首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Physiological processes in the cochlea associated with sound transduction and maintenance of the unique electrochemical environment are metabolically demanding. Creatine maintains ATP homeostasis by providing high-energy phosphates for ATP regeneration which is catalyzed by creatine kinase (CK). Cellular uptake of creatine requires a specific high affinity sodium- and chloride-dependent creatine transporter (CRT). This study postulates that this CRT is developmentally regulated in the rat cochlea. CRT expression was measured by quantitative real-time RT-PCR and immunohistochemistry in the postnatal (P0–P14) and adult (P22–P56) rat cochlea. The maximum CRT expression was reached at the onset of hearing (P12), and this level was maintained through to adulthood. CRT immunoreactivity was strongest in the sensory inner hair cells, supporting cells and the spiral ganglion neurons. Cochlear distribution of the CK brain isoform (CKB) was also assessed by immunohistochemistry and compared with the distribution of CRT in the developing and adult cochlea. CKB was immunolocalized in the organ of Corti supporting cells, and the lateral wall tissues involved in K+ cycling, including stria vascularis and spiral ligament fibrocytes. Similar to CRT, CKB reached peak expression after the onset of hearing. Differential spatial and temporal expression of CRT and CK in cochlear tissues during development may reflect differential requirements for creatine–phosphocreatine buffering to replenish ATP consumed during energy-dependent metabolic processes, especially around the period when the cochlea becomes responsive to airborne sound.  相似文献   

2.
Beal MF 《Amino acids》2011,40(5):1305-1313
There is a substantial body of literature, which has demonstrated that creatine has neuroprotective effects both in vitro and in vivo. Creatine can protect against excitotoxicity as well as against β-amyloid toxicity in vitro. We carried out studies examining the efficacy of creatine as a neuroprotective agent in vivo. We demonstrated that creatine can protect against excitotoxic lesions produced by N-methyl-d-aspartate. We also showed that creatine is neuroprotective against lesions produced by the toxins malonate and 3-nitropropionic acid (3-NP) which are reversible and irreversible inhibitors of succinate dehydrogenase, respectively. Creatine produced dose-dependent neuroprotective effects against MPTP toxicity reducing the loss of dopamine within the striatum and the loss of dopaminergic neurons in the substantia nigra. We carried out a number of studies of the neuroprotective effects of creatine in transgenic mouse models of neurodegenerative diseases. We demonstrated that creatine produced an extension of survival, improved motor performance, and a reduction in loss of motor neurons in a transgenic mouse model of amyotrophic lateral sclerosis (ALS). Creatine produced an extension of survival, as well as improved motor function, and a reduction in striatal atrophy in the R6/2 and the N-171-82Q transgenic mouse models of Huntington’s disease (HD), even when its administration was delayed until the onset of disease symptoms. We recently examined the neuroprotective effects of a combination of coenzyme Q10 (CoQ10) with creatine against both MPTP and 3-NP toxicity. We found that the combination of CoQ and creatine together produced additive neuroprotective effects in a chronic MPTP model, and it blocked the development of alpha-synuclein aggregates. In the 3-NP model of HD, CoQ and creatine produced additive neuroprotective effects against the size of the striatal lesions. In the R6/2 transgenic mouse model of HD, the combination of CoQ and creatine produced additive effects on improving survival. Creatine may stabilize mitochondrial creatine kinase, and prevent activation of the mitochondrial permeability transition. Creatine, however, was still neuroprotective in mice, which were deficient in mitochondrial creatine kinase. Administration of creatine increases the brain levels of creatine and phosphocreatine. Due to its neuroprotective effects, creatine is now in clinical trials for the treatment of Parkinson’s disease (PD) and HD. A phase 2 futility trial in PD showed approximately a 50% improvement in Unified Parkinson’s Disease Rating Scale at one year, and the compound was judged to be non futile. Creatine is now in a phase III clinical trial being carried out by the NET PD consortium. Creatine reduced plasma levels of 8-hydroxy-2-deoxyguanosine in HD patients phase II trial and was well-tolerated. Creatine is now being studied in a phase III clinical trial in HD, the CREST trial. Creatine, therefore, shows great promise in the treatment of a variety of neurodegenerative diseases.  相似文献   

3.

