首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A 2.6-kilobase HaeIII DNA fragment corresponding to an extracellular proteinase gene (prtY) was cloned from chromosomal DNA of Lactobacillus helveticus CP790 in Escherichia coli using a pKK223-3 vector. The transformant expressed a 48-kDa protein that reacts with monoclonal antibodies specific to the proteinase and seemed to be a pre-proproteinase, but had no proteolytic activity. About 1.6 kilobases of the 2.6-kilobase DNA fragment, which contained the complete gene for the proteinase was sequenced. Sequence analysis found an open reading frame with a capacity to encode a protein of 449 amino acids. The coding region contained a Gram-positive-type signal peptide of 30 amino acids. The N-terminal sequences of the proproteinase and the mature proteinase have been observed in the polypeptide at position + 31 and + 38. The putative amino acid sequence showed a significant similarity to a surface layer protein of L. helveticus and Lactobacillus acidophilus in the amino terminal signal sequence and carboxyl terminus.  相似文献   

3.
Lactococcus lactis subsp. cremoris P8-2-47 contains an X-prolyl dipeptidyl aminopeptidase (X-PDAP; EC 3.4.14.5). A mixed-oligonucleotide probe prepared on the basis of the N-terminal amino acid sequence of the purified protein was made and used to screen a partial chromosomal DNA bank in Escherichia coli. A partial XbaI fragment cloned in pUC18 specified X-PDAP activity in E. coli clones. The fragment was also able to confer X-PDAP activity on Bacillus subtilis. The fact that none of these organisms contain this enzymatic activity indicated that the structural gene for X-PDAP had been cloned. The cloned fragment fully restored X-PDAP activity in X-PDAP-deficient mutants of L. lactis. We have sequenced a 3.8-kb fragment that includes the X-PDAP gene and its expression signals. The X-PDAP gene, designated pepXP, comprises 2,289 nucleotide residues encoding a protein of 763 amino acids with a predicted molecular weight of 87,787. No homology was detected between pepXP and genes that had been previously sequenced. A second open reading frame, divergently transcribed, was present in the sequenced fragment; the function or relationship to pepXP of this open reading frame is unknown.  相似文献   

4.
Lactococcus lactis subsp. cremoris P8-2-47 contains an X-prolyl dipeptidyl aminopeptidase (X-PDAP; EC 3.4.14.5). A mixed-oligonucleotide probe prepared on the basis of the N-terminal amino acid sequence of the purified protein was made and used to screen a partial chromosomal DNA bank in Escherichia coli. A partial XbaI fragment cloned in pUC18 specified X-PDAP activity in E. coli clones. The fragment was also able to confer X-PDAP activity on Bacillus subtilis. The fact that none of these organisms contain this enzymatic activity indicated that the structural gene for X-PDAP had been cloned. The cloned fragment fully restored X-PDAP activity in X-PDAP-deficient mutants of L. lactis. We have sequenced a 3.8-kb fragment that includes the X-PDAP gene and its expression signals. The X-PDAP gene, designated pepXP, comprises 2,289 nucleotide residues encoding a protein of 763 amino acids with a predicted molecular weight of 87,787. No homology was detected between pepXP and genes that had been previously sequenced. A second open reading frame, divergently transcribed, was present in the sequenced fragment; the function or relationship to pepXP of this open reading frame is unknown.  相似文献   

5.
A DNA fragment of Serratia marcescens directing an extracellular serine protease (Mr, 41,000) was cloned in Escherichia coli. The cloned fragment caused specific excretion of the protease into the extracellular medium through the outer membrane of E. coli host cells in parallel with their growth. No excretion of the periplasmic enzymes of host cells occurred. The cloned fragment contained a single open reading frame of 3,135 base pairs coding a protein of 1,045 amino acids (Mr 112,000). Comparison of the 5' nucleotide sequence with the N-terminal amino acid sequence of the protease indicated the presence of a typical signal sequence. The C-terminal amino acid of the enzyme was found at position 408, as deduced from the nucleotide sequence. Artificial frameshift mutations introduced into the coding sequence for the assumed distal polypeptide after the C terminus of the protease caused complete loss of the enzyme production. It was concluded that the Serratia serine protease is produced as a 112-kilodalton proenzyme and that its N-terminal signal peptide and a large C-terminal part are processed to cause excretion of the mature protease through the outer membrane of E. coli cells.  相似文献   

