首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Amalgam (Ama) is a secreted neuronal adhesion protein that contains three tandem immunoglobulin domains. It has both homophilic and heterophilic cell adhesion properties, and is required for axon guidance and fasciculation during early stages of Drosophila development. Here, we report its biophysical characterization and use small-angle x-ray scattering to determine its low-resolution structure in solution. The biophysical studies revealed that Ama forms dimers in solution, and that its secondary and tertiary structures are typical for the immunoglobulin superfamily. Ab initio and rigid-body modeling by small-angle x-ray scattering revealed a distinct V-shaped dimer in which the two monomer chains are aligned parallel to each other, with the dimerization interface being formed by domain 1. These data provide a structural basis for the dual adhesion characteristics of Ama. Thus, the dimeric structure explains its homophilic adhesion properties. Its V shape suggests a mechanism for its interaction with its receptor, the single-pass transmembrane adhesion protein neurotactin, in which each “arm” of Ama binds to the extracellular domain of neurotactin, thus promoting its clustering on the outer face of the plasma membrane.  相似文献   

2.
Cynthia A. Heil   《Harmful algae》2005,4(3):603-618
Blooms of the dinoflagellate Prorocentrum minimum often occur in coastal regions characterized by variable salinity and elevated concentrations of terrestrially derived dissolved organic carbon (DOC). Humic, fulvic and hydrophilic acid fractions of DOC were isolated from runoff entering lower Narragansett Bay immediately after a rainfall event and the influence of these fractions upon P. minimum growth, cell yield, photosynthesis and respiration was examined. All organic fractions stimulated growth rates and cell yields compared with controls (no organic additions), but the extent of stimulation varied with the fraction and its molecular weight. Greatest stimulations were observed with humic and fulvic acids additions; cell yields were more than 2.5 and 3.5 times higher than with hydrophilic acid additions while growth rates were 21 and 44% higher, respectively. Responses to additions of different molecular weight fractions of each DOC fraction suggest that growth rate effects were attributable to specific molecular weight fractions: the >10,000 fraction of humic acids, both the >10,000 and <500 fractions of fulvic acids and the <10,000 fraction of hydrophilic acids. The form and concentration of nitrogen (as NO3 or NH4+) present also influenced P. minimum response to DOC; 10–20 μg ml−1 additions of fulvic acid had no effect upon growth rates in the presence of NH4+ but significantly increased growth rates in the presence of NO3, a relationship probably related to fulvic acid effects upon trace metal bioavailability and subsequent regulation of the biosynthesis of enzymes required for NO3 assimilation. The influence of DOC additions on P. minimum respiration and production rates also varied with the organic fraction and its concentration. Production rates ranged from 1.1 to 3.4 pg O2 cell−1 h−1, with highest rates observed upon exposure to fulvic and hydrophilic acid concentrations of >10 μm ml−1. Low concentrations (5–10 μg ml−1) of humic acid had no statistically significant effect upon production, but exposure to concentrations >25 μg ml−1 resulted in a 30% decrease in O2 evolution, probably due to light attenuation by the highly colored humic acid fraction. Respiration rates ranged from 1.2 to 2.7 pg O2 cell−1 h−1 and were elevated upon exposure to both fulvic and hydrophilic acids, but not to humic acid. These results demonstrate that terrestrially derived DOC fractions play an active role in stimulation of P. minimum growth via direct effects upon growth, yield and photosynthesis as well as via indirect influences such as interactions with nitrogen and effects upon light attenuation.  相似文献   

3.
We report the production of two types of siderophores namely catecholate and hydroxamate in modified succinic acid medium (SM) from Alcaligenes faecalis. Two fractions of siderophores were purified on amberlite XAD, major fraction was hydroxamate type having a λmax at 224 nm and minor fraction appeared as catecholate with a λmax of 264 nm. The recovery yield obtained from major and minor fractions was 297 and 50 mg ml−1 respectively. The IEF pattern of XAD-4 purified siderophore suggested the pI value of 6.5. Cross feeding studies revealed that A. faecalis accepts heterologous as well as self (hydroxamate) siderophore in both free and iron complexed forms however; the rate of siderophore uptake was more in case of siderophores complexed to iron. Siderophore iron uptake studies indicated the differences between hydroxamate siderophore of A. faecalis and Alc E, a siderophore of Alcaligenes eutrophus.  相似文献   

