytoplankton, and 30% was allochthonous material. The relative contribution of allochthonous input was in accordance with measurement of the 15N of sedimented organic matter.  相似文献   

11.
The object of this work was to determine, using a full-factorial experiment, the influence of temperature, irradiance and salinity on growth and hepatotoxin production by Nodularia spumigena, isolated from Lake Alexandrina in the south-east of South Australia. Higher levels of biomass (determined as particulate organic carbon, POC), toxin production and intracellular toxin concentration per mg POC were produced under light limited conditions (30 mol m–2 s–1) and at salinities equal to or greater than those experienced in Lake Alexandrina. Both highest biomass and total toxin production rates were recorded at temperatures equal to or greater than those of the lake (20 and 30°C). The temperature at which maximum biomass and toxin production was recorded decreased from 30°C for cultures grown at 30 mol m–2 s–1 to 20°C when grown at 80 mol m–2 s–1. In contrast, intracellular toxin per mg POC was highest at the lowest growth temperature, 10°C, at both 30 and 80 mol m–2 s–1. It appears that the optimum temperature for biosynthetic pathways used in the production of toxin is lower than the optimum temperature for those pathways associated with growth. Intracellular toxin levels were higher in cells cultured at 10°C/30 mol m–2 s–1 whereas the majority of the toxin was extracellular in cells grown at 30°C/30 mol m–2 s–1. This implies that the highest concentration of toxin in lake water would occur under high temperature and high irradiance conditions. Individual environmental parameters of salinity, irradiance and temperature were all shown to influence growth and toxin production. Notwithstanding, the overall influence of these three parameters on toxin production was mediated through their effect upon growth rate.  相似文献   

12.
Summary Pseudocyphellaria dissimilis, a foliose, cyanobacterial lichen, is shown not to fit into the normal ecological concept of lichens. This species is both extremely shade-tolerant and also more intolerant to drying than aquatic lichens previously thought to be the most desiccation-sensitive of lichens. Samples of P. dissimilis from a humid rain-forest site in New Zealand were transported in a moist state to Germany. Photosynthesis response curves were generated. The effect of desiccation was measured by comparing CO2 exchange before and after a standard 20-h drying routine. Lichen thalli could be equilibrated at 15° C to relative humidities (RH) from 5% to almost 100%. Photosynthesis was saturated at a photosynthetically active radiation (PAR) level of 20 mol m-2 s-1 (350 bar CO2) and PAR compensation was a very low 1 mol m-2 s-1. Photosynthesis did not saturate until 1500 bar CO2. Net photosynthesis was relatively unaffected by temperature between 10° C and 30° C with upper compensation at over 40° C. Temporary depression of photosynthesis occurred after a drying period of 20 h with equilibration at 45–65% relative humidity (RH). Sustained damage occurred at 15–25% RH and many samples died after equilibration at 5–16% RH. Microclimate studies of the lichen habitat below the evergreen, broadleaf forest canopy revealed consistently low PAR (normally below 10–20 mol m-2 s-1) and high humidities (over 80% RH even during the day time). The species shows many features of an extremely deep shade-adapted plant including low PAR saturation and compensation, low photosynthetic and respiratory rates and low dry weight per unit area.  相似文献   

13.
This study describes the 0.1–3 m particle size fraction in a Precambrian Shield lake (37-ha Lake 382 in the Experimental Lakes Area, northwestern Ontario) receiving experimental additions of cadmium to determine fate and effects of low cadmium loading. This size fraction is important in binding cadmium in water. The study examined the feasibility of using near-infrared reflectance spectrophotometry (NIRS) for quantifying carbon, nitrogen, and phosphorus in this size fraction in 20-fold concentrated water samples from the lake and from a limnocorral experiment exploring the effect of fertilization on sedimentation of cadmium from the water column. NIRS was also used for detecting and characterizing organic matter in this size fraction associated with cadmium. Aliquots (1.5 ml) of the concentrated samples were applied to pre-ashed Whatman GF/C glass fibre filters. The filters containing 40–150 g carbon, 1–21 g nitrogen, 1–10 g phosphorus, and 0.21–2.21 ng cadmium, were scanned by NIRS, then analyzed by traditional methods for carbon, nitrogen, and phosphorus. Cadmium was determined in the concentrated samples by atomic absorption spectrophotometry. Coefficients of determination,r 2, between chemically-measured and NIRS-predicted values were 0.921 for carbon, 0.852 for nitrogen, 0.869 for phosphorus, and 0.752 for cadmium. Several lines of evidence suggested that the organic material associated with cadmium was predominantly algae <3 m. NIRS is useful for measuring organic matter in this size fraction and is potentially useful for characterizing organic matter that binds metals.  相似文献   

