首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The two final steps of meta-cleavage pathway for catechol degradation involve conversion of 4-hydroxy-2-oxovalerate, via acetaldehyde, to acetyl coenzyme A. We report here the complete nucleotide sequences and overexpression of the phnIJ genes for an acetaldehyde dehydrogenase (acylating) (ADA) and a 4-hydroxy-2-oxovalerate aldolase (HOA) from the meta-pathway operon of the phenanthrene-degrading bacterium, Pseudomonas sp. strain DJ77. Additional partial sequence analysis of adjacent DNA shows the gene order within the operon to be phnHIJ, identical to the order found for the isofunctional genes in the other meta-pathway operons. The deduced amino acid sequences of the PhnI (312 amino acids) and PhnJ (343 amino acids) have identities of 51-71% with the corresponding genes of dmp, xyl, nah, bph_LB400, bph_KKS102, tod, cum, cmt, and MTCY03C7 operons. The phylogenetic analyses reveal the evolutionary relationships of HOA and ADA.  相似文献   

2.
pWW53-4 is a cointegrate between RP4 and the catabolic plasmid pWW53 from Pseudomonas putida MT53, which contains 36 kbp of pWW53 DNA inserted close to the oriV gene of RP4; it encodes the ability to grow on toluene and the xylenes, characteristic of pWW53, as well as resistance to tetracycline, kanamycin and carbenicillin, characteristic of RP4. A physical map of the 36 kbp insert of pWW53 DNA for 11 restriction enzymes is presented, showing that the relative positions of the two xyl operons are different from those on the archetypal TOL plasmid pWW0. The location of the genes for 4-oxalocrotonate decarboxylase (xylI) and 4-oxalocrotonate tautomerase (xylH) were shown by subcloning and enzyme assay to lie at the distal end of the meta pathway operon. Although 2-oxopent-4-enoate hydratase (xylJ) and 4-hydroxy-2-oxovalerate aldolase (xylK) could be detected on a large cloned HindIII fragment, they could not be accurately located on smaller subcloned DNA, but the only credible position for them is between xylF and xylI. The gene order in the meta pathway operon is therefore xylDLEGF(J,K)IH. The regulatory genes xylS and xylR were located close to and downstream of the meta pathway operon, and the restriction map of the DNA in this region, as has previously been shown for the two operons carrying the structural genes, shows similarities with the corresponding region on pWW0. Evidence is also presented for the existence of two promoters, termed P3 and P4, internal to the meta pathway operon which support low constitutive expression of the structural genes downstream in Pseudomonas hosts but not in E. coli.  相似文献   

3.
Sullivan ER  Leahy JG  Colwell RR 《Gene》1999,230(2):277-286
The genes encoding the lipase (LipA) and lipase chaperone (LipB) from Acinetobacter calcoaceticus RAG-1 were cloned and sequenced. The genes were isolated from a genomic DNA library by complementation of a lipase-deficient transposon mutant of the same strain. Transposon insertion in this mutant and three others was mapped to a single site in the chaperone gene. The deduced amino acid (aa) sequences for the lipase and its chaperone were found to encode mature proteins of 313 aa (32.5kDa) and 347 aa (38.6kDa), respectively. The lipase contained a putative leader sequence, as well as the conserved Ser, His, and Asp residues which are known to function as the catalytic triad in other lipases. A possible trans-membrane hydrophobic helix was identified in the N-terminal region of the chaperone. Phylogenetic comparisons showed that LipA, together with the lipases of A. calcoaceticus BD413, Vibrio cholerae El Tor, and Proteus vulgaris K80, were members of a previously described family of Pseudomonas and Burkholderia lipases. This new family, which we redefine as the Group I Proteobacterial lipases, was subdivided into four subfamilies on the basis of overall sequence homology and conservation of residues which are unique to the subfamilies. LipB, moreover, was found to be a member of an analogous family of lipase chaperones. We propose that the lipases produced by P. fluorescens and Serratia marcescens, which comprise a second sequence family, be referred to as the Group II Proteobacterial lipases. Evidence is provided to support the hypothesis that both the Group I and Group II families have evolved from a combination of common descent and lateral gene transfer.  相似文献   

