首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enhancement of ergot alkaloid production by tryptophan and its analogues in both normal and high-phosphate cultures is more directly related to increased dimethylallyltryptophan (DMAT) synthetase activity rather than to a lack of regulation of the tryptophan biosynthetic enzymes. Thiotryptophan [beta-(1-benzo-thien-3-yl)-alanine] is rather ineffective in the end product regulation of tryptophan biosynthesis, whereas tryptophan and 5-methyltryptophan are potent effectors. The presence of increased levels of DMAT synthetase in ergot cultures supplemented with tryptophan or thiotryptophan, and to a lesser extent with 5-methyltryptophan, suggests that the induction effect involves de novo synthesis of the enzyme. Thiotryptophan and tryptophan but not 5-methyltryptophan can overcome the block of alkaloid synthesis by inorganic phosphate. The results with thiotryptophan indicate that the phosphate effect cannot be explained merely on the basis of a block of tryptophan synthesis.  相似文献   

2.
The effect of major nutrients on growth and alkaloid production by plant cell culture of Holarrhena antidysenterica was studied with a view to increasing the yield of the alkaloid conessine, a therapeutic drug used for treatment of dysentery and helminthic disorders. The studies resulted in development of a modified Murashige and Skoog (MS) medium that contained 60 mM total nitrogen with a NH(4) (+)-to-NO(3) (-) ratio of 5:1, 0.25 mM phosphate, and 40 g/L sucrose. The growth regulators 2,4-dichlorophenoxy acetic acid (2,4-D) and kinetin (Kn) were also found to affect the synthesis of alkaloid. Using an optimal level of inoculum (3 g/L), the modified medium resulted in alkaloid synthesis of 0.66 g/100 g dry cell weight, which represented a 4.25-fold increase over that obtained in standard MS medium.  相似文献   

3.
In plants, the indole pathway provides precursors for a variety of secondary metabolites. In Catharanthus roseus, a decarboxylated derivative of tryptophan, tryptamine, is a building block for the biosynthesis of terpenoid indole alkaloids. Previously, we manipulated the indole pathway by introducing an Arabidopsis feedback-insensitive anthranilate synthase (AS) alpha subunit (trp5) cDNA and C. roseus tryptophan decarboxylase gene (TDC) under the control of a glucocorticoid-inducible promoter into C. roseus hairy roots [Hughes, E.H., Hong, S.-B., Gibson, S.I., Shanks, J.V., San, K.-Y. 2004a. Expression of a feedback-resistant anthranilate synthase in Catharanthus roseus hairy roots provides evidence for tight regulation of terpenoid indole alkaloid levels. Biotechnol. Bioeng. 86, 718-727; Hughes, E.H., Hong, S.-B., Gibson, S.I., Shanks, J.V., San, K.-Y. 2004b. Metabolic engineering of the indole pathway in Catharanthus roseus hairy roots and increased accumulation of tryptamine and serpentine. Metabol. Eng. 6, 268-276]. Inducible expression of either or both transgenes did not lead to significant increases in overall alkaloid levels despite the considerable accumulation of tryptophan and tryptamine. In an attempt to more successfully engineer the indole pathway, a wild type Arabidopsis ASbeta subunit (ASB1) cDNA was constitutively expressed along with the inducible expression of trp5 and TDC in C. roseus hairy roots. Transgenic hairy roots expressing both trp5 and ASB1 show a significantly greater resistance to feedback inhibition of AS activity by tryptophan than plants expressing only trp5. In fact, a 4.5-fold higher concentration of tryptophan is required to achieve 50% inhibition of AS activity in plants overexpressing both genes than in plants expressing only trp5. In addition, upon a 3 day induction during the exponential phase, a trp5:ASB1 hairy root line produced 1.8 times more tryptophan (specific yield ca. 3.0 mg g(-1) dry weight) than the trp5 hairy root line. Concurrently, tryptamine levels increase up to 9-fold in the induced trp5:ASB1 line (specific yield ca. 1.9 mg g(-1) dry weight) as compared with only a 4-fold tryptamine increase in the induced trp5 line (specific yield ca. 0.3 mg g(-1) dry weight). However, endogenous TDC activities of both trp5:ASB1 and trp5 lines remain unchanged irrespective of induction. When TDC is ectopically expressed together with trp5 and ASB1, the induced trp5:ASB1:TDC hairy root line accumulates tryptamine up to 14-fold higher than the uninduced line. In parallel with the remarkable accumulation of tryptamine upon induction, alkaloid accumulation levels were significantly changed depending on the duration and dosage of induction.  相似文献   