14.
Nitrogen fixation by periphyton and plankton was measured on the Amazon flood-plain using the acetylene reduction method calibrated with15N-N2. The average ratio (± SD) of moles C2H4 reduced per mole N2-N fixed was 3.4 ± 0.7, similar to other studies. Periphyton and plankton had high rates of light-dependent nitrogen fixation, with dark nitrogen fixation averaging 26% of the average rates in the light. The average daily (24 h) rates for periphyton nitrogen fixation in 1989 and 1990 were 1.79 and 0.51 mmol N2-N·m–2·d–1 respectively, which are comparable to summer rates in many temperate cyanobacterial assemblages. Nitrogen fixation was depressed at N03 concentrations as low as 0.5 M, and was below detection limits at concentrations of 4 M, which occurred during periods of river flooding. Planktonic nitrogen fixation rates were high (0.5–0.8 mmol N2-N·m–2·d–1) during the high-water and drainage phases of the annual hydrograph when the floodplain waters were draining towards the river (low NO3 ), but rates were undetectable (< 0.05 mmol N2-N·m–2·d–1) when there was river flooding (high NO3 ). Nitrogen fixation by periphyton and plankton in 1989–1990 accounted for approximately 8% of previously reported total annual nitrogen inputs to the floodplain at Lake Calado.  相似文献   

15.
The summer stratification phosphorus budget for eutrophic Edinboro Lake in northwestern Pennsylvania was determined. Phosphorus loading from internal sources contributed 141 kg, (79%) and 55 kg, (68%) of the mass phosphorus increase in the lake in 1981 and 1982, respectively. Calculated anaerobic sediment release rates of total phosphorus were 9.9 and 3.7 mg m–2 day–1 for these two years. The observed summer maximum chlorophyll a concentration was 1.5–3 times greater than that predicted by existing models. Year-to-year variability in the internal phosphorus load for this lake and others is discussed. Without a data base that will permit the comparison of lakes and with and without a significant supply of internal phosphorus, prediction of the relative importance of internal loading in a particular lake will be difficult.  相似文献   

16.
Light conditions in laboratory scale enclosures (LSE) of shallow, eutrophic Lake Loosdrecht (The Netherlands), including a method for simulating a natural incident light course, are described. Total PAR (400–700 nm) and spectral irradiance distribution were measured at sestonic chlorophyll a and dry weight concentrations 100 mg m–3 and 16 g m–3, respectively. Phytoplankton was dominated by Oscillatoria spp. The euphotic depth (Z eu) was 0.7–1.0 m. Shortly after filling the LSE with lake water, diffuse attenuation coefficients ranged from 14 m–1 for blue to 5 m–1 for red light. Around Z eu, attenuation in the blue region was markedly lower and irradiance reflectance (R) continued to increase; these anomalies were caused by lateral incident light from the LSE's waterbath. Spectrophotometry indicated that absorption was mainly by particles, but dissolved humic substances (gilvin) were also important. The particles were likely to be dominated by detritus absorbing more blue relative to red light. Subsurface R in lake water in the LSE had a maximum around 705 nm and low values in the blue band, but was lower than that previously reported for measurements in situ. Wash-out of detritus, presumably both dissolved and particulate fractions, by flow-through with synthetic medium, greatly affected the spectral reflectance measured outside the LSE. The maximum value of R decreased from 0.022 to 0.009, and the peak shifted to 550 nm.  相似文献   

17.
M. A. Khan 《Hydrobiologia》1986,135(3):233-242
L. Naranbagh (alt. 1587 m) is a polymictic, shallow marl lake in the flood-plain valley of Kashmir, India. Macrofloral affinities resemble Potamogeton Type of Forsberg (1965) with alkaline waters, not rich in phosphorus. CaCO3 precipitation coupled with decline in Ca2+ and alkalinity values are characteristic of the lake. Fluctuations in Mg2+, Na+, K+, and Cl were relatively conservative. The levels of PO inf4 sup3– -P and NO inf3 sup– -N indicate moderate fertility of the lake water.Persistence of a summer-autumn planktonic algal pulse is related to favourable irradiance, high water temperatures, and increased photosynthetic efficiency values. The most striking seasonality in photosynthetic rates (m–2 h–1) between winter minimum (3 mg Cassim) and summer maximum (75.4 mg Cassim) is determined by mainly climatic changes. Energy flow gave annual phytoplankton production of 51.95 × 102 KJ m–2 for the ecosystem.The nutrient levels and productivity rates suggest mesotrophic status of L. Naranbagh in classic oligoeutrophic classification of lake types.  相似文献   

18.
As a result of high nutrient loading Lake Veluwe suffered from an almost permanent bloom of the blue-green algaOscillatoria agardhii Gomont. In 1979, the phosphorus loading of the lake was reduced from approx. 3 to 1 g P.m–2.a–1. Moreover, since then the lake has been flushed during winter periods with water low in phosphorus. This measure aimed primarily at interrupting the continuous algal bloom. The results of these measures show a sharp decline of total-phosphorus values from 0.40–0.60 mg P.l–1 (before 1980) to 0.10–0.20 mg P.l–1 (after 1980). Summer values for chlorophylla dropped from 200–400 mg.m–3 to 50–150 mg.m–3.The increase in transparency of the lake water was relatively small, from summer values of 15–25 cm before the implementation of the measures to 25–45 cm afterwards. The disappointing transparency values may be explained by the decreasing chlorophylla and phosphorus content of the algae per unit biovolume. Blue-green algae are gradually loosing ground. In the summer of 1985 green algae and diatoms dominated the phytoplankton for the first time since almost 20 years. To achieve the ultimate water quality objectives (transparency values of more than 100 cm in summer), the phosphorus loading has to be reduced further.  相似文献   