4.
The naphthalene-degrading activity of a Pseudomonas sp. strain isolated from a creosote-contaminated soil was shown to be encoded by the IncP9 plasmid pNF142 by transfer to Pseudomonas putida KT2442. The effects of the inoculant strain KT2442 (pNF142) and of naphthalene contamination on the soil bacterial community were studied in microcosms with the following treatments: (I) soil, (II) soil with naphthalene, (III) soil with naphthalene and inoculated with KT2442 (pNF142). The inoculant became the dominant bacterial population in treatment (III) as evidenced by cultivation and denaturing gradient gel electrophoresis (DGGE) analysis. The bacterial DGGE profiles revealed drastically reduced complexity due to the numerical dominance of the inoculant. However, group-specific fingerprints (beta-proteobacteria, actinobacteria) that excluded KT2442 (pNF142) showed less severe changes in the bacterial community patterns. A major effect of naphthalene on the soil bacterial community was observed in treatment (II) after 21 days. Two dominant bands appeared whose sequences showed the highest similarity to those of Burkholderia sp. RP007 and Nocardia vinaceae based on 16S rRNA gene sequencing. These bands were less intense in treatment (III). The increased abundance of RP007-like populations due to naphthalene contamination was also confirmed by PCR amplification of the phnAc gene. The nahAc and nahH genes were detected in DNA and cDNA only in treatment III. Although the inoculant strain KT2442 (pNF142) showed good survival and expression of genes involved in naphthalene degradation, this study suggests that KT2442 (pNF142) suppressed the enrichment of indigenous naphthalene degraders.  相似文献   

5.
The meta-cleavage pathway for catechol is one of the major routes for the microbial degradation of aromatic compounds. Pseudomonas sp. strain CF600 grows efficiently on phenol, cresols, and 3,4-dimethylphenol via a plasmid-encoded multicomponent phenol hydroxylase and a subsequent meta-cleavage pathway. The genes for the entire pathway were previously found to be clustered, and the nucleotide sequences of dmpKLMNOPBC and D, which encode the first four biochemical steps of the pathway, were determined. By using a combination of deletion mapping, nucleotide sequence determinations, and polypeptide analysis, we identified the remaining six genes of the pathway. The fifteen genes, encoded in the order dmpKLMNOPQBCDEFGHI, lie in a single operon structure with intergenic spacing that varies between 0 to 70 nucleotides. Homologies found between the newly determined gene sequences and known genes are reported. Enzyme activity assays of deletion derivatives of the operon expressed in Escherichia coli were used to correlate dmpE, G, H, and I with known meta-cleavage enzymes. Although the function of the dmpQ gene product remains unknown, dmpF was found to encode acetaldehyde dehydrogenase (acylating) activity (acetaldehyde:NAD+ oxidoreductase [coenzyme A acylating]; E.C.1.2.1.10). The role of this previously unknown meta-cleavage pathway enzyme is discussed.  相似文献   

6.
7.
Genomic complexity and plasticity of Burkholderia cepacia   总被引:6,自引:1,他引:5  
Abstract Burkholderia cepacia has attracted attention because of its extraordinary degradative abilities and its potential as a pathogen for plants and for humans. This bacterium was formerly considered to belong to the genus Pseudomonas in the γ-subclass of the Proteobacteria , but recently has been assigned to the β-subclass based on rrn gene sequence analyses and other key phenotypic characteristics. The B. cepacia genome is comprised of multiple chromosomes and is rich in insertion sequences. These two features may have played a key role in the evolution of novel degradative functions and the unusual adaptability of this bacterium.  相似文献   

