首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rates of fluid and ion secretion by insect Malpighian tubules are controlled by peptides, including CRF-related peptides and kinins, and in some species by serotonin. It now appears to be a general rule that tubule secretion rate is controlled through the interaction of two or more haemolymph-borne factors. In this review we suggest that these interactions may be classified as synergistic, cooperative, or antagonistic. When presented together, two diuretic factors may act in synergism, so that fluid secretion is stimulated to a greater extent than the sum of their individual effects. Synergism may involve one or more second messenger systems. Alternatively, diuretic factors may act in cooperation, so that although their overall effects are additive, cation and anion transport pathways are controlled separately by distinct second messenger systems. There is also one example of antagonism between factors controlling tubule secretion and between their respective second messengers; one factor is stimulatory, the other is inhibitory. In addition to the complex control of fluid and ion transport by haemolymph-borne factors, sophisticated autonomous regulatory mechanisms have been identified in Malpighian tubules. When triggered by appropriate stimuli, these mechanisms play homeostatic roles, preserving haemolymph osmolality or ionic composition.  相似文献   

2.
Lateral cilia of the gill of Mytilus edulis are controlled by a reciprocal serotonergic-dopaminergic innervation from their ganglia. Other bivalves have been studied to lesser degrees and lateral cilia of most respond to serotonin and dopamine when applied directly to the gill indicating a possible neuro or endocrine mechanism. Lateral cilia in Crassostrea virginica are affected by serotonin and dopamine, but little work has been done regarding ganglionic control of their cilia. We examined the role of the cerebral and visceral ganglia in innervating the lateral ciliated cells of the gill epithelium of C. virginica. Ciliary beating rates were measured in preparations which had the ipsilateral cerebral or visceral ganglia attached. Superfusion of the cerebral or visceral ganglia with serotonin increased ciliary beating rates which was antagonized by pretreating with methysergide. Superfusion with dopamine decreased beating rates and was antagonized by ergonovine. This study demonstrates there is a reciprocal serotonergic-dopaminergic innervation of the lateral ciliated cells, similar to that of M. edulis, originating in the cerebral and visceral ganglia of the animal and this preparation is a useful model to study regulatory mechanisms of ciliary activity as well as the pharmacology of drugs affecting biogenic amines in nervous systems.  相似文献   

3.
Cocaine dependence is a neuropsychiatric disorder in which both environmental and genetic factors are involved. Several processes, that include reward and neuroadaptations, mediate the transition from use to dependence. In this regard, dopamine and serotonin neurotransmission systems are clearly involved in reward and other cocaine‐related effects, whereas neurotrophic factors may be responsible for neuroadaptations associated with cocaine dependence. We examined the contribution to cocaine dependence of 37 genes related to the dopaminergic and serotoninergic systems, neurotrophic factors and their receptors through a case–control association study with 319 single nucleotide polymorphisms selected according to genetic coverage criteria in 432 cocaine‐dependent patients and 482 sex‐matched unrelated controls. Single marker analyses provided evidence for association of the serotonin receptor HTR2A with cocaine dependence [rs6561333; nominal P‐value adjusted for age = 1.9e?04, odds ratio = 1.72 (1.29–2.30)]. When patients were subdivided according to the presence or absence of psychotic symptoms, we confirmed the association between cocaine dependence and HTR2A in both subgroups of patients. Our data show additional evidence for the involvement of the serotoninergic system in the genetic susceptibility to cocaine dependence.  相似文献   