Creatine is synthesized by S-adenosylmethionine:guanidinoacetate N-methyltransferase (GAMT), and the creatine/phosphocreatine shuttle system mediated by creatine kinase (CK) is essential for storage and regeneration of high-energy phosphates in cells. Although the importance of this system in brain development is evidenced by the hereditary nature of creatine deficiency syndrome, the spatiotemporal cellular expression patterns of GAMT in developing brain remain unknown. Here we show that two waves of high GAMT expression occur in developing mouse brain. The first involves high expression in mitotic cells in the ventricular zone of the brain wall and the external granular layer of the cerebellum at the embryonic and neonatal stages. The second was initiated by striking up-regulation of GAMT in oligodendrocytes during the second and third postnatal weeks (i.e., the active myelination stage), which continued to adulthood. Distinct temporal patterns were also evident in other cell types. GAMT was highly expressed in perivascular pericytes and smooth muscle cells after birth, but not in adults. In neurons, GAMT levels were low to moderate in neuroblasts residing in the ventricular zone, increased during the second postnatal week when active dendritogenesis and synaptogenesis occur, and decreased to very low levels thereafter. Moderate levels were observed in astrocytes throughout development. The highly regulated, cell type-dependent expression of GAMT suggests that local creatine biosynthesis plays critical roles in certain phases of neural development. In accordance with this idea, we observed increased CK expression in differentiating neurons; this would increase creatine/phosphocreatine shuttle system activity, which might reflect increased energy demand.

  相似文献   

4.
Summary.  Phosphocreatine can to some extent compensate for the lack of ATP synthesis that is caused in the brain by deprivation of oxygen or glucose. Treatment of in vitro rat hippocampal slices with creatine increases the neuronal store of phosphocreatine. In this way it increases the resistance of the tissue to anoxic or ischemic damage. In in vitro brain slices pretreatment with creatine delays anoxic depolarization (AD) and prevents the irreversible loss of evoked potentials that is caused by transient anoxia, although it seems so far not to be active against milder, not AD-mediated, damage. Although creatine crosses poorly the blood-brain barrier, its administration in vivo at high doses through the intracerebroventricular or the intraperitoneal way causes an increase of cerebral phosphocreatine that has been shown to be of therapeutic value in vitro. Accordingly, preliminary data show that creatine pretreatment decreases ischemic damage in vivo. Received July 3, 2001 Accepted August 6, 2001 Published online July 31, 2002  相似文献   

5.
Creatine is a naturally occurring compound obtained in humans from endogenous production and consumption through the diet. It is used as an ergogenic aid to improve exercise performance and increase fat-free mass. Lately, creatine’s positive therapeutic benefits in various oxidative stress-associated diseases have been reported in literature and, more recently, creatine has also been shown to exert direct antioxidant effects. Oxidatively-challenged DNA was analysed to show possible protective effects of creatine. Acellular and cellular studies were carried out. Acellular assays, performed using molecular approaches, showed that creatine protects circular and linear DNA from oxidative attacks.  相似文献   