8.
It was the aim of this study to specifically detect the DNA sequences for the bphC gene, the meta-cleavage enzyme of the aerobic catabolic pathway for biphenyl and polychlorinated biphenyl degradation, in aquatic sediments without prior cultivation of microorganisms by using extraction of total DNA, PCR amplification of bphC sequences, and detection with specific gene probes. The direct DNA extraction protocol used was modified to enhance lysis efficiency. Crude extracts of DNA were further purified by gel filtration, which yielded DNA that could be used for the PCR. PCR primers were designed for conserved regions of the bphC gene from a sequence alignment of five known sequences. The specificity of PCR amplification was verified by using digoxigenin-labeled DNA probes which were located internal to the amplified gene sequence. The detection limit for the bphC gene of Pseudomonas paucimobilis Q1 and Pseudomonas sp. strain LB400 was 100 cells per g (wet weight) or approximately five copies of the target sequence per PCR reaction mixture. In total-DNA extracts of aerobic top layers of sediment samples obtained from three different sampling sites along the Elbe River, which has a long history of anthropogenic pollution, Pseudomonas sp. strain LB 400-like sequences for the bphC gene were detected, but P. paucimobilis Q1 sequences were not detected. No bphC sequences were detected in an unpolluted lake sediment. A restriction analysis did not reveal any heterogeneity in the PCR product, and the possibility that sequences highly related to the bphC gene (namely, nahC and todE) were present was excluded.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The nucleotide sequence of the relaxase operon and the leader operon which are part of the Tra1 region of the promiscuous plasmid RP4 was determined. These two polycistronic operons are transcribed divergently from an intergenic region of about 360 bp containing the transfer origin and six close-packed genes. A seventh gene completely overlaps another one in a different reading frame. Conjugative DNA transfer proceeds unidirectionally from oriT with the leader operon heading the DNA to be transferred. The traI gene of the relaxase operon includes within its 3' terminal region a promoter controlling the 7.2-kb polycistronic primase operon. Comparative sequence analysis of the closely related IncP plasmid R751 revealed a similarity of 74% at the nucleotide sequence level, indicating that RP4 and R751 have evolved from a common ancestor. The gene organization of relaxase- and leader operons is conserved among the two IncP plasmids. The transfer origins and the genes traJ and traK exhibit greater sequence divergence than the other genes of the corresponding operons. This is conceivable, because traJ and traK are specificity determinants, the products of which can only recognize homologous oriT sequences. Surprisingly, the organization of the IncP relaxase operons resembles that of the virD operon of Agrobacterium tumefaciens plasmid pTiA6 that mediates DNA transfer to plant cells by a process analogous to bacterial conjugation. Furthermore, the IncP TraG proteins and the product of the virD4 gene share extended amino acid sequence similarity, suggesting a functional relationship.  相似文献   

10.
Unculturable polycyclic aromatic hydrocarbon (PAH)-degrading bacteria are a significant reservoir of the microbial potential to catabolize low-molecular-weight PAHs. The population of these bacteria is larger than the population of nah-like bacteria that are the dominant organisms in culture-based studies. We used the recently described phn genes of Burkholderia sp. strain RP007, which feature only rarely in culture-based studies, as an alternative genotype for naphthalene and phenanthrene degradation and compared this genotype with the genotypically distinct but ubiquitous nah-like class in different soils. Competitive PCR quantification of phnAc and nahAc, which encode the iron sulfur protein large (alpha) subunits of PAH dioxygenases in nah-like and phn catabolic operons, revealed that the phn genotype can have a greater ecological significance than the nah-like genotype.  相似文献   

11.
Cointegrate plasmids were formed in vivo between the broad-host-range R-plasmid RP4 and two catabolic plasmids derived from Pseudomonas putida HS1. One of these was the wild-type plasmid pDK1 encoding the complete inducible toluene/xylene (TOL) catabolic pathway and one was pDKT1, a deletion derivative of pDK1 selected after growth of HS1 on benzoate and supporting growth on only toluene. The two plasmids formed, pDK2 and pDKT2 respectively, each consisted of a complete RP4 replicon in which was an insert of the parent plasmid DNA respectively 40 and 20 kbp in size. The detailed restriction maps of the two plasmids were determined and many of the catabolic genes were located by subcloning and enzyme assay of recombinant plasmids in Escherichia coli and Pseudomonas hosts. The insert in pDK2 contained both operons of the catabolic pathway, the 'upper pathway' operon (xylCAB) and the meta pathway operon (xylDLEGF(I,J,K)H), and a region identified as having the function of the regulator gene xylS. The insert in pDKT2 contained only the upper pathway operon and the regulatory region. Within each of the three coding regions there was great similarity with the same regions on TOL plasmids pWW0 and pWW53-4 apparent (a) by the same order of the genes, (b) by a similar pattern of restriction sites and (c) by hybridization studies. However, the order and orientations of the three coding regions differed from those previously described for both pWW0 and pWW53-4. The significance of these findings to the evolution of TOL plasmids is discussed.  相似文献   