4.
The batch fermentation of Rhodotorula acheniorum MC on a culture medium containing 5% sucrose, mineral salts and yeast extract at 26 °C for 96 h, with aeration at 0.75 v/v/m and agitation at 500 rev min −1 resulted in the synthesis of an exopolysaccharide (6.2 g l −1) which formed two fractions upon precipitation. The fractions were purified to a carbohydrate content of 98.2% for fraction I and 87.3% for fraction II. Mannose was the main monosaccharide component in a 92.8% concentration in fraction I and a 90.6% concentration in Fraction II. The exopolysaccharide was thus a mannan. The gel chromatograms confirmed the chemical composition of both fractions. The molecular weight of mannan I was 310 kD, whereas that of mannan II was 249 kD. The mannan I intrinsic viscosity [η]=6.23 dl g−1 was higher than that of mannan II [η]=2.73 dl g−1. The water-binding capacity of the mannan samples was established within the 1.2–3.5 g g−1 range. The multiplicative model [η]=387.22. Dr−0.1913. T−1.095. C1.814 describing the effect of the velocity gradient Dr, the exomannan concentration C and the temperature T on the dynamic viscosity values η of polymer solutions was obtained.  相似文献   

5.
The high level expression and purification of rat monoamine oxidase B (rMAOB) in the methylotrophic yeast Pichia pastoris is reported. Nearly 100 mg of purified rMAOB is obtained from 130 g (wet weight) of cells (0.5 L of culture). The MALDI-TOF mass spectrum of the purified protein shows a single species with a molecular mass of 59.228 ± 0.064 kDa, which agrees with the calculated molecular weight of 59.172 kDa for the rMAOB protein sequence assuming one mole of covalent FAD per mole of the enzyme. Consistent with the MALDI-MS data, purified rMAOB shows a single band near 60 kDa in Coomassie-stained SDS–PAGE gel as well as on Western blot analyses performed using antisera raised against human MAOA and BSA-conjugated FAD. A partial amino acid sequence of the purified protein is confirmed to be that of the wild type rMAOB by in-gel trypsin digestion and MALDI-TOF-MS analyses of the liberated peptide fragments. Steady state kinetic data show that purified rMAOB exhibits a Km(amine) of 176 ± 15 μM and a kcat of 497 ± 83 min−1 for benzylamine oxidation, and a Km(O2) of 170 ± 10 μM. Kinetic parameters obtained for purified rMAOB are compared with those reported earlier for recombinant human liver MAOB expressed in P. pastoris.  相似文献   

6.
A membrane-anchored cytochrome c-550, which is highly expressed in obligately alkaliphilic Bacillus clarkii K24-1U, was purified and characterized. The protein contained a conspicuous sequence of Gly22-Asn34, in comparison with the other Bacillus small cytochromes c. Analytical data indicated that the original and lipase-treated intermediate forms of cytochrome c-550 bind to fatty acids of C15, C16 and C17 chain lengths and C15 chain length, respectively, and it was considered that these fatty acids are bound to glycerol–Cys18. Since there was a possibility that the presence of a diacylglycerol anchor contributed to the formation of dimeric states of this protein (20 and 17 kDa in SDS-PAGE), a C18M (Cys18 → Met)-cytochrome c-550 was constructed. The molecular mass of the C18M-cytochrome c-550 was determined as 15 and 10 kDa in SDS-PAGE and 23 kDa in blue native PAGE. The C18M-cytochrome c-550 bound with or without Triton X-100 formed a tetramer as the original cytochrome c-550 bound with Triton X-100, as determined by gel filtration. The midpoint redox potential of cytochrome c-550 as determined by redox titration was +83 mV, while that determined by cyclic voltammetric measurement was +7 mV. The above results indicate that cytochrome c-550 is a novel cytochrome c.  相似文献   