4.
Treatments expected to increase retinal serotonin levels were found to stimulate melatonin production by cultured eyecups from Xenopus laevis. The monoamine oxidase inhibitor pargyline (100 microM) caused a sixfold increase in melatonin release, and the serotonin precursor 5-hydroxy-L-tryptophan (100 microM) caused a 70-fold increase. Both acted synergistically with eserine, an inhibitor of melatonin deacetylation in the retina. The effect of 5-hydroxytryptophan was dose dependent, with effects increasing from 1 to 100 microM. Increasing the tryptophan level in the culture medium had no effect on melatonin release. These results indicate that the rate-limiting step in retinal melatonin synthesis is 5-hydroxylation of tryptophan. Melatonin released from individual eyecups in superfusion culture in constant darkness with and without added 5-hydroxy-L-tryptophan was monitored over a 5-day period. Control eyecups released low levels of melatonin, with circadian rhythmicity persisting for 1-3 days. With 5-hydroxy-L-tryptophan added, melatonin levels were elevated 10-20-fold at all times, and rhythmicity was apparent for as long as five cycles. This provides a model system for studies of the circadian clock in the eye.  相似文献   

5.
Different plant species produce a variety of terpenoid indole alkaloids, which are of interest as plant defensive secondary metabolites and as valuable pharmaceuticals. Although significant progress has been made, the mechanisms regulating the levels of this important class of compounds require continued elucidation. Previous precursor feeding studies have indicated that alkaloid accumulation can be improved during the exponential growth phase of hairy root cultures through enhanced tryptophan availability. To test this relationship, transgenic hairy root cultures of Catharanthus roseus were established with a glucocorticoid-inducible promoter controlling the expression of an Arabidopsis feedback-resistant anthranilate synthase alpha subunit. Enzyme assays demonstrated that the Arabidopsis alpha subunit is compatible with the native beta subunit and that anthranilate synthase activity is more resistant to tryptophan inhibition in induced than in uninduced extracts. The metabolic effects of expressing the feedback-resistant anthranilate synthase alpha subunit were also dramatic. Over a 6-day induction period during the late exponential growth phase, tryptophan and tryptamine specific yields increased from almost undetectable levels to 2.5 mg/g dry weight and from 25 microg/g to 267 microg/g dry weight, respectively. The greater than 300-fold increase in tryptophan levels observed in these studies under certain induction conditions compares favorably with the fold increases obtained in previous constitutive expression studies. Despite the large increases in tryptophan and tryptamine, the levels of most terpenoid indole alkaloids were not significantly altered, with the exception of lochnericine, which increased 81% after a 3-day induction period. These results suggest that terpenoid indole alkaloid levels are tightly controlled.  相似文献   

6.
Tryptophan serves as a precursor for the biosynthesis of alkaloids in the ergot fungus, Claviceps purpurea (Fries) Tulasne, and also is believed to act as an inducer of the enzymes necessary for alkaloid production. The characteristics of the transport system responsible for the accumulation of tryptophan in ergot mycelium were investigated, with the goal of clarifying the complex relationships among tryptophan uptake, size of the free intracellular pool of tryptophan, and alkaloid production. The characteristics of tryptophan uptake were studied by pulse feeding radioactively labeled tryptophan to cultures of Claviceps species, strain SD-58, which represented a variety of ages and nutritional states. Tryptophan accumulation in strain SD-58 is mediated by an energy-requiring system which exhibits specificity for neutral aromatic and aliphatic l-amino acids, is pH and temperature dependent, and shows saturation at high substrate concentrations. Tryptophan transport is a function of the intracellular concentration of free tryptophan, the nitrogen deficiency of the mycelium, the rate of growth, and alkaloid production, which were measured in Claviceps strain SD-58 growth in several culture media, some of which promoted alkaloid production and some of which did not. The results indicate that the initial velocity of tryptophan transport is not directly related to alkaloid production.  相似文献   

