首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cellulose/xyloglucan framework is considered to form the basis for the mechanical properties of primary plant cell walls and hence to have a major influence on the biomechanical properties of growing, fleshy plant tissues. In this study, structural variants of xyloglucan have been investigated as components of composites with bacterial cellulose as a simplified model for the cellulose/xyloglucan framework of primary plant cell walls. Evidence for molecular binding to cellulose with perturbation of cellulose crystallinity was found for all xyloglucan types. High molecular mass samples gave homogeneous centimeter-scale composites with extensive cross-linking of cellulose with xyloglucan. Lower molecular mass xyloglucans gave heterogeneous composites having a range of microscopic structures with little, if any, cross-linking. Xyloglucans with reduced levels of galactose substitution had evidence of self-association, competitive with cellulose binding. At comparable molecular mass, fucose substitution resulted in a modest promotion of microscopic features characteristic of primary cell walls. Taken together, the data are evidence that galactose substitution of the xyloglucan core structure is a major determinant of cellulose composite formation and properties, with additional fucose substitution acting as a secondary modulator. These conclusions are consistent with reported structural and mechanical properties of Arabidopsis mutants lacking specific fucose and/or galactose residues.  相似文献   

2.
Since xyloglucan is believed to bind to cellulose microfibrils in the primary cell walls of higher plants and, when isolated from the walls, can also bind to cellulose in vitro, the binding mechanism of xyloglucan to cellulose was further investigated using radioiodinated pea xyloglucan. A time course for the binding showed that the radioiodinated xyloglucan continued to be bound for at least 4 hours at 40°C. Binding was inhibited above pH 6. Binding capacity was shown to vary for celluloses of different origin and was directly related to the relative surface area of the microfibrils. The binding of xyloglucan to cellulose was very specific and was not affected by the presence of a 10-fold excess of (1→2)-β-glucan, (1→3)-β-glucan, (1→6)-β-glucan, (1→3, 1→4)-β-glucan, arabinogalactan, or pectin. When xyloglucan (0.1%) was added to a cellulose-forming culture of Acetobacter xylinum, cellulose ribbon structure was partially disrupted indicating an association of xyloglucan with cellulose at the time of synthesis. Such a result suggests that the small size of primary wall microfibrils in higher plants may well be due to the binding of xyloglucan to cellulose during synthesis which prevents fasciation of small fibrils into larger bundles. Fluorescent xyloglucan was used to stain pea cell wall ghosts prepared to contain only the native xyloglucan:cellulose network or only cellulose. Ghosts containing only cellulose showed strong fluorescence when prepared before or after elongation; as predicted, the presence of native xyloglucan in the ghosts repressed binding of added fluorescent xyloglucan. Such ghosts, prepared after elongation when the ratio of native xyloglucan:cellulose is substantially reduced, still showed only faint fluorescence, indicating that microfibrils continue to be coated with xyloglucan throughout the growth period.  相似文献   

3.
Plant cell walls are degraded by glycoside hydrolases that often contain noncatalytic carbohydrate-binding modules (CBMs), which potentiate degradation. There are currently 11 sequence-based cellulose-directed CBM families; however, the biological significance of the structural diversity displayed by these protein modules is uncertain. Here we interrogate the capacity of eight cellulose-binding CBMs to bind to cell walls. These modules target crystalline cellulose (type A) and are located in families 1, 2a, 3a, and 10 (CBM1, CBM2a, CBM3a, and CBM10, respectively); internal regions of amorphous cellulose (type B; CBM4-1, CBM17, CBM28); and the ends of cellulose chains (type C; CBM9-2). Type A CBMs bound particularly effectively to secondary cell walls, although they also recognized primary cell walls. Type A CBM2a and CBM10, derived from the same enzyme, displayed differential binding to cell walls depending upon cell type, tissue, and taxon of origin. Type B CBMs and the type C CBM displayed much weaker binding to cell walls than type A CBMs. CBM17 bound more extensively to cell walls than CBM4-1, even though these type B modules display similar binding to amorphous cellulose in vitro. The thickened primary cell walls of celery collenchyma showed significant binding by some type B modules, indicating that in these walls the cellulose chains do not form highly ordered crystalline structures. Pectate lyase treatment of sections resulted in an increased binding of cellulose-directed CBMs, demonstrating that decloaking cellulose microfibrils of pectic polymers can increase CBM access. The differential recognition of cell walls of diverse origin provides a biological rationale for the diversity of cellulose-directed CBMs that occur in cell wall hydrolases and conversely reveals the variety of cellulose microstructures in primary and secondary cell walls.  相似文献   