7.
Plants are known to produce a plethora of secondary metabolites which are recognized as a useful source of new drugs or drug leads. Extracts and fractions of Schinus terebinthifolius Raddi (Anacardiaceae), Piper regnellii C.D.C. (Piperaceae), Rumex acetosa L. (Polygonaceae), and Punica granatum L. (Punicaceae) were assessed for their antifungal activity against eight clinical isolates of C. albicans. They were also evaluated for their effect on the adhesion of these C. albicans isolates to buccal epithelial cells (BECs). The ethyl acetate fraction from the leaves of S. terebinthifolius showed promising activity, inhibiting the growth of three C. albicans isolates at 7.8 μg ml−1 and significantly inhibiting their adhesion to BEC at 15 μg ml−1 . In addition, this fraction did not show cytotoxic activity against murine macrophages. The results show the potential of the plant extracts studied as a source of new antifungal compounds. Further studies are necessary for isolation and characterization of the active compounds of these plants.  相似文献   

8.
Kim CS  Ji ES  Oh DK 《Biotechnology letters》2003,25(20):1769-1774
Kluyveromyces lactis -galactosidase gene, LAC4, was expressed in Escherichia coli as a soluble His-tagged recombinant enzyme under the optimized culture conditions. The expressed protein was multimeric with a subunit molecular mass of 118 kDa. The dimeric form of the -galactosidase was the major fraction but had a lower activity than those of the multimeric forms. The purified enzyme required Mn2+ for activity and was inactivated irreversibly by imidazole above 50 mM. The activity was optimal at 37 and 40 °C for o-nitrophenyl--d-galactopyranoside (oNPG) and lactose, respectively. The optimum pH value is 7. The K m and V max values of the purified enzyme for oNPG were 1.5 mM and 560 mol min–1 mg–1, and for lactose 20 mM and 570 mol min–1 mg–1, respectively.  相似文献   

9.
Streptococcus mutans is the etiologic agent of dental caries and is a causative agent of infective endocarditis. While the mechanisms by which S. mutans cells colonize heart tissue is not clear, it is thought that bacterial binding to extracellular matrix and blood conponents is crucial in the development of endocarditis. Previously, we have demonstrated that S. mutans cells have the capacity to bind and activate plasminogen to plasmin. Here we report the first cloning and characterization of an α-enolase of S. mutans that binds plasminogen. The functional identity of the purified recombinant α-enolase protein was confirmed by its ability to catalyze the conversion of 2-phosphoglycerate to phosphoenolpyruvate. The protein exhibited a Km of 9.5 mM and a Vmax of 31.0 mM/min/mg. The α-enolase protein was localized in the cytoplasmic, cell wall and extracellular fractions of S. mutans. Binding studies using an immunoblot analysis revealed that human plasminogen binds to the enolase enzyme of S. mutans. These findings identify S. mutans α-enolase as a binding molecule used by this oral pathogen to interact with the blood component, plasminogen. Further studies of this interaction may be critical to understand the pathogenesis of endocarditis caused by S. mutans.  相似文献   

10.
Aeration and agitation are important variables to ensure effective oxygen transfer rate during aerobic bioprocesses; therefore, the knowledge of the volumetric mass transfer coefficient (kLa) is required. In view of selecting the optimum oxygen requirements for extractive fermentation in aqueous two-phase system (ATPS), the kLa values in a typical ATPS medium were compared in this work with those in distilled water and in a simple fermentation medium, in the absence of biomass. Aeration and agitation were selected as the independent variables using a 22 full factorial design. Both variables showed statistically significant effects on kLa, and the highest values of this parameter in both media for simple fermentation (241 s−1) and extractive fermentation with ATPS (70.3 s−1) were observed at the highest levels of aeration (5 vvm) and agitation (1200 rpm). The kLa values were then used to establish mathematical correlations of this response as a function of the process variables. The exponents of the power number (N3D2) and superficial gas velocity (Vs) determined in distilled water (α = 0.39 and β = 0.47, respectively) were in reasonable agreement with the ones reported in the literature for several aqueous systems and close to those determined for a simple fermentation medium (α = 0.38 and β = 0.41). On the other hand, as expected by the increased viscosity in the presence of polyethylene glycol, their values were remarkably higher in a typical medium for extractive fermentation (α = 0.50 and β = 1.0). A reasonable agreement was found between the experimental data of kLa for the three selected systems and the values predicted by the theoretical models, under a wide range of operational conditions.  相似文献   