19.
Hansen  Jonas  Reitzel  Kasper  Jensen  Henning S.  Andersen  Frede Ø. 《Hydrobiologia》2003,492(1-3):139-149
The effects of oxygen, aluminum, iron and nitrate additions on phosphate release from the sediment were evaluated in the softwater Lake Vedsted, Denmark, by a 34-day experiment with undisturbed sediment cores. Six treatments were applied: (1) Control - O2 (0–20% saturation), (2) O2 (100% saturation) (3) Al3+ – O2, (4) Fe3+ + O2, (5) Fe3+ – O2, and (6) NO3 – O2. Al2(SO4)3*18 H2O and FeCl3*4H2O were added in amounts that theoretically should immobilize the exchangeable P-pool in the top 5 cm of the sediment, while sodium nitrate concentrations were increased to 5 mg N l–1. The four treatments with metals or NO3 reduced the P efflux from the sediment significantly as compared to the suboxic control treatment. Mean accumulated P-release rates for suboxic treatments with Al3+, Fe3+, and NO3 were: –0.27 mmol m–2 (st. dev = 0.02 mmol m–2, N = 5), 0.58 mmol m–2 (st. dev = 0.30 mmol m–2, N = 5) and 1.40 mmol m–2 (st. dev = 0.14 mmol m–2, N = 5), respectively. The oxic treatment with Fe3+ had a P efflux of 0.36 mmol m–2 (st. dev = 0.08 mmol m–2, N = 5). The two highest P-release rates were observed in the control treatment and the treatment with O2 (14.50 mmol m–2 (st. dev = 3.90 mmol m–2, N = 5) and 2.31 mmol m–2 (st. dev = 0.80 mmol m–2, N = 5), respectively). In order to identify changes in the P and Fe binding sites in the sediment as caused by the treatments, a sequential P extraction procedure was applied on the sediment before and after the efflux experiment. Addition of O2, Fe3+ and NO3 to the sediment increased the amounts of oxidized Fe3+ and PBD. Al3+ addition resulted in a lower fraction of PBD but a correspondingly higher fraction of Al-bound P. Addition of Al3+ decreased the Fe-efflux from the suboxic sediment as well as the amount of oxidized Fe3+ in the sediment. This questions the use of Al compounds that contain sulfate because of the possible formation of FeS, which will restrict upward migration of Fe2+ and the formation of new Fe-oxides in the surface sediment. Instead, we suggest the use of AlCl3 for lake restoration purposes.  相似文献   

20.
The nitrogen cycle in lodgepole pine forests,southeastern Wyoming   总被引:7,自引:4,他引:3  
Storage and flux of nitrogen were studied in several contrasting lodgepole pine (Pinus contorta spp.latifolia) forests in southeastern Wyoming. The mineral soil contained most of the N in these ecosystems (range of 315–860 g · m–2), with aboveground detritus (37.5–48.8g · m–2) and living biomass (19.5–24.0 g · m–2) storing much smaller amounts. About 60–70% of the total N in vegetation was aboveground, and N concentrations in plant tissues were unusually low (foliage = 0.7% N), as were N input via wet precipitation (0.25 g · m–2 · yr–1), and biological fixation of atmospheric N (<0.03 g · m–2 · yr–1, except locally in some stands at low elevations where symbiotic fixation by the leguminous herbLupinus argenteus probably exceeded 0.1 g · m–2 · yr–1).Because of low concentrations in litterfall and limited opportunity for leaching, N accumulated in decaying leaves for 6–7 yr following leaf fall. This process represented an annual flux of about 0.5g · m–2 to the 01 horizon. Only 20% of this flux was provided by throughfall, with the remaining 0.4g · m–2 · yr–1 apparently added from layers below. Low mineralization and small amounts of N uptake from the 02 are likely because of minimal rooting in the forest floor (as defined herein) and negligible mineral N (< 0.05 mg · L–1) in 02 leachate. A critical transport process was solubilization of organic N, mostly fulvic acids. Most of the organic N from the forest floor was retained within the major tree rooting zone (0–40 cm), and mineralization of soil organic N provided NH4 for tree uptake. Nitrate was at trace levels in soil solutions, and a long lag in nitrification was always observed under disturbed conditions. Total root nitrogen uptake was calculated to be 1.25 gN · m–2 · yr–1 with estimated root turnover of 0.37-gN · m–2 · yr–1, and the soil horizons appeared to be nearly in balance with respect to N. The high demand for mineralized N and the precipitation of fulvic acid in the mineral soil resulted in minimal deep leaching in most stands (< 0.02 g · m–2 · yr–1). These forests provide an extreme example of nitrogen behavior in dry, infertile forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号