6.
The creatine/phosphocreatine system carries ATP from production to consumption sites and buffers the intracellular content of ATP at times of energy deprivation. The creatine transporter deficiency syndrome is an X-linked disease caused by a defective creatine transporter into the central nervous system. This disease is presently untreatable because creatine lacking its carrier cannot cross neither the blood–brain barrier nor the cell plasma membranes. Possible strategies to cure this condition are to couple creatine to molecules which have their own carrier, to exploit the latter to cross biological membranes or to modify the creatine molecule to make it more lipophilic, in such a way that it may more easily cross lipid-rich biological membranes. Such molecules could moreover be useful for treatment of stroke or other ischemic brain syndromes of normal (transporter working) tissue. In this paper we tested four molecules in in vitro hippocampal slices experiments to investigate whether or not they had a neuroprotective effect similar to that of creatine. On two of them we also performed biochemical measurements to investigate whether or not they were able to increase the creatine and phosphocreatine content of the hippocampal slices with and without block of the transporter. We found that these molecules increase levels of creatine after block of the transporter, and significantly increased the levels of phosphocreatine. Both significantly increased the total creatine content in both conditions of active and blocked transporter. This shows that these molecules are capable of entering cells through biological membranes without using the creatine transporter. By contrast, neither of them was able to delay synaptic block during anoxia of normal (transporter functioning) tissue. We conclude that these compounds might possibly be useful for therapy of creatine transporter deficiency, but further research is needed to understand their possible role in anoxia/ischemia of normal tissue.  相似文献   

7.
Abstract: We have investigated the relationship between energy metabolism, NMDA-receptor antagonism, and anoxic damage in vitro. Anoxic damage was assessed by measuring protein synthesis, defined as the incorporation of [14C]lysine into perchloric acid-insoluble tissue extracts. The concentrations of energy metabolites were measured by ion-exchange HPLC. Anoxia caused an inhibition of protein synthesis, a reduction in phosphocreatine and adenosine triphosphate, and extensive neuronal damage. The reduction of protein synthesis depended on the duration of anoxia and the time allowed for recovery. Preincubation with the creatine dose-dependently (0.03–3 mmol/L) increased baseline levels of phosphocreatine, reduced the anoxia-induced decline in phosphocreatine and adenosine triphosphate, prevented the impairment of protein synthesis, and reduced neuronal death. Incubation with ( R,S )-3-guanidinobutyric acid, a synthetic analogue of creatine that cannot be phosphorylated, did not prevent the anoxia-induced impairment of protein synthesis and did not enhance the levels of phosphocreatine and adenosine triphosphate. Incubation with a combination of both creatine and the noncompetitive NMDA antagonist MK-801 provided complete protection. These results indicate that energy status is a major factor controlling anoxic damage in the rat hippocampal slice.  相似文献   

8.
Creatine is a nutritional supplement with major application as ergogenic and neuroprotective substrate. Varying supplementation protocols differing in dosage and duration have been applied but systematic studies of total creatine (creatine and phosphocreatine) content in the various organs of interest are lacking. We investigated changes of total creatine concentrations in brain, muscle, heart, kidney, liver, lung and venous/portal plasma of guinea pigs, mice and rats in response to 2-8 weeks oral creatine-monohydrate supplementation (1.3-2 g/kg/d; 1.4-2.8% of dietary intake). Analysis of creatine and phosphocreatine content was performed by high performance liquid chromatography. Total creatine was determined as the sum of creatine and phosphocreatine. Presupplementation total creatine concentrations were high in brain, skeletal and heart muscle (10-22 micromol/g wet weight), and low in liver, kidney and lung (5-8 micromol/g wet weight). During creatine supplementation, the relative increase of total creatine was low (15-55% of presupplementation values) in organs with high presupplementation concentrations, and high (260-500% of presupplementation values) in organs with low presupplementation concentrations. The increase of total creatine concentrations was most pronounced after 4 weeks of supplementation. In muscle, brain, kidney and lungs, an additional increase (p<0.01) was observed between 2-4 and 2-8 weeks of supplementation. Absolute concentrations of phosphocreatine increased, but there was no increase of the relative (percentual) proportion of phosphocreatine (14-45%) during supplementation. Statistical comparison of total creatine concentrations across the species revealed no systematically differences in organ distribution and in time points of supplementation. Results suggest that in organs with low presupplementation creatine levels (liver, kidney), a major determinant of creatine uptake is an extra-intracellular concentration gradient. In organs with high presupplementation total creatine levels like brain, skeletal and heart muscle, the maximum capacity of creatine accumulation is low compared to other organs. A supplementation period of 2 to 4 weeks is necessary for significant augmentation of the creatine pool in these organs.  相似文献   