11.
The NAD+ dependent cytosolic Glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) from arms of Octopus vulgaris, Cuvier, 1787, (Octopoda, Cephalopoda) was purified to homogeneity and its kinetic properties investigated. The purification method consisted of ammonium sulfate fractionation followed by Blue Sepharose CL-6B chromatography resulting in a 26-fold increase in specific activity and a final yield of approximately 16%. The apparent molecular weight of the purified native enzyme was 153 kDa. The protein is an homotetramer, composed of identical subunits with an apparent molecular weight of approximately 36 kDa. The Michaelis constants Km for both NAD+ and d-G3P were 66 μM and 320 μM, respectively. The maximal velocity Vmax of the purified enzyme was estimated to be 21.8 U/mg. Only one GAPDH isoform (pI 6.6) was obtained by isoelectrofocusing in polyacrylamide slab gels holding ampholyte generated pH gradients. Under the conditions of assay, the optimum activity occurs at pH 7.0 and at temperature of 35°C. Polyclonal antibodies raised in rabbits against the purified GAPDH immunostained a single 36 kDa GAPDH band on crude extract protein preparations blotted onto nitrocellulose.  相似文献   

12.
Li M  Wu G  Liu C  Chen Y  Qiu L  Pang Y 《Molecular biology reports》2009,36(4):785-790
As an insect pathogen, Photorhabdus luminescens possesses an arsenal of toxins. Here we cloned and expressed a probable toxin from P. luminescens subsp. akhurstii YNd185, designated as Photorhabdus insecticidal toxin (Pit). The pit gene shares 94% nucleotide and 98% predicted amino acid sequence identity with plu1537, a predicted ORF from P. luminescens subsp. laumondii TT01 and 30% predicted amino acid sequence similarity to a fragment of a 13.6 kDa insecticidal crystal protein gene of Bacillus thuringiensis (Bt). The pit was expressed as a GST-Pit fusion protein in E. coli, most of which was insoluble and sequestered into inclusion bodies. The inclusion bodies were harvested and dissolved. The resultant protein was purified and the Pit was cleaved from the fusion protein by thrombin and purified from GST then used for bioassay. Pit killed Galleria mellonella (LD50, 30 ng/larva) and Spodoptera litura (LD50, 191 ng/larva) via hemocoel injection. Relative to a control that lacked toxin, Pit did not significantly increase mortality of S. litura and Helicoverpa armigera when introduced orally, but the treatment did inhibit growth of the insects. The present study demonstrated that Pit possessed insecticidal activity.  相似文献   

13.
In this work, two biosurfactant-producing strains, Bacillus subtilis and Bacillus licheniformis, have been characterized. Both strains were able to grow at high salinity conditions and produce biosurfactants up to 10% NaCl. Both extracted-enriched biosurfactants showed good surface tension reduction of water, from 72 to 26–30 mN/m, low critical micelle concentration, and high resistance to pH and salinity. The potential of the two lipopeptide biosurfactants at inhibiting biofilm adhesion of pathogenic bacteria was demonstrated by using the MBEC device. The two biosurfactants showed interesting specific anti-adhesion activity being able to inhibit selectively biofilm formation of two pathogenic strains. In particular, Escherichia coli CFT073 and Staphylococcus aureus ATCC 29213 biofilm formation was decreased of 97% and 90%, respectively. The V9T14 biosurfactant active on the Gram-negative strain was ineffective against the Gram-positive and the opposite for the V19T21. This activity was observed either by coating the polystyrene surface or by adding the biosurfactant to the inoculum. Two fractions from each purified biosurfactant, obtained by flash chromatography, fractions (I) and (II), showed that fraction (II), belonging to fengycin-like family, was responsible for the anti-adhesion activity against biofilm of both strains.  相似文献   