4.
The amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) reverses dopamine and serotonin transporters to produce efflux of dopamine and serotonin, respectively, in regions of the brain that have been implicated in reward. However, the role of serotonin/dopamine interactions in the behavioral effects of MDMA remains unclear. We previously showed that MDMA-induced locomotion, serotonin and dopamine release are 5-HT2B receptor-dependent. The aim of the present study was to determine the contribution of serotonin and 5-HT2B receptors to the reinforcing properties of MDMA.We show here that 5-HT2B −/− mice do not exhibit behavioral sensitization or conditioned place preference following MDMA (10 mg/kg) injections. In addition, MDMA-induced reinstatement of conditioned place preference after extinction and locomotor sensitization development are each abolished by a 5-HT2B receptor antagonist (RS127445) in wild type mice. Accordingly, MDMA-induced dopamine D1 receptor-dependent phosphorylation of extracellular regulated kinase in nucleus accumbens is abolished in mice lacking functional 5-HT2B receptors. Nevertheless, high doses (30 mg/kg) of MDMA induce dopamine-dependent but serotonin and 5-HT2B receptor-independent behavioral effects.These results underpin the importance of 5-HT2B receptors in the reinforcing properties of MDMA and illustrate the importance of dose-dependent effects of MDMA on serotonin/dopamine interactions.  相似文献   

5.
Recent evidence indicates that mechanisms involved in reward and mechanisms involved in learning interact, in that reward includes learning processes and learning includes reward processes. In spite of such interactions, reward and learning represent distinct functions. In the present study, as part of an examination of the differences in learning and reward mechanisms, it was assumed that food principally affects reward mechanisms. After a brief period of fasting, we assayed the release of three neurotransmitters and their associated metabolites in eight brain areas associated with learning and memory as a response to feeding. Using microdialysis for the assay, we found changes in the hippocampus, cortex, amygdala, and the thalamic nucleus, (considered cognitive areas), in addition to those in the nucleus accumbens and ventral tegmental area (considered reward areas). Extracellular dopamine levels increased in the nucleus accumbens, ventral tegmental area, amygdala, and thalamic nucleus, while they decreased in the hippocampus and prefrontal cortex. Dopamine metabolites increased in all areas tested (except the dorsal hippocampus); changes in norepinephrine varied with decreases in the accumbens, dorsal hippocampus, amygdala, and thalamic nucleus, and increases in the prefrontal cortex; serotonin levels decreased in all the areas tested; although its metabolite 5HIAA increased in two regions (the medial temporal cortex, and thalamic nucleus). Our assays indicate that in reward activities such as feeding, in addition to areas usually associated with reward such as the mesolimbic dopamine system, other areas associated with cognition also participate. Results also indicate that several transmitter systems play a part, with several neurotransmitters and several receptors involved in the response to food in a number of brain structures, and the changes in transmitter levels may be affected by metabolism and transport in addition to changes in release in a regionally heterogeneous manner. Food reward represents a complex pattern of changes in the brain that involve cognitive processes. Although food reward elements overlap with other reward systems sharing some neurotransmitter compounds, it significantly differs indicating a specific reward to process for food consumption. Like in other rewards, both learning and cognitive areas play a significant part in food reward. Special issue dedicated to Dr. Moussa Youdim.  相似文献   

6.
7.
Workshop 3: 2     
For over 20 years, the focus of studies examining the neurochemical and behavioral effects of cocaine and other psychostimulants has been on dopamine. Many behavioral studies have shown that dopamine plays an important role in the reinforcing and behavioral effects of cocaine. Cocaine binds to the dopamine transporter and inhibits dopamine uptake. While there are some effects of cocaine on dopamine receptors, dopamine levels, and the dopamine transporter, these neurochemical studies have not been able to account fully for the altered behavioral effects of cocaine following chronic cocaine administration. Recent studies by Kantak et al. have shown that the reinforcing effects of psychostimulants depend upon activation of brain nitric oxide synthase. In addition, Rocha et al. have reported that cocaine is self‐administered in animals lack dopamine transporters. This finding suggests that other neurochemical components are necessary for the reinforcing effects (and hence the abuse) of cocaine. Since cocaine binds to dopamine, norepinephrine and serotonin transporters, it is likely that a combination of effects on these systems may be responsible for the behavioral effects of cocaine. Mu‐ and kappa‐opioids regulate dopamine and serotonin and this regulation plays a role in the effects of cocaine (Izenwasser et al.). Unterwald and colleagues have shown that there are large effects of cocaine on opioid receptors and second messenger regulation. These studies show that there are interactions between multiple systems and that these interactions are important factors in the effects of abused drugs, perhaps more important than activation of dopaminergic systems alone. These findings will be discussed in terms of the implications for the development of treatments for cocaine abuse.  相似文献   