9.
In vertebrates, phosphocreatine and ATP are continuously interconverted by the reversible reaction of creatine kinase in accordance with cellular energy needs. Sarcoma tissue and its normal counterpart, creatine-rich skeletal muscle, are good source materials to study the status of creatine and creatine kinase with the progression of malignancy. We experimentally induced sarcoma in mouse leg muscle by injecting either 3-methylcholanthrene or live sarcoma 180 cells into one hind leg. Creatine, phosphocreatine and creatine kinase isoform levels decreased as malignancy progressed and reached very low levels in the final stage of sarcoma development; all these parameters remained unaltered in the unaffected contralateral leg muscle of the same animal. Creatine and creatine kinase levels were also reduced significantly in frank malignant portions of human sarcoma and gastric and colonic adenocarcinoma compared with the distal nonmalignant portions of the same samples. In mice, immunoblotting with antibodies against cytosolic muscle-type creatine kinase and sarcomeric mitochondrial creatine kinase showed that both of these isoforms decreased as malignancy progressed. Expressions of mRNA of muscle-type creatine kinase and sarcomeric mitochondrial creatine kinase were also severely downregulated. In human sarcoma these two isoforms were undetectable also. In human gastric and colonic adenocarcinoma, brain-type creatine kinase was found to be downregulated, whereas ubiquitous mitochondrial creatine kinase was upregulated. These significantly decreased levels of creatine and creatine kinase isoforms in sarcoma suggest that: (a) the genuine muscle phenotype is lost during sarcoma progression, and (b) these parameters may be used as diagnostic marker and prognostic indicator of malignancy in this tissue.  相似文献   

10.
Summary Isolated, electrically paced ventricular tissue of rainbow trout, Oncorhynchus mykiss, was examined at 20 and 10°C for the effects of different metabolic inhibitions on isometric force development and cellular content of phosphocreatine, creatine, ATP, ADP and AMP. At 20 relative to 10°C, twitch force was the same, but both twitch development and relaxation occurred over a shorter time and at a considerably higher maximal rate. Inhibition of cellular respiration caused twitch force and phosphocreatine to decrease, both about twice as fast at 20 as at 10°C. This doubling of energy degradation, i.e. in decrease of phosphocreatine, ATP, and loss of twitch force also occurred in preparations in which the energy liberation was totally blocked by iodoacetate in combination with N2 and cyanide; both anaerobic energy degradation and anaerobic energy liberation expressed as lactate production were doubled. The similar effect of temperature on degradation and liberation of energy might explain why loss of twitch force during a 1-h period of anoxia was the same at both temperatures. The latter result was also found in the myocardium of eel Anguilla anguilla. In spite of its large influence on the time-course of twitch force development, the difference in temperature had no evident effects on the relationship between twitch force and phosphocreatine.Abbreviation Crt total creatine (creatine and phosphocreatine) - EDTA ethylenediminetetra-acetate - IAA iodoacetate - PCr phosphocreatine - TPT time-to-peak force - TR 75 time for relaxation - V F maximal rate of force development - V R maximal rate of relaxation  相似文献   