12.
The accidental introduction of Caulerpa taxifolia into the Mediterranean is no longer under dispute. What has eluded researchers until now, is definitive evidence for the original, biogeographical source population. Here we present two independent lines of evidence that support an Australian origin for the Mediterranean populations of C. taxifolia. First, we reanalysed algal rDNA-internal transcribed spacer (rDNA-ITS) sequences, combining previously published sequences from different studies with 22 new sequences. The ITS sequence comparison showed that the Australian sample is the sister group of the Mediterranean-aquarium clade. Second, cloned bacterial 16S rDNA gene sequences were analysed from the associated microflora of C. taxifolia collected from Australia, Tahiti, the Philippines and the Mediterranean. Five bacterial lineages were identified, of which three were dominant. Alpha Proteobacteria were the most abundant and were found in all samples. In contrast, members of the beta Proteobacterial line and Cytophaga-Flexibacter-Bacteroides line (CFB) were mainly associated with Mediterranean and Australian samples. Frequency distributions of the five bacterial lineages were significantly different among biogeographical locations. Phylogenetic analyses of the 54 bacterial sequences derived from the four C. taxifolia individuals resulted in a well-resolved tree with high bootstrap support. The topologies of the beta Proteobacteria and CFB mirror the geographical sources of their algal hosts. Bacterial-algal associations provide an identification tool that may have wide application for the detection of marine invasions.  相似文献   

13.
H Habe  K Kasuga  H Nojiri  H Yamane    T Omori 《Applied microbiology》1996,62(12):4471-4477
We obtained the DNA fragments encoding 2-hydroxy-6-oxo-7-methylocta-2,4-dienoic acid (HOMODA) hydrolase in the cumene (isopropylbenzene) degrader Pseudomonas fluorescens strain IP01 via PCR using two synthesized oligonucleotides corresponding to the conserved regions within known meta-cleavage compound hydrolases. Following colony hybridization using the amplified DNA as a probe, a 4.5-kb HindIII fragment was isolated from P. fluorescens IP01. After determining the nucleotide sequence of this fragment, three open reading frames (ORF11 [cumH], ORF12 [cumD], and ORF13) were identified. The deduced amino acid sequence of ORF12 showed homology with meta-cleavage compound hydrolases encoded by the tod, dmp, xyl, and bph operons. Although the product of ORF12 was found to exhibit HOMODA and 2-hydroxy-6-oxohepta-2,4-dienoic acid (HOHDA) hydrolase activities, it did not exhibit 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) hydrolase activity. The deduced amino acid sequence of ORF11 showed 40.4% homology with the sequence of todX in Pseudomonas putida F1 (Y. Wang, M. Ralings, D. T. Gibson, D. Labbé, H. Bergeron, R. Brousseau, and P. C. K. Lau, Mol. Gen. Genet. 246:570-579, 1995). The nucleotide sequence of ORF13 and its flanking region showed strong homology (91.0%) with IS52 from Pseudomonas savastanoi (Y. Yamada, P.-D. Lee, and T. Kosuge, Proc. Natl. Acad. Sci. USA 83:8263-8267, 1982). By characterization of cumH and cumD, the entire cum gene cluster from the cumene-degrader P. fluorescens IP01 (cumA1A2A3A4BCEGFHD) has been identified.  相似文献   

14.
bph operons coding for biphenyl-polychlorinated biphenyl degradation in Pseudomonas pseudoalcaligenes KF707 and Pseudomonas putida KF715 and tod operons coding for toluene-benzene metabolism in P. putida F1 are very similar in gene organization as well as size and homology of the corresponding enzymes (G. J. Zylstra and D. T. Gibson, J. Biol. Chem. 264:14940-14946, 1989; K. Taira, J. Hirose, S. Hayashida, and K. Furukawa, J. Biol. Chem. 267:4844-4853, 1992), despite their discrete substrate ranges for metabolism. The gene components responsible for substrate specificity between the bph and tod operons were investigated. The large subunit of the terminal dioxygenase (encoded by bphA1 and todC1) and the ring meta-cleavage compound hydrolase (bphD and todF) were critical for their discrete metabolic specificities, as shown by the following results. (i) Introduction of todC1C2 (coding for the large and small subunits of the terminal dioxygenase in toluene metabolism) or even only todC1 into biphenyl-utilizing P. pseudoalcaligenes KF707 and P. putida KF715 allowed them to grow on toluene-benzene by coupling with the lower benzoate meta-cleavage pathway. Introduction of the bphD gene (coding for 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase) into toluene-utilizing P. putida F1 permitted growth on biphenyl. (ii) With various bph and tod mutant strains, it was shown that enzyme components of ferredoxin (encoded by bphA3 and todB), ferredoxin reductase (bphA4 and todA), and dihydrodiol dehydrogenase (bphB and todD) were complementary with one another. (iii) Escherichia coli cells carrying a hybrid gene cluster of todClbphA2A3A4BC (constructed by replacing bphA1 with todC1) converted toluene to a ring meta-cleavage 2-hydroxy-6-oxo-hepta-2,4-dienoic acid, indicating that TodC1 formed a functional multicomponent dioxygenase associated with BphA2 (a small subunit of the terminal dioxygenase in biphenyl metabolism), BphA3, and BphA4.  相似文献   