8.
Human Y79 retinoblastoma cells are capable of synthesizing the putative retinal neurotransmitters dopamine and serotonin. Separation of the catecholamines and indolamines by high performance liquid chromatography combined with electrochemical detection showed that the cells readily convert tyrosine to 3,4-dihydroxyphenylalanine (DOPA) and, to a lesser extent, dopamine. When DOPA was added, a large quantity of dopamine was produced, as well as norepinephrine, epinephrine, and 3,4-dihydroxyphenylacetic acid. Exogenous tryptophan added to the cells was partially converted to 5-hydroxytryptophan and serotonin. A larger quantity of serotonin was produced when 5-hydroxytryptophan was added. Y79 cells have a high- and low-affinity uptake system for dopamine and serotonin. The K'm and V'max for the high-affinity uptake of dopamine and serotonin are 2.34 +/- 0.64 and 3.63 +/- 1.15 microM and 4.77 +/- 1.12 and 3.20 +/- 1.20 pmol min-1 mg protein-1, respectively. These kinetic parameters are similar to those reported for other retinal preparations where dopamine and serotonin have been suggested to function as neurotransmitters. Tyrosine and tryptophan, the physiologic precursors of dopamine and serotonin, respectively, and phenylalanine are also taken up by high- and low-affinity transport systems. The kinetic parameters for their high-affinity uptake systems are all very similar, suggesting that they may be taken up by the same transporter. These studies show that a tumor cell line derived from the human retina synthesizes dopamine and serotonin and has high-affinity uptake systems for these compounds and their precursors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Biogenic amines, such as serotonin, histamine, dopamine, and the catecholamines epinephrine and norepinephrine, regulate a multitude of cellular responses. A great deal of effort has been invested into understanding the effects of these molecules and their corresponding receptor systems on cholangiocyte secretion, apoptosis, and growth. This review summarizes the results of these efforts and highlights the importance of these regulatory molecules on the physiology and pathophysiology of cholangiocytes.  相似文献   

10.
Summary Immunoreactivity of regulatory peptides has been demonstrated in the fetal lung of Macaca mulatta by the peroxidase anti-peroxidase method. Serotonin-immunoreactive neuroepithelial bodies are distributed in the airways from the bronchi to the alveolar ducts. Many neuroepithelial bodies also show bombesin-like immunoreactivity; a very few are immunoreactive to somatostatin antiserum. Four populations of neuroepithelial bodies were identified which contain immunoreactivity for 1) serotonin alone, 2) serotonin and bombesin, 3) serotonin and somatostatin, and 4) serotonin, bombesin, and somatostatin. Since bombesin and somatostatin have been demonstrated to have opposite effects on the release of other peptide hormones, it seems likely that the presence of these same peptides in neuroepithelial bodies may have a similar regulatory role in the lung.  相似文献   

11.
E A Stein 《Peptides》1985,6(1):67-73
The neurochemical system(s) underlying brain stimulation reward (ICSS) has been investigated for many years. The catecholamine hypothesis is currently most accepted with predominant emphasis on the role of dopamine. The present report examines the role of three opioid peptides--Methionine and Leucine Enkephalin (ME and LE) and beta-Endorphin (beta-E) in this behavior. Peptide levels from pituitary, hypothalamus and whole brain were determined by independent RIAs and analyzed according to treatment: low, moderate and high ICSS responders, sham controls, animals receiving nonspecific stimulation, and naloxone--with and without ICSS. Not only did naloxone reduce ICSS from high responders by 74%, it also was able to reduce peptide levels--most notably for ME and beta E in most regions. Additionally, the effects of ICSS on endorphin levels was found to be related to the rate category of responding. Since endorphins are known to interact with dopamine systems, it is therefore considered likely that the endogenous opioid peptides play an important role in ICSS either directly or indirectly via their influence on catecholamine systems.  相似文献   