4.
The fine structure of germinating Lychnis alba pollen is described and correlated with some basic tests for chemical composition. The primary storage product in both pollen grain and pollen tube appears to be lipid. Pregermination synthesis of pollen tube wall material appears characteristic in this species, along with the presence of crystalloid structures having approximately 80 A periods. The crystalloid bodies are not found in the tip cytoplasm of the pollen tubes. Limited acid phosphatase activity is found associated with the crystalloid structures as well as within vesiculate structures of the pollen grain. The cytoplasmic structure of both the pollen grains and pollen tubes is characterized by few dictyosomes and plastids and no microtubules, although mitochondria and polyribosomes are abundant. Pectins have not been verified in the pollen tube walls, their primary composition being cellulose.  相似文献   

5.
The biochemical mechanisms underlying cell wall expansion in plants have long been a matter of conjecture. Previous work in our laboratory identified two proteins (named "expansins") that catalyze the acid-induced extension of isolated cucumber cell walls. Here we examine the mechanism of expansin action with three approaches. First, we report that expansins did not alter the molecular mass distribution or the viscosity of solutions of matrix polysaccharides. We conclude that expansins do not hydrolyze the major pectins or hemicelluloses of the cucumber wall. Second, we investigated the effects of expansins on stress relaxation of isolated walls. These studies show that expansins account for the pH-sensitive and heat-labile components of wall stress relaxation. In addition, these experiments show that expansins do not cause a progressive weakening of the walls, as might be expected from the action of a hydrolase. Third, we studied the binding of expansins to the cell wall and its components. The binding characteristics are consistent with this being the site of expansin action. We found that expansins bind weakly to crystalline cellulose but that this binding is greatly increased upon coating the cellulose with various hemicelluloses. Xyloglucan, either solubilized or as a coating on cellulose microfibrils, was not very effective as a binding substrate. Expansins were present in growing cell walls in low quantities (approximately 1 part in 5000 on a dry weight basis), suggesting that they function catalytically. We conclude that expansins bind at the interface between cellulose microfibrils and matrix polysaccharides in the wall and induce extension by reversibly disrupting noncovalent bonds within this polymeric network. Our results suggest that a minor structural component of the matrix, other than pectin and xyloglucan, plays an important role in expansin binding to the wall and, presumably, in expansin action.  相似文献   

6.
Cellobiohydrolase I (CBHI) of Trichoderma reesei has two functional domains, a catalytic core domain and a cellulose binding domain (CBD). The structure of the CBD reveals two distinct faces, one of which is flat and the other rough. Several other fungal cellulolytic enzymes have similar two-domain structures, in which the CBDs show a conserved primary structure. Here we have evaluated the contributions of conserved amino acids in CBHI CBD to its binding to cellulose. Binding isotherms were determined for a set of six synthetic analogues in which conserved amino acids were substituted. Two-dimensional NMR spectroscopy was used to assess the structural effects of the substitutions by comparing chemical shifts, coupling constants, and NOEs of the backbone protons between the wild-type CBD and the analogues. In general, the structural effects of the substitutions were minor, although in some cases decreased binding could clearly be ascribed to conformational perturbations. We found that at least two tyrosine residues and a glutamine residue on the flat face were essential for tight binding of the CBD to cellulose. A change on the rough face had only a small effect on the binding and it is unlikely that this face interacts with cellulose directly.  相似文献   

7.
A critical structural feature of many microbial endo-beta-1,4-glucanases (EGases, or cellulases) is a carbohydrate binding module (CBM), which is required for effective crystalline cellulose degradation. However, CBMs are absent from plant EGases that have been biochemically characterized to date, and accordingly, plant EGases are not generally thought to have the capacity to degrade crystalline cellulose. We report the biochemical characterization of a tomato EGase, Solanum lycopersicum Cel8 (SlCel9C1), with a distinct C-terminal noncatalytic module that represents a previously uncharacterized family of CBMs. In vitro binding studies demonstrated that this module indeed binds to crystalline cellulose and can similarly bind as part of a recombinant chimeric fusion protein containing an EGase catalytic domain from the bacterium Thermobifida fusca. Site-directed mutagenesis studies show that tryptophans 559 and 573 play a role in crystalline cellulose binding. The SlCel9C1 CBM, which represents a new CBM family (CBM49), is a defining feature of a new structural subclass (Class C) of plant EGases, with members present throughout the plant kingdom. In addition, the SlCel9C1 catalytic domain was shown to hydrolyze artificial cellulosic polymers, cellulose oligosaccharides, and a variety of plant cell wall polysaccharides.  相似文献   