14.
Cytochrome c550 is an extrinsic component in the luminal side of photosystem II (PSII) in cyanobacteria, as well as in eukaryotic algae from the red photosynthetic lineage including, among others, diatoms. We have established that cytochrome c550 from the diatom Phaeodactylum tricornutum can be obtained as a complete protein from the membrane fraction of the alga, although a C‐terminal truncated form is purified from the soluble fractions of this diatom as well as from other eukaryotic algae. Eukaryotic cytochromes c550 show distinctive electrostatic features as compared with cyanobacterial cytochrome c550. In addition, co‐immunoseparation and mass spectrometry experiments, as well as immunoelectron microscopy analyses, indicate that although cytochrome c550 from P. tricornutum is mainly located in the thylakoid domain of the chloroplast – where it interacts with PSII – , it can also be found in the chloroplast pyrenoid, related with proteins linked to the CO2 concentrating mechanism and assimilation. These results thus suggest new alternative functions of this heme protein in eukaryotes.  相似文献   

15.
The hOCTN1 amplified from skin fibroblast RNA was cloned in pET-28a(+) or in pH6EX3 plasmid. The encoded recombinant hOCTN1 resulted in a 6-His tagged fusion protein with a 34 or 21 amino acid extra N-terminal sequence in the pET-28a(+)-hOCTN1 or in the pH6EX3-hOCTN1 constructs, respectively. Both constructs were used to express the hOCTN1 in Escherichia coli Rosetta(DE3)pLysS. The best over-expression was obtained with the pH6EX3-hOCTN1 after 6 h of induction with IPTG at 28 °C. The expressed protein with an apparent molecular mass of 54 kDa, was collected in the insoluble fraction of the cell lysate. Further improvement was obtained using the E. coli RosettaGami2(DE3)pLysS strain to express the protein encoded by pH6EX3-hOCTN1. After 6 h of induction with IPTG at 28 °C, hOCTN1 accounted for 30% of the total protein in the insoluble pellet. This protein fraction was washed with Triton X-100 and deoxycholate, solubilized with a buffer containing 0.8% Sarkosyl, 3 M urea and applied to a Ni2+-chelating chromatography column. The homogeneously purified hOCTN1 was eluted with a buffer containing 50 mM imidazole, 0.1% Triton X-100 and 50 mM 2-mercaptoethanol. A yield of about 3 mg purified protein per liter of cell culture was obtained.  相似文献   

16.
A new deoC gene encoding deoxyribose 5-phosphate aldolase (DERA) was identified in Yersinia sp. EA015 isolated from soil. The DERA gene had an open reading frame (ORF) of 672 base pairs encoding 223 amino acids to yield a protein of molecular mass 24.8 kDa. The amino acid sequence was 94% identical to that of DERA from Yersinia intermedia ATCC 29909. DERA was over-expressed in Escherichia coli and purified using Ni–NTA affinity chromatography. The specific activity was 137 μmol/min/mg. The Michaelis constant (km value) of DERA was 9.1 mM. DERA was optimally active at pH 6.0 and 50 °C. DERA was tolerant to a high concentration (300 mM) of acetaldehyde.  相似文献   

17.
A novel short-chain dehydrogenases/reductases superfamily (SDRs) reductase (PsCR) from Pichia stipitis that produced ethyl (S)-4-chloro-3-hydroxybutanoate with greater than 99% enantiomeric excess, was purified to homogeneity using fractional ammonium sulfate precipitation followed by DEAE-Sepharose chromatography. The enzyme purified from recombinant Escherichia coli had a molecular mass of about 35 kDa on SDS–PAGE and only required NADPH as an electron donor. The Km value of PsCR for ethyl 4-chloro-3-oxobutanoate was 4.9 mg/mL and the corresponding Vmax was 337 μmol/mg protein/min. The catalytic efficiency value was the highest ever reported for reductases from yeasts. Moreover, PsCR exhibited a medium-range substrate spectrum toward various keto and aldehyde compounds, i.e., ethyl-3-oxobutanoate with a chlorine substitution at the 2 or 4-position, or α,β-diketones. In addition, the activity of the enzyme was strongly inhibited by SDS and β-mercaptoethanol, but not by ethylene diamine tetra acetic acid.  相似文献   