12.
The adrenocortical cells of the amphibian interrenal (adrenal) gland are controlled by multiple factors including neuropeptides and classical neurotransmitters. In particular, it has recently been shown that vasotocin (AVT), the amphibian counterpart of vasopressin, is a potent stimulator of frog corticosteroidogenesis. In the present study, we have investigated the possible interactions between AVT and other regulatory factors on frog interrenal tissue. When AVT (10−9 M) and serotonin (10−6 M) were infused together, a strict addition of the individual effects was observed. Similar results were obtained with concomitant infusion of AVT and vasoactive intestinal peptide or AVT and ACTH. In contrast, when AVT (10−9 M) and acetylcholine (5 × 10−5 M) were added together, the increase in corticosteroid secretion was less than additive. Dopamine induced a significant reduction of AVT-evoked stimulation of corticosterone production. These results indicate that regulatory peptides or classical neurotransmitters which participate in the control of adrenal steroidogenesis may interact on their target cell to modulate the activity of their congeners.  相似文献   

13.
14.
Cocaine is an inhibitor of the dopamine, norepinephrine and serotonin reuptake transporters. Because its administration would elevate signaling of all these three neurotransmitters, many studies have been aimed at attributing individual effects of cocaine to specific transmitter systems. Using mice with a cocaine‐insensitive dopamine transporter (DAT‐CI mice), we previously showed that cocaine‐induced dopamine elevations were necessary for its rewarding and stimulating effects. In this study, we observe that DAT‐CI mice exhibit cocaine‐conditioned place aversion (CPA), and that its expression depends on their genetic background. Specifically, DAT‐CI mice backcrossed to the C57Bl/6J strain background did not display a preference or an aversion to cocaine, whereas DAT‐CI mice that were on a mixed 129S1/SvImJ × C57Bl/6J (129B6) background had a robust CPA to cocaine. These results indicate that while inhibition of the DAT is necessary for cocaine reward, other cocaine targets and neurotransmitter systems may mediate the aversive properties of cocaine. Furthermore, the aversive effect of cocaine can be observed in the absence of a DAT‐mediated rewarding effect, and it is affected by genomic differences between these two mouse strains.  相似文献   

15.
社会性玩耍、配偶联系和母子联系等亲密社会互作会激活中脑-边缘-皮质多巴胺(DA)系统(mesocorticolimbic dopamine system,MCLDS),促进DA传递。阿片肽、催产素(oxytocin,OT)和加压素(vasopressin,AVP)能够促进亲密的社会互作,并通过调制DA的活动,提高社会互作的奖赏价值。社会互作和滥用药物之间相互影响,阿片肽、OT和AVP系统是两者交互作用的重要枢纽。揭示两者交互作用的神经机制,对于开展精神疾病或成瘾戒断的治疗有重要指导意义。  相似文献   

16.
Yokoi F  Dang MT  Li J  Li Y 《Journal of biochemistry》2006,140(1):141-146
Mutations of epsilon-sarcoglycan gene (SGCE) have been implicated in myoclonus-dystonia (M-D), a movement disorder. To determine the pathophysiology of M-D, we produced Sgce knockout mice and found that the knockout mice exhibited myoclonus, motor impairments, hyperactivity, anxiety, depression, significantly higher levels of striatal dopamine and its metabolites, and an inverse correlation between the dopamine and serotonin metabolites. The results suggest that the diverse symptoms associated with M-D are indeed resulted from a single SGCE gene mutation that leads to alterations of dopaminergic and serotonergic systems. Therefore, antipsychotic agents and serotonin reuptake inhibitors may offer potential benefits for M-D patients.  相似文献   