11.
The metabolic burden of creatine synthesis   总被引:1,自引:0,他引:1  
Creatine synthesis is required in adult animals to replace creatine that is spontaneously converted to creatinine and excreted in the urine. Additionally, in growing animals it is necessary to provide creatine to the expanding tissue mass. Creatine synthesis requires three amino acids: glycine, methionine and arginine, and three enzymes: l-arginine:glycine amidinotransferase (AGAT), methionine adenosyltransferase (MAT) and guanidinoacetate methyltransferase (GAMT). The entire glycine molecule is consumed in creatine synthesis but only the methyl and amidino groups, respectively, from methionine and arginine. Creatinine loss averages approximately 2 g (14.6 mmol) for 70 kg males in the 20- to 39-year age group. Creatinine loss is lower in females and in older age groups because of lower muscle mass. Approximately half of this creatine lost to creatinine can be replaced, in omnivorous individuals, by dietary creatine. However, since dietary creatine is only provided in animal products, principally in meat and fish, virtually all of the creatine loss in vegetarians must be replaced via endogenous synthesis. Creatine synthesis does not appear to place a major burden on glycine metabolism in adults since this amino acid is readily synthesized. However, creatine synthesis does account for approximately 40% of all of the labile methyl groups provided by S-adenosylmethionine (SAM) and, as such, places an appreciable burden on the provision of such methyl groups, either from the diet or via de novo methylneogenesis. Creatine synthesis consumes some 20–30% of arginine’s amidino groups, whether provided in the diet or synthesized within the body. Creatine synthesis is, therefore, a quantitatively major pathway in amino acid metabolism and imposes an appreciable burden on the metabolism of methionine and of arginine.  相似文献   

12.
The creatine kinase/phosphocreatine system plays a key role in cell energy buffering and transport, particularly in cells with high or fluctuating energy requirements, like neurons, i.e. it participates in the energetic metabolism of the brain. Creatine depletion causes several nervous system diseases, alleviated by phosphagen supplementation. Often, the supplementation contains both creatine and creatine ethyl ester, known to improve the effect of creatine through an unknown mechanism. In this work we showed that purified creatine kinase is able to phosphorilate the creatine ethyl ester. The K m and V max values, as well as temperature and pH optima were determined. Conversion of the creatine ethyl ester into its phosphorylated derivative, sheds light on the role of the creatine ethyl ester as an energy source in supplementation for selected individuals.  相似文献   

13.
The objectives of this study were to determine the cause of the crystallization in a large volume creatine supplement solution made from effervescent powders containing di-creatine citrate, and to characterize these crystals using thermal analyses and x-ray diffractometry. Creatine effervescent powders were dissolved in deionized water (pH 6.2) and stored both at room temperature (RT) (25°C) and refrigerated condition (4°C) over a period of 45 days. Creatine concentration was determined using high-performance liquid chromatography (HPLC). Intrinsic dissolution and saturated solubility of creatine, creatine monohydrate, and di-creatine citrate in water were determined and compared. Crystal growth was detected only in the refrigerated samples on the seventh day of storage. Differential Scanning Calorimetry (DSC) and x-ray diffraction (XRD) studies revealed that the crystals formed were of creatine monohydrate. Ninety percent creatine degradation was observed within 45 days for RT samples. However, at refrigerated condition this degradation was 80% within the same time period. The pH of the RT samples also increased from 3.6 to 4.5 during storage. No such increase was observed in the case of refrigerated samples. The intrinsic dissolution rate constants of the compounds decreased in the following order: dicreatine citrate>creatine>creatine monohydrate. In conclusion, di-creatine citrate used in effervescent formulation dissociates to creatine in aqueous solution and eventually crystallizes out as creatine monohydrate. Significant decrease in solubility and effect of pH contribute to this crystallization process.  相似文献   

14.
The efficacy of various media regarding the extraction of free creatine and phosphocreatine of mouse skeletal muscle was evaluated. In anesthetized animals tissue was quick-frozen in situ and removed by means of a modified Rongeur forceps cooled in liquid N2. Homogenization of muscle tissue in 1 m EDTA in 50% (v/v) ethanol at −20°C, which was gradually diluted with ice-cold 0.4 perchloric acid to a final concentration of 0.3 perchloric acid in 12.5% ethanol proved to be the most suitable procedure regarding rapid handling of tissue samples, recovery of total creatine, and the ratio of phosphocreatine to total creatine. Phosphocreatine values as high as 78% of total creatine of skeletal muscle were thus obtained. Extraction of free creatine and phosphocreatine with concentrated ethanolic solutions (50–80%, v/v) was found to be incomplete apparently due to irreversible binding of creatine and phosphocreatine to protein precipitates.  相似文献   