8.
Glucuronoarabinoxylan is a key tethering glucan in the primary cell wall of cereals. Glucuronoarabinoxylan was extracted from different zones of maize (Zea mays L.) roots using endoxylanase that specifically cleaves β-(1,4)-glycoside bond between two consequent unsubstituted xylose residues. Changes in polysaccharide structure during elongation growth were characterized. Glucuronoarabinoxylan extractable after the endoxylanase treatment consisted of high molecular weight (30–400 kDa) and low molecular weight (<10 kDa) fractions. The presence of high molecular weight derivatives indicated that part of the natural glucuronoarabinoxylan is not digestible by the endoxylanase. This could be due to the revealed peculiar structural features, such as high level of substitution of xylose, absence of unsubstituted xylose residues existing in sequence, and significant degree of acetylation. In maize root meristem the indigestible fraction was 98% of the total extracted glucuronoarabinoxylan. This portion decreases to 47% during elongation. Also, the average molecular weight of indigestible glucuronoarabinoxylan reduced twofold. These changes in the ratio of glucuronoarabinoxylan fragments with different structure during root cell growth could reflect a transition of polysaccharide from its separating (highly substituted indigestible glucuronoarabinoxylan) form to that binding to cellulose microfibrils or other glucuronoarabinoxylan molecules and, hence, retarding growth.  相似文献   

9.
诺如病毒(Noroviruses,NoVs)是导致人急性胃肠炎的最重要病原体之一,也是引起食源性疾病暴发的首要病原体。组织血型抗原(Histo-blood groups antigens,HBGAs)是NoVs的受体或宿主易感因子。已有研究表明HBGAs与NoVs的感染和流行高度相关。GⅡ.23是最近报道的NoVs新基因型。为了研究GⅡ.23与HBGAs的结合特征,表达纯化GⅡ.23基因型的P蛋白之后,通过唾液和寡糖结合实验研究其与HBGAs的结合特性,并通过同源结构模拟探索GⅡ.23 P蛋白与糖抗原潜在的对接分子机制,与已经解析的GⅡ.10的P蛋白与岩藻糖的复合物结构进行重叠。结果发现,GⅡ.23 P蛋白可以与B型唾液结合,但不结合A、O^+和O^-非分泌型唾液;P蛋白与H双糖抗原发生结合;分子模拟显示GⅡ.23 P蛋白具有与岩藻糖环结合的类似特征。本研究首次揭示了GⅡ.23 P蛋白与HBGAs受体的结合特征,为深入探索GⅡ.23基因型NoVs的进化、感染以及流行的具体机制提供了基础资料。  相似文献   

10.
11.
The fine structure of lignin deposition was examined in developing secondary walls of wound vessel members in Coleus. KMnO4, which was used as the fixative, selectively reacts with the lignin component of the cell wall and thus can be used as a highly sensitive electron stain to follow the course of lignification during secondary wall deposition. Lignin was first detected as conspicuuos electron-opaque granules in the primary wall in the region where the secondary wall thickening arises and as fine granular striations extending into the very young secondary wall. As the secondary wall develops lignification becomes progressively more extensive. In cross sections the lignified secondary wall appears as concentric, fine granular striations; in tangent al or oblique sections it is seen as delicate, beaded fibrils paralleling the long axis of the thickening. High magnification of tangential or oblique sections shows that the fibrillar appearance is due to the presence of alternating light and dark layers each approximately 25-35 A wide. It is assumed that the light layers are the cellulose microfibrils and the dark regions contain lignin which fills the space between the microfibrils. KMnO4, by selectively reacting with lignin, thus negatively stains the cellulose microfibrils revealing their orientation and dimensions.  相似文献   