17.
The hormones insulin and leptin have been demonstrated to act in the central nervous system (CNS) as regulators of energy homeostasis at medial hypothalamic sites. In a previous review, we described new research demonstrating that, in addition to these direct homeostatic actions at the hypothalamus, CNS circuitry that subserves reward and motivation is also a direct and an indirect target for insulin and leptin action. Specifically, insulin and leptin can decrease food reward behaviors and modulate the function of neurotransmitter systems and neural circuitry that mediate food reward, i.e., midbrain dopamine and opioidergic pathways. Here we summarize new behavioral, systems, and cellular evidence in support of this hypothesis and in the context of research into the homeostatic roles of both hormones in the CNS. We discuss some current issues in the field that should provide additional insight into this hypothetical model. The understanding of neuroendocrine modulation of food reward, as well as food reward modulation by diet and obesity, may point to new directions for therapeutic approaches to overeating or eating disorders.  相似文献   

18.
Summary Serial histological sections of the interatrial septum and basal heart vessels of the weaned and juvenile white-belly opossum (Didelphis albiventris) were obtained in order to study the presence of paraganglia and their content of regulatory peptides and serotonin. Paraganglion groups were mapped between the aorta and pulmonary arteries and close to the bifurcation of the pulmonary trunk and were found to contain cells with immunoreactivity to serotonin and to the neuroendocrine markers PGP 9.5 and NSE. When these paraganglia were tested for immunoreactivity to a battery of regulatory peptides, all were found to be positive for methionin-enkephalin, leucine-enkephalin and galanin. The hypothesis is raised that these peptides and serotonin, besides catecholamines, produced by these paraganglia may play a physiological role in the functions of the cardiovascular system of the white-belly opossum.Work supported by grants from FINEP and CNPq (Brazil).  相似文献   

19.
The catecholamines noradrenaline, dopamine, adrenaline, the indoleamine 5-hydroxy-tryptamine (5-HT; serotonin), and some of their major metabolites were assayed, using high performance liquid chromatography (HPLC), in the neocortex of normal rats as well as in animals in which 5-HT synthesis had been inhibited withp-chlorophenylalanine. Besides important depletions in serotonin and in 5-hydroxyindole-3-acetic acid, noradrenaline levels were significantly reduced, but the content in 3-methoxy-4-hydroxyphenylglycol was increased, indicating an augmented utilization of this amine. The levels of dopamine and 3-methoxytyramine were also reduced, although homovanillic acid and 3,4-dihydroxyphenylacetic acid levels remained constant. The spontaneous unitary activity of identified noradrenergic neurons in the Locus coeruleus was increased, indicating an hyperactivity of this system. These results can be interpreted in relation to functional interactions between the catecholamines and serotonin; i.e.: a decrease in endogenous serotonin results in the loss of a negative feedback control of noradrenaline release.Special Issue dedicated to Prof. Eduardo De Robertis.  相似文献   

20.
Studying the brain circuits that control behavior is challenging, since in addition to their structural complexity there are continuous feedback interactions between actions and sensed inputs from the environment. It is therefore important to identify mathematical principles that can be used to develop testable hypotheses. In this study, we use ideas and concepts from systems biology to study the dopamine system, which controls learning, motivation, and movement. Using data from neuronal recordings in behavioral experiments, we developed a mathematical model for dopamine responses and the effect of dopamine on movement. We show that the dopamine system shares core functional analogies with bacterial chemotaxis. Just as chemotaxis robustly climbs chemical attractant gradients, the dopamine circuit performs ‘reward-taxis’ where the attractant is the expected value of reward. The reward-taxis mechanism provides a simple explanation for scale-invariant dopaminergic responses and for matching in free operant settings, and makes testable quantitative predictions. We propose that reward-taxis is a simple and robust navigation strategy that complements other, more goal-directed navigation mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号