7.
Tryptophan degradation in mice initiated by indoleamine 2,3-dioxygenase   总被引:16,自引:0,他引:16  
Tryptophan degradation in mice initiated by indoleamine 2,3-dioxygenase was characterized, taking advantage of its induction by bacterial lipopolysaccharide. Our results demonstrated that in various tissues, N-formylkynurenine produced by the dioxygenase from tryptophan was rapidly hydrolyzed into kynurenine by a kynurenine formamidase, but it was not further metabolized. The localization in the liver and kidney of the kynurenine-metabolizing enzymes suggested that kynurenine thus formed was transported by the bloodstream to those two organs to be metabolized. In fact, the plasma kynurenine level increased in parallel with the induction of the dioxygenase by lipopolysaccharide, and kinetic analysis indicated that at the maximal induction of the enzyme there was a 3-fold increase in the kynurenine production. The major metabolic route of kynurenine was excretion in urine as xanthurenic acid. This increase in the kynurenine production was not explained by L-tryptophan 2,3-dioxygenase in the liver, because during the induction of indoleamine 2,3-dioxygenase, the hepatic enzyme level was substantially suppressed. These findings indicated that indoleamine 2,3-dioxygenase actively oxidized tryptophan in mice and that its induction resulted in an increase in tryptophan degradation.  相似文献   

8.
Increased kynurenine pathway metabolism has been implicated in the aetiology of the AIDS dementia complex (ADC). The rate limiting enzyme for this pathway is indoleamine 2,3-dioxygenase (IDO). We tested the efficacy of different strains of HIV-1 (HIV1-BaL, HIV1-JRFL and HIV1-631) to induce IDO in cultured human monocyte-derived macrophages (MDM). A significant increase in both IDO protein and kynurenine synthesis was observed after 48 h in MDM infected with the brain derived HIV-1 isolates, laboratory adapted (LA) HIV1-JRFL, and primary isolate HIV1-631. In contrast, almost no kynurenine production or IDO protein was evident in MDM infected with the high replicating macrophage tropic LA strain, HIV1-BaL. The induction of IDO and kynurenine synthesis by HIV1-JRFL and HIV1-631 declined to baseline levels by day-8 post-infection. Together, these results indicate that only selected strains of HIV-1 are capable of inducing IDO synthesis and subsequent oxidative tryptophan catabolism in MDM.  相似文献   

9.
The accumulation of imidazoleglycerol phosphate during growth of Neurospora crassa in the presence of 3-amino-1,2,4-triazole was found to cause derepression of tryptophan synthetase and to inhibit the induction of kynureninase. Accumulation of indoleglycerol phosphate in response to growth in the presence of indole acrylic acid or anthranilic acid was also accompanied by derepressed synthesis of tryptophan synthetase. Enzyme synthesis in mutants (his-7 and trp-4) unable to form these intermediates was not altered under similar conditions. The rate of formation of tryptophan synthetase and kynureninase was found to differ in the presence of tryptophan and indole.  相似文献   

10.
Growth hormone antagonizes the induction of tryptophan pyrrolase and tyrosine amino-transferase by cortisol. We have shown that contrary to previous reports, growth hormone is also capable of antagonizing the induction of these enzymes by tryptophan and alpha-methyl tryptophan. As alpha-methyl tryptophan is not metabolized appreciably in the rat, our data show that growth hormone does not act indirectly through changes in the liver tryptophan content as was suggested previously. Growth hormone decreases the rate of tryptophan catabolism in vivo after induction of tryptophan pyrrolase by tryptophan and alpha-methyl tryptophan. Because the rate of catabolism of a tryptophan is slower in animals treated with growth hormone, tissue tryptophan levels and the rate of synthesis of 5-hydroxyltryptamine in the brain are higher in these animals than in those receiving tryptophan alone. Thus, although tryptophan administration raises brain 5-hydroxytryptamine levels, induction of tryptophan pyrrolase in the liver, by the load, limits the extent and duration of the rise in brain 5-hydroxytryptamine synthesis. This has important implications for the clinical use of tryptophan in psychiatric disorders, where tryptophan is given to produce long-lasting elevations of brain 5-hydroxytryptamine.  相似文献   