6.
7.
Lactacin F is a heat-stable bacteriocin produced by Lactobacillus acidophilus 11088. A 63-mer oligonucleotide probe deduced from the N-terminal lactacin F amino acid sequence was used to clone the putative laf structural gene from plasmid DNA of a lactacin F-producing transconjugant, L. acidophilus T143. One clone, NCK360, harbored a recombinant plasmid, pTRK160, which contained a 2.2-kb EcoRI fragment of the size expected from hybridization experiments. An Escherichia coli-L. acidophilus shuttle vector was constructed, and a subclone (pTRK162) containing the 2.2-kb EcoRI fragment was introduced by electroporation into two lactacin F-negative strains, L. acidophilus 89 and 88-C. Lactobacillus transformants containing pTRK162 expressed lactacin F activity and immunity. Bacteriocin produced by the transformants exhibited an inhibitory spectrum and heat stability identical to those of the wild-type bacteriocin. An 873-bp region of the 2.2-kb fragment was sequenced by using a 20-mer degenerate lactacin F-specific primer to initiate sequencing from within the lactacin F structural gene. Analysis of the resulting sequence identified an open reading frame which could encode a protein of 75 amino acids. The 25 N-terminal amino acids for lactacin F were identified within the open reading frame along with an N-terminal extension, possibly a signal sequence. The lactacin F N-terminal sequence, through the remainder of the open reading frame (57 amino acids; 6.3 kDa), correlated extremely well with composition analyses of purified lactacin F which also predicted a size of 51 to 56 amino acid residues. Molecular characterization of lactacin F identified a small hydrophobic peptide that may be representative of a common bacteriocin class in lactic acid bacteria.  相似文献   

8.
The structural gene hap for the extracellular hemagglutinin/protease (HA/protease) of Vibrio cholerae was cloned and sequenced. The cloned DNA fragment contained a 1,827-bp open reading frame potentially encoding a 609-amino-acid polypeptide. The deduced protein contains a putative signal sequence followed by a large propeptide. The extracellular HA/protease consists of 414 amino acids with a computed molecular weight of 46,700. In the absence of protease inhibitors, this is processed to the 32-kDa form which is usually isolated. The deduced amino acid sequence of the mature HA/protease showed 61.5% identity with the Pseudomonas aeruginosa elastase. The cloned hap gene was inactivated and introduced into the chromosome of V. cholerae by recombination to construct the HA/protease-negative strain HAP-1. The cloned fragment containing the hap gene was then shown to complement the mutant strain.  相似文献   

9.
P Teufel  F Gtz 《Journal of bacteriology》1993,175(13):4218-4224
The gene sepA from Staphylococcus epidermidis TU3298-P, encoding the extracellular neutral metalloprotease SepP1, was cloned into pT181mcs. DNA sequencing revealed an open reading frame of 1,521 nucleotides encoding a 507-amino-acid protein with an M(r) of 55,819. The sepA-containing DNA fragment did not hybridize with Staphylococcus hyicus or Staphylococcus carnosus DNA. Expression of sepA in the protease-negative S. carnosus (pT181mcsP1) resulted in overproduction of a 33-kDa protease found in the culture medium. The first 15 N-terminal amino acids of the partially purified protease completely matched the deduced DNA sequence starting at GCA (Ala-208). This finding indicated that SepP1 is synthesized as a preproenzyme with a 28-amino-acid signal peptide, a 179-amino-acid hydrophilic pro region, and a 300-amino-acid extracellular mature form with a calculated M(r) of 32,739. In activity staining, the mature protease prepared from S. carnosus (pT181mcsP1) corresponded to the extracellular S. epidermidis Tü3298-P protease. The partially purified protease had a pH optimum between 5 and 7, and its activity could be inhibited by zinc- and metal-specific inhibitors such as EDTA and 1,10-phenanthroline, indicating that it is a neutral metalloprotease. The protease had a low substrate specificity. Glucagon was cleaved preferentially between aromatic (Phe) and hydrophobic (Val) amino acids. The protease hydrolyzed casein and elastin. The amino acid sequence of the mature form of SepP1 revealed pronounced similarities with the thermolabile and thermostable neutral proteases of various bacilli (44 to 55% identity) and a central part of the mature form of the Pseudomonas aeruginosa elastase (31% identity). From homology comparison with the Bacillus thermoproteolyticus thermolysin, we predict that mature SepP1 binds one zinc ion at a conserved zinc-binding site.  相似文献   