15.
16.
Nineteen polycyclic aromatic hydrocarbon (PAH)-degrading bacteria were isolated from environmental samples in Kuwait, Indonesia, Thailand, and Japan by enrichment with either naphthalene or phenanthrene as a sole carbon source. Sequence analyses of the 16-S rRNA gene indicated that at least seven genera (Ralstonia, Sphingomonas, Burkholderia, Pseudomonas, Comamonas, Flavobacterium, and Bacillus) were present in this collection. Determination of the ability of the isolates to use PAH and its presumed catabolic intermediates suggests that the isolates showed multiple phenotypes in terms of utilization and degradation pathways. The large subunit of the terminal oxygenase gene (phnAc) from Burkholderia sp. strain RP007 hybridized to 32% (6/19) of the isolates, whilst gene probing using the large subunit of terminal oxygenase gene (pahAc) from Pseudomonas putida strain OUS82 revealed no pahAc-like genes amongst the isolates. Using three degenerated primer sets (pPAH-F/NR700, AJ025/26, and RieskeF/R), targeting a conserved region with the genes encoding the large subunit of terminal oxygenase successfully amplified material from 6 additional PAH-degrading isolates. Sequence analyses showed that the large subunit of terminal oxygenase in 4 isolates was highly homologous to the large subunit of naphthalene dioxygenase gene from Ralstonia sp. strain U2. However, we could not obtain any information on the oxygenase system involved in the naphthalene and/or phenathrene degradation by 7 other strains. These results suggest that PAH-degrading bacteria are diverse, and that there are still many unidentified PAH-degrading bacteria.  相似文献   

17.
18.
Diversity of the oil-degrading microbial strains isolated from the water and sediments of the Gulf of Finland (Baltic Sea) in winter and in summer was studied. Substrate specificity of the isolates for aliphatic and aromatic hydrocarbons was studied. The isolates belonged to 32 genera of the types Proteobacteria (alpha-, beta-, and gammaproteobacteria), Actinobacteria,Firmicutes, and Bacteroidetes. Seasonal variations of the oil-degrading microbial communities was revealed. The presence of the known genes responsible for the degradation of oil aliphatic and aromatic hydrocarbons was determined. The alkB sequence of the alkane hydroxylase gene was found in ~16% of the studied strains. The sequence of the phnAc phenanthrene 3,4- dioxygenase was found in Sphingobacterium sp. and Arthrobacter sp. isolates retrieved in winter and summer. In five Pseudomonas sp. strains from winter samples, the classical operons of naphthalene degradation (nah) were localized in catabolic plasmids, of which three belonged to IncР-9, one, to IncР-7, and two to an unidentified incompatibility group. Burkholderia and Delftia strains contained the operons for naphthalene degradation via salicylate and gentisate (nag). The presence of nag genes has not been previously reported for Delftia spp. strains. The sequences of the nagG salicylate 5-hydroxylase gene were also found in Achromobacter, Sphingobacterium, and Stenotrophomonas strains.  相似文献   

19.
Amplification of the gene encoding 23S rRNA of Plesiomonas shigelloides by polymerase chain reaction (PCR), with primers complementary to conserved regions of 16S and the 3' end of 23S rRNA genes, resulted in a DNA fragment of approximately 3 kb. This fragment was cloned in Escherichia coli and its nucleotide sequence determined. The region encoding 23S rRNA shows high homology with the published sequences of 23S rRNA from other members of the gamma division of Proteobacteria. The sequence of the intergenic spacer region, between the 16S and 23S rRNA genes, was determined in a further two clones. In one the sequence of a single tRNA(Glu) was found which was absent from the other two. This variation in sequence suggests that the different clones may be derived from different ribosomal RNA operons.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号