11.
In cell suspension cultures of Catharanthus roseus a rapid accumulation of secondary compounds (tryptamine, indole alkaloids, phenolics) was observed after transfer of the cells into special ‘induction’-media devoid of phosphate and other essential growth factors [11, 14]. The increase of product levels was suppressed in the presence of phosphate which was almost completely taken up from the medium and accumulated by the cells within 48 h after inoculation. The activities of tryptophan decarboxylase (TDC), the first enzyme in indole alkaloid biosynthesis, and of phenyl-alanine ammonia-lyase (PAL), the key enzyme of phenylpropanoid biosynthesis, were influenced differently by phosphate. Whereas the accumulation of phenolics and PAL activity were similarly inhibited by low concentration of phosphate, the medium-induced enhanced activity of TDC was not affected although the product pools were considerably reduced. Some consequences for the regulation of secondary metabolism will be discussed.  相似文献   

12.
Abstract

Increased kynurenine pathway metabolism has been implicated in the aetiology of the AIDS dementia complex (ADC). The rate limiting enzyme for this pathway is indoleamine 2,3- dioxygenase (IDO). We tested the efficacy of different strains of HIV-1 (HIV1-BaL, HIV1-JRFL and HIV1-631) to induce IDO in cultured human monocyte-derived macrophages (MDM). A significant increase in both IDO protein and kynurenine synthesis was observed after 48 h in MDM infected with the brain derived HIV-1 isolates, laboratory adapted (LA) HIV1-JRFL, and primary isolate HIV1-631. In contrast, almost no kynurenine production or IDO protein was evident in MDM infected with the high replicating macrophage tropic LA strain, HIV1-BaL. The induction of IDO and kynurenine synthesis by HIV1-JRFL and HIV1-631 declined to baseline levels by day-8 post-infection. Together, these results indicate that only selected strains of HIV-1 are capable of inducing IDO synthesis and subsequent oxidative tryptophan catabolism in MDM.  相似文献   

13.
To obtain more insight into the regulation of terpenoid indole alkaloid (TIA) biosynthesis in Catharanthus roseus (L.) G. Don cell cultures and particularly to identify possible rate limiting steps, a transgenic cell line over-expressing tryptophan decarboxylase (Tdc), and thus having a high level of tryptamine, was fed with various amounts of precursors (tryptophan, tryptamine, loganin and secologanin) in different time schedules and analyzed for TIA production. When these precursors were added to this culture it was found that the optimal time for supplying the precursors was at inoculation of the cells into the production medium. Alkaloid accumulation by line T22 was enhanced by addition of loganin or secologanin; however, the secologanin feeding was less effective. Tryptamine or tryptophan alone had no effect on TIA accumulation. The over-expression of Tdc causes this cell line to produce quite large quantities of alkaloids after feeding loganin or secologanin. However, in combination with tryptophan or tryptamine, feeding of these precursors resulted in an even further increase of alkaloid accumulation and under optimal conditions line T22 accumulated around 1200 micromol l(-1) of TIAs whereas the control cultures accumulated less than 10 micromol l(-1) TIAs.  相似文献   

14.
We examined the kinetics of beta-galactosidase (EC 3.2.1.23) induction in the yeast Kluyveromyces lactis. Enzyme activity began to increase 10 to 15 min, about 1/10 of a cell generation, after the addition of inducer and continued to increase linearly for from 7 to 9 cell generations before reaching a maximum, some 125- to 150-fold above the basal level of uninduced cells. Thereafter, as long as logarithmic growth was maintained, enzyme levels remained high, but enzyme levels dropped to a value only 5- to 10-fold above the basal level if cells entered stationary phase. Enzyme induction required the constant presence of inducer, since removal of inducer caused a reduction in enzyme level. Three nongratuitous inducers of beta-galactosidase activity, lactose, galactose, and lactobionic acid, were identified. Several inducers of the lac operon of Escherichia coli, including methyl-, isopropyl- and phenyl-1-thio-beta-d-galactoside, and thioallolactose did not induce beta-galactosidase in K. lactis even though they entered the cell. The maximum rate of enzyme induction was only achieved with lactose concentrations of greater than 1 to 2 mM. The initial differential rate of beta-galactosidase appearance after induction was reduced in medium containing glucose, indicating transient carbon catabolite repression. However, glucose did not exclude lactose from K. lactis, it did not cause permanent carbon catabolite repression of beta-galactosidase synthesis, and it did not prevent lactose utilization. These three results are in direct contrast to those observed for lactose utilization in E. coli. Furthermore, these results, along with our observation that K. lactis grew slightly faster on lactose than on glucose, indicate that this organism has evolved an efficient system for utilizing lactose.  相似文献   