15.
The goal of this study was to examine metabolic differences between a novel chronic myelogenous leukemic (CML) cell line, MyL, and a sub-clone, MyL-R, which displays enhanced resistance to the targeted Bcr-Abl tyrosine kinase inhibitor imatinib. 1H nuclear magnetic resonance (NMR) spectroscopy was carried out on cell extracts and conditioned media from each cell type. Both principal component analysis (PCA) and specific metabolite identification and quantification were used to examine metabolic differences between the cell types. MyL cells showed enhanced glucose removal from the media compared to MyL-R cells with significant differences in production rates of the glycolytic end-products, lactate and alanine. Interestingly, the total intracellular creatine pool (creatine + phosphocreatine) was significantly elevated in MyL-R compared to MyL cells. We further demonstrated that the MyL-R cells converted the creatine to phosphocreatine using non-invasive monitoring of perfused alginate-encapsulated MyL-R and MyL cells by in vivo 31P NMR spectroscopy and subsequent HPLC analysis of extracts. Our data demonstrated a clear difference in the metabolite profiles of drug-resistant and sensitive cells, with the biggest difference being an elevation of creatine metabolites in the imatinib-resistant MyL-R cells.  相似文献   

16.
Creatine and phosphocreatine are required to maintain ATP needed for normal retinal function and development. The aim of the present study was to determine the distribution of the creatine transporter (CRT) to gain insight to how creatine is transported into the retina. An affinity-purified antibody raised against the CRT was applied to adult vertebrate retinas and to mouse retina during development. Confocal microscopy was used to identify the localization pattern as well as co-localization patterns with a range of retinal neurochemical markers. Strong labeling of the CRT was seen in the photoreceptor inner segments in all species studied and labeling of a variety of inner neuronal cells (amacrine, bipolar, and ganglion cells), the retinal nerve fibers and sites of creatine transport into the retina (retinal pigment epithelium, inner retinal blood vessels, and perivascular astrocytes). The CRT was not expressed in Müller cells of any of the species studied. The lack of labeling of Müller cells suggests that neurons are independent of this glial cell in accumulating creatine. During mouse retinal development, expression of the CRT progressively increased throughout the retina until approximately postnatal day 10, with a subsequent decrease. Comparison of the distribution patterns of the CRT in vascular and avascular vertebrate retinas and studies of the mouse retina during development indicate that creatine and phosphocreatine are important for ATP homeostasis. photoreceptor; development; glutamine synthetase; neurochemistry  相似文献   

17.
The loss of ATP, which is needed for ionic homeostasis, is an early event in the neurotoxicity of glutamate and beta-amyloid (A(beta)). We hypothesize that cells supplemented with the precursor creatine make more phosphocreatine (PCr) and create larger energy reserves with consequent neuroprotection against stressors. In serum-free cultures, glutamate at 0.5-1 mM was toxic to embryonic hippocampal neurons. Creatine at >0.1 mM greatly reduced glutamate toxicity. Creatine (1 mM) could be added as late as 2 h after glutamate to achieve protection at 24 h. In association with neurotoxic protection by creatine during the first 4 h, PCr levels remained constant, and PCr/ATP ratios increased. Morphologically, creatine protected against glutamate-induced dendritic pruning. Toxicity in embryonic neurons exposed to A(beta) (25-35) for 48 h was partially prevented by creatine as well. During the first 6 h of treatment with A(beta) plus creatine, the molar ratio of PCr/ATP in neurons increased from 15 to 60. Neurons from adult rats were also partially protected from a 24-h exposure to A(beta) (25-35) by creatine, but protection was reduced in neurons from old animals. These results suggest that fortified energy reserves are able to protect neurons against important cytotoxic agents. The oral availability of creatine may benefit patients with neurodegenerative diseases.  相似文献   