10.
The cellulase gene from the alkalophilic Bacillus sp. strain 1139 was cloned in Escherichia coli using pBR322. Plasmid pFK1 was isolated from transformants producing cellulase, and the cloned cellulase gene was found to be in a 4 X 6 kb HindIII fragment. The cellulase gene was subcloned in a functional state on a 2 X 9 kb DNA fragment and its nucleotide sequence was determined. The coding sequence showed an open reading frame encoding 800 amino acids. The pFK1-encoded cellulase had the same enzymic properties as the extracellular cellulase produced by the alkalophilic Bacillus sp. strain 1139, but its Mr was slightly higher.  相似文献   

11.
The nucleotide sequence of a 4.39-kb DNA fragment encoding the alpha-glucosidase gene of Candida tsukubaensis is reported. The cloned gene contains a major open reading frame (ORF 1) which encodes the alpha-glucosidase as a single precursor polypeptide of 1070 amino acids with a predicted molecular mass of 119 kDa. N-terminal amino acid sequence analysis of the individual subunits of the purified enzyme, expressed in the recombinant host Saccharomyces cerevisiae, confirmed that the alpha-glucosidase precursor is proteolytically processed by removal of an N-terminal signal peptide to yield the two peptide subunits 1 and 2, of molecular masses 63-65 kDa and 50-52 kDa, respectively. Both subunits are secreted by the heterologous host S. cerevisiae in a glycosylated form. Coincident with its efficient expression in the heterologous host, the C. tsukubaensis alpha-glucosidase gene contains many of the canonical features of highly expressed S. cerevisiae genes. There is considerable sequence similarity between C. tsukubaensis alpha-glucosidase, the rabbit sucrase-isomaltase complex (proSI) and human lysosomal acid alpha-glucosidase. The cloned DNA fragment from C. tsukubaensis contains a second open reading frame (ORF 2) which has the capacity to encode a polypeptide of 170 amino acids. The function and identity of the polypeptide encoded by ORF 2 is not known.  相似文献   

12.
The gene aspS encoding an aspartyl protease has been cloned from Sclerotinia sclerotiorum by screening a genomic library with a PCR-amplified fragment of the gene. The open reading frame of 1368 bp interrupted by one intron would encode a preproprotein of 435 amino acids. The catalytic aspartyl residues characteristic of aspartyl proteases are conserved; however, the active-site motif (DSG) in the N-terminal lobe is unusual in that Ser replaced Thr used in the active-site motif (DTG) of the C-terminal lobe and in all other fungal aspartyl proteases. RT-PCR revealed that aspS expression in axenic culture is not subjected to catabolite repression and demonstrated that aspS is expressed from the beginning of infection of sunflower cotyledons.  相似文献   

13.
The esterase gene (est) of Pseudomonas putida MR-2068 was cloned into Escherichia coli JM109. An 8-kb inserted DNA directed synthesis of an esterase in E. coli. The esterase gene was in a 1.1-kb PstI-ClaI fragment within the insert DNA. The complete nucleotides of the DNA fragment containing the esterase gene were sequenced and found to include a single open reading frame of 828 bp coding for a protein of 276 amino acid residues. The open reading frame was confirmed by N-terminal amino acid sequence analysis of the purified esterase. A potential Shine-Dalgarno sequence is followed by the open reading frame. The esterase activity of the recombinant E. coli was more than 200 times higher than that of parental strain, P. putida MR-2068.  相似文献   

14.
Achromobacter protease I (API) is a lysine-specific serine protease which hydrolyzes specifically the lysyl peptide bond. A gene coding for API was cloned from Achromobacter lyticus M497-1. Nucleotide sequence of the cloned DNA fragment revealed that the gene coded for a single polypeptide chain of 653 amino acids. The N-terminal 205 amino acids, including signal peptide and the threonine/serine-rich C-terminal 180 amino acids are flanking the 268 amino acid-mature protein which was identified by protein sequencing. Escherichia coli carrying a plasmid containing the cloned API gene overproduced and secreted a protein of Mr 50,000 (API') into the periplasm. This protein exhibited a distinct endopeptidase activity specific for lysyl bonds as well. The N-terminal amino acid sequence of API' was the same as mature API, suggesting that the enzyme retained the C-terminal extended peptide chain. The present experiments indicate that API, an extracellular protease produced by gram-negative bacteria, is synthesized in vivo as a precursor protein bearing long extended peptide chains at both N and C termini.  相似文献   