15.
Summary A stabilized two-year old suspension of a Datura innoxia cell line, producing small amounts of tropane alkaloids (scopolamine and hyoscyamine) was used in this study. Calcium alginate immobilization has been shown to be able to increase secondary metabolite (i. e. alkaloid) production. The effects of calcium and ungellified alginate were both beneficial for tropane alkaloid synthesis; a 10mM calcium chloride supply gave the best results, with a 10-fold yield increase.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - S standard cell culture medium - HPLC high performance liquid chromatography - FW fresh weight - FDA fluorescein diacetate - FW fresh weight  相似文献   

16.
Vinca minor is the sole source of vincamine, an alkaloid known to be used in a variety of cerebral disorders. Three stable variant shoot lines (V10, V20 and V30) with tolerance thresholds of 10, 20 and 30?mg/l 5-methyltryptophan (5-MT; analogue of tryptophan), respectively, were selected. These lines showed twofold to threefold increase in tryptophan content and 1.5- to 2-fold increment in the total alkaloids in comparison to the wild line shoots. A maximum of 16-fold enhancement in vincamine production was recorded in V30 line followed by eightfold in V20 line. Inter simple sequence repeat (ISSR)-PCR amplification of all the three lines showed total of 65 bands; out of which 60 were monomorphic (92.3?%) and 5 were polymorphic (7.7?%). Tryptophan being a limiting factor in the indole alkaloid pathway plays a crucial role in modulating the flux towards vincamine production and its over-production positively resulted into enhanced vincamine production.  相似文献   

17.
18.
Hepatocytes were isolated from perfused rat livers. 4 x 10-6 cells/ml were incubated at at 37 degrees C in different media in the absence and presence of a steroid hormone, dexamethasone phosphate (2 x 10-5 M). 1. Hormonal enzyme induction occurred in cells suspended in a simple salt medium, devoid of amino acids and macromolecules. This induction was completely blocked by addition of either actinomycin D (2 mu-g/ml) or cycloheximide (50 mu-g/ml). 2. Incubation of cells in media containing defatted albumin did not enhance hormonal enzyme induction, although disintegration of cells during incubation was reduced. Addition of a crude albumin fraction reduced tryptophan oxygenase induction and dextran completely blocked enzyme induction by dexamethasone. 3. An increase of dexamethasone concentration in the presence of albumin to 9 x 10-5 M was unable to raise enzyme induction further, and a still higher concentration of hormone, 3 x 10-4 M, resulted in reduced enzyme induction. 4. The hormonal induction of tryptophan oxygenase was most pronounced when the pH of the medium was between 7.0 and 7.6, with an optium at 7.3. No induction was found when the pH of the medium was either 6.6 or 7.8. The basal tryptophan oxygenase activity was much less influenced by similar pH variations. It is concluded that hepatocytes in suspension are able to carry out hormone-stimulated enzyme synthesis and that factors influencing this process may be studied under controlled conditions in such systems.  相似文献   

19.
20.
The lipogenic capacity of rat liver is increased in animals fed a high carbohydrate, fat-free diet or by the administration of 2,2',5'-triiodo-L-thyronine. Underlying this change is a generalized induction of the enzymes involved in lipogenesis, including glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and malic enzyme, which together serve to generate the additional NADPH required for increased fatty acid synthesis. This report presents evidence indicating that induction of the hexose-shunt dehydrogenases involves increased enzyme synthesis secondary to elevated enzyme specific mRNA levels, as has previously been shown for malic enzyme. Activities of specific mRNAs, estimated by cell-free translation of hepatic poly(A)-containing RNA in the mRNA dependent rabbit reticulocyte lysate, were compared with enzyme specific activities and relative rates of specific enzyme synthesis. The 2-fold increase in glucose-6-phosphate dehydrogenase specific activity in hyperthyroid rats and the 13-fold increase in rats fed a high carbohydrate, fat-free diet, relative to euthyroid, chow-fed controls were paralleled by comparable increases in the synthetic rates and mRNA levels of this enzyme. Similarly, consonant changes in the rate of enzyme synthesis and concentration of 6-phosphogluconate dehydrogenase mRNA accompanied the 2.5- and 3-fold increases in specific activity of this enzyme observed in response to hormonal and dietary induction, respectively. Thus, both thyroid hormone and carbohydrate feeding appear to induce glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase primarily by increasing the effective cellular concentrations of their respective mRNAs and, consequently, their rates of synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号