18.
This study evaluated the antioxidant activities in the leaves and stem bark fractions of Scutia buxifolia. Cerebral lipid peroxidation (TBARS) was induced by Fe(II) and radical-scavenging activity was determined by DPPH method. Folin–Ciocalteu was used to determine phenolic contents. Quercetin, quercitrin, isoquercitrin and rutin were isolated from leaf ethyl acetate fraction and their levels were measured by high performance liquid chromatography.-photodiode array detector.IC50 (DPPH) varied from 4.35 ± 1.30 to 29.55 ± 0.54 μg/mL for stem bark and from 6.50 ± 0.40 to 30.54 ± 1.14 in the leaves. Ethyl acetate and butanolic fractions caused a sharp fall in TBARS production with IC50 from 2.93 ± 2.17 to 40.46 ± 2.51 μg/mL for the leaves and 0.66 ± 0.17 to 27.3 ± 1.23 for the stem bark. Results obtained indicated that S. buxifolia has a great potential to prevent disease caused by the overproduction of free radicals and also it might be used as a potential source of natural antioxidant agents.  相似文献   

19.
During their rapid maturation period, seeds of Cuphea wrightii A. Gray mainly accumulate medium-chain fatty acids (C8 to C14) in their storage lipids. The rate of lipid deposition (40–50 mg·d–1·(g fresh weight)–1) is fourfold higher than in seeds of Cuphea racemosa (L. f.) Spreng, which accumulate long-chain fatty acids (C16 to C18). Measurements of the key enzymes of fatty-acid synthesis in cell-free extracts of seeds of different maturities from Cuphea wrightii show that malonyl-CoA synthesis may be a triggering factor for the observed high capacity for fatty-acid synthesis. Experiments on the incorporation of [1-14C]acetate into fatty acids by purified plastid preparations from embryos of Cuphea wrightii have demonstrated that the biosynthesis of medium-chain fatty acids (C8 to C14) is localized in the plastid. Thus, in the presence of cofactors for lipid synthesis (ATP, NADPH, NADH, acyl carrier protein, and sn-glycerol-3-phosphate), purified plastid fractions predominantly synthesized free fatty acids, 30% of which were of medium chain length. Transesterification of the freshly synthesized fatty acids to coenzyme A and recombination with the microsomal fraction of the embryo homogenate induced triacylglycerol synthesis. It also stimulated fatty-acid synthesis by a factor 2–3 and increased the relative amount of medium-chain fatty acids bound to triacylglycerols, which corresponded to about 60–80% in this lipid fraction.Abbreviations ACP acyl carrier protein - FW fresh weight This work was supported by the Bundesminister für Forschung und Technologie. The authors thank S. Borchert for her suggestions for plastid preparation.  相似文献   

20.
We have investigated the immunoglobulin molecule and the genes encoding it in teleosts living in the Antarctic seas at the constant temperature of −1.86 °C. The majority of Antarctic teleosts belong to the suborder Notothenioidei (Perciformes), which includes only a few non-Antarctic species. Twenty-one Antarctic and two non-Antarctic Notothenioid species were included in our studies. We sequenced immunoglobulin light chains in two species and μ heavy chains, partially or totally, in twenty species. In the case of heavy chain, genomic DNA and the cDNA encoding the secreted and the membrane form were analyzed. From one species, Trematomus bernacchii, a spleen cDNA library was constructed to evaluate the diversity of VH gene segments. T. bernacchii IgM, purified from the serum and bile, was characterized. Homology Modelling and Molecular Dynamics were used to determine the molecular structure of T. bernacchii and Chionodraco hamatus immunoglobulin domains. This paper sums up the previous results and broadens them with the addition of unpublished data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号