18.
Three fish species with different strategies for anoxic survival (goldfish, tilapia, and common carp) were exposed to environmental anoxia (4, 3, and 1 h, respectively). The concentrations of high energy phosphate compounds and inorganic phosphate, besides the intracellular pH in the epaxial muscle were measured during anoxia and recovery by in vivo 31P NMR spectroscopy. The concentration of free ADP was calculated from the equilibrium constant of creatine kinase. During anoxia the patterns of phosphocreatine utilization and tissue acidification are remarkedly similar. Free ADP rises rapidly during the initial period of oxygen deficiency and reaches a plateau in goldfish and tilapia, while it keeps rising in the common carp. At elevated levels of free ADP, the creatine kinase reaction and anaerobic glycolysis are functionally coupled by H+ as a common intermediate. The coupling between both processes disappears upon reoxygenation, when mitochondrial respiration induces a rapid drop of [free ADP]. The removal of ADP shifts the creatine kinase equilibrium toward phosphocreatine synthesis despite the low pH.  相似文献   

19.
Background: There is increasing evidence that mitochondria – owning a high degree of autonomy within the cell – might represent the target organelles of the myocardial protection afforded by ischemic preconditioning. It was the aim of the study to investigate a possible subcellular correlate to ischemic preconditioning at the mitochondrial level. In addition, we tested whether this protection depends on mitochondrial ATP-dependent potassium channels (K ATP) and an might involve an attenuation of mitochondrial ATP hydrolysis during sustained anoxia.Methods and Results: Sustained anoxia (A, 14 min) and reoxygenation (R) completely inhibited state 3 and state 4 respiration of isolated ventricular mitochondria from Wistar rats. An antecedent brief anoxic incubation (4 min) followed by reoxygenation (2 min) prevented this loss of mitochondrial function. The protection afforded by anoxic preconditioning could be mimicked by the K ATP opener diazoxide (30 μmol/l) and was completely inhibited by the K ATP blocker 5-hydroxydecanoic acid (300 μmol/l). Structural mitochondrial integrity, as estimated from externalization of the mitochondrial enzymes creatine kinase and glutamateoxalacetate transaminase, remained unchanged between the groups, as did mitochondrial ATP loss during anoxia.Conclusion: For the first time, we provide direct evidence for a subcellular preconditioning-like functional mitochondrial adaptation to sustained anoxia. This effect apparently depends on opening of KATP but is independent of ATP preservation.  相似文献   

20.
During exposure to anoxia, the crucian carp brain is able to maintain normal overall protein synthesis rates. However, it is not known if there are alterations in the synthesis or expression of specific proteins. This investigation addresses this issue by comparing the normoxic and anoxic brain proteome. Nine proteins were found to be reduced by anoxia. Reductions in the glycolytic pathway proteins creatine kinase, fructose biphosphate aldolase, glyceraldehyde‐3‐phosphate dehydrogenase, triosephosphate isomerase and lactate dehydrogenase reflect the reduced production and requirement for adenosine tri‐phosphate during anoxia. In terms of neural protection, voltage‐dependent anion channel, a protein associated with neuronal apoptosis, was reduced, along with gefiltin, a protein associated with the subsequent need for neuronal repair. Additionally the expression of proteins associated with neural degeneration and impaired cognitive function also declined; dihydropyrimidinase‐like protein‐3 and vesicle amine transport protein‐1. One protein was found to be increased by anoxia; pre‐proependymin, the precursor to ependymin. Ependymin fulfils multiple roles in neural plasticity, memory formation and learning, neuron growth and regeneration, and is able to reverse the possibility of apoptosis, thus further protecting the anoxic brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号