15.
A Iwai  H Ito  T Mizuno  H Mori  H Matsui  M Honma  G Okada    S Chiba 《Journal of bacteriology》1994,176(24):7730-7734
The gene encoding an extracellular isomalto-dextranase, designated imd, was isolated from the chromosomal DNA of Arthrobacter globiformis T6 and cloned and expressed in Escherichia coli. A single open reading frame consisting of 1,926 base pairs that encoded a polypeptide composed of a signal peptide of 39 amino acids and a mature protein of 602 amino acids (M(r), 65,900) was found. The primary structure had no significant homology with the structures of any other reported carbohydrases, including two other dextranases. Transformed E. coli cells carrying the 2.3-kb fragment overproduced isomalto-dextranase into the periplasmic space under control of the promoter of the imd gene itself.  相似文献   

16.
The glpK gene, which codes for Escherichia coli K-12 glycerol kinase (EC 2.1.7.30, ATP:glycerol 3-phosphotransferase), has been cloned into the HindIII site of pBR322. The gene was contained in a 2.8-kilobase DNA fragment which was obtained from a lambda transducing bacteriophage, lambda dglpK100 (Conrad, C.A., Stearns, G.W., III, Prater, W.E., Rheiner, J.A., and Johnson, J.R. (1984) Mol. Gen. Genet. 195, 376-378). The DNA sequence of 2 kilobases of the cloned HindIII fragment was obtained using the dideoxynucleotide method. The start of the open reading frame for the glpK gene was identified from the N-terminal sequence of the first 22 amino acid residues of the purified enzyme, which was determined by automated Edman degradation. The open reading frame codes for a protein of 502 amino acids and a molecular weight of 56,106 which is in good agreement with the value previously determined by sedimentation equilibrium. The primary structure of the protein as deduced from the gene sequence was corroborated by the isolation and sequencing of four tryptic peptides, which were found to occur at the following amino acid locations: 173-177, 203-211, 279-281, 464-468. The N-terminal sequence of the purified enzyme shows that the enzyme undergoes post-translational processing. Restriction digestion as well as DNA sequencing of the supercoiled plasmid shows that the HindIII fragment is inserted into pBR322 such that the glpK gene is transcribed in a counterclockwise direction. Examination of the upstream DNA sequence reveals two possible promoters of essentially the same efficiency: the P1 promoter of pBR322 and a hybrid promoter which contains both bacterial and pBR322 DNA sequences.  相似文献   

17.
18.
The gene for the catalytic subunit of cellulose synthase from Acetobacter xylinum has been cloned by using an oligonucleotide probe designed from the N-terminal amino acid sequence of the catalytic subunit (an 83 kDa polypeptide) of the cellulose synthase purified from trypsin-treated membranes of A. xylinum. The gene was located on a 9.5 kb HindIII fragment of A. xylinum DNA that was cloned in the plasmid pUC18. DNA sequencing of approximately 3 kb of the HindIII fragment led to the identification of an open reading frame of 2169 base pairs coding for a polypeptide of 80 kDa. Fifteen amino acids in the N-terminal region (positions 6 to 20) of the amino acid sequence, deduced from the DNA sequence, match with the N-terminal amino acid sequence obtained for the 83 kDa polypeptide, confirming that the DNA sequence cloned codes for the catalytic subunit of cellulose synthase which transfers glucose from UDP-glucose to the growing glucan chain. Trypsin treatment of membranes during purification of the 83 kDa polypeptide cleaved the first 5 amino acids at the N-terminal end of this polypeptide as observed from the deduced amino acid sequence, and also from sequencing of the 83 kDa polypeptide purified from membranes that were not treated with trypsin. Sequence analysis suggests that the cellulose synthase catalytic subunit is an integral membrane protein with 6 transmembrane segments. There is no signal sequence and it is postulated that the protein is anchored in the membrane at the N-terminal end by a single hydrophobic helix. Two potential N-glycosylation sites are predicted from the sequence analysis, and this is in agreement with the earlier observations that the 83 kDa polypeptide is a glycoprotein [13]. The cloned gene is conserved among a number of A. xylinum strains, as determined by Southern hybridization.  相似文献   

19.
A 456 basepair HindIII fragment that encoded a portion of the type A botulinum neurotoxin gene was cloned into Escherichia coli using a plasmid vector. DNA sequence analysis revealed that this botulinum DNA insert encoded an open reading frame of 35 amino acid residues of which 34 corresponded to the N-terminal residues of botulinum neurotoxin type A.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号