12.
Cellulose and xyloglucan (XG) assemble to form the cellulose/XG network, which is considered to be the dominant load-bearing structure in the growing cell walls of non-graminaceous land plants. We have extended the most commonly accepted model for the macromolecular organization of XG in this network, based on the structural and quantitative analysis of three distinct XG fractions that can be differentially extracted from the cell walls isolated from etiolated pea stems. Approximately 8% of the dry weight of these cell walls consists of XG that can be solubilized by treatment of the walls with a XG-specific endoglucanase (XEG). This material corresponds to an enzyme-susceptible XG domain, proposed to form the cross-links between cellulose microfibrils. Another 10% of the cell wall consists of XG that can be solubilized by concentrated KOH after XEG treatment. This material constitutes another XG domain, proposed to be closely associated with the surface of the cellulose microfibrils. An additional 3% of the cell wall consists of XG that can be solubilized only when the XEG- and KOH-treated cell walls are treated with cellulase. This material constitutes a third XG domain, proposed to be entrapped within or between cellulose microfibrils. Analysis of the three fractions indicates that metabolism is essentially limited to the enzyme-susceptible domain. These results support the hypothesis that enzyme-catalyzed modification of XG cross-links in the cellulose/XG network is required for the growth and development of the primary plant cell wall, and demonstrate that the structural consequences of these metabolic events can be analyzed in detail.  相似文献   

13.
The crystal structure of a fucose-binding lectin from the bacteria Pseudomonas aeruginosa in complex with α-L-fucose has been recently determined. It is a tetramer; each monomer displays a nine-stranded, antiparallel, β-sandwiched arrangement and contains two calcium ions that mediate the binding of fucose in a recognition mode unique among protein-carbohydrate interactions. In search of this type of unique interactions in other newly discovered protein sequences, we have used molecular modeling techniques to predict and analyze the 3-D structures of some proteins, which exhibited reasonable degree of homology with the amino acid sequence of the bacterial protein. A BLAST search with the sequence of Pseudomonas aeruginosa as query in the non-redundant sequence database identified four proteins from different species, three organisms from bacteria and one from archaea. We have modeled the structures of these proteins as well as those of the complexes with carbohydrates and studied the nature of physicochemical forces involved in the complex formation both in presence and absence of calcium. The calcium-binding loops have been found to be highly conserved both in terms of primary and tertiary structures in these proteins, although a less acidic character is observed in Photorhabdus lectin due to the absence of two aspartic acid residues on the calcium-binding loop which also resulted in lower binding affinity. All these structures exhibited highly negative electrostatic environment in the vicinity of the calcium-binding loops which was essential for neutralizing the positive charges of two closely situated Ca+2 ions. The comparison of the binding affinities of some monosaccharides other than fucose, e.g. mannose and fructose, showed higher binding energies confirming the fucose specificity of these proteins.  相似文献   

14.
CbpA, the scaffolding protein of Clostridium cellulovorans cellulosomes, possesses one family 3 cellulose binding domain, nine cohesin domains, and four hydrophilic domains (HLDs). Among the three types of domains, the function of the HLDs is still unknown. We proposed previously that the HLDs of CbpA play a role in attaching the cellulosome to the cell surface, since they showed some homology to the surface layer homology domains of EngE. Several recombinant proteins with HLDs (rHLDs) and recombinant EngE (rEngE) were examined to determine their binding to the C. cellulovorans cell wall fraction. Tandemly linked rHLDs showed higher affinity for the cell wall than individual rHLDs showed. EngE was shown to have a higher affinity for cell walls than rHLDs have. C. cellulovorans native cellulosomes were found to have higher affinity for cell walls than rHLDs have. When immunoblot analysis was carried out with the native cellulosome fraction bound to cell wall fragments, the presence of EngE was also confirmed, suggesting that the mechanism anchoring CbpA to the C. cellulovorans cell surface was mediated through EngE and that the HLDs play a secondary role in the attachment of the cellulosome to the cell surface. During a study of the role of HLDs on cellulose degradation, the mini-cellulosome complexes with HLDs degraded cellulose more efficiently than complexes without HLDs degraded cellulose. The rHLDs also showed binding affinity for crystalline cellulose and carboxymethyl cellulose. These results suggest that the CbpA HLDs play a major role and a minor role in C. cellulovorans cellulosomes. The primary role increases cellulose degradation activity by binding the cellulosome complex to the cellulose substrate; secondarily, HLDs aid the binding of the CbpA/cellulosome to the C. cellulovorans cell surface.  相似文献   

15.
Laminaria is an abundant kelp genus in temperate nearshore ecosystems that grows with a circannual ‘stop-start’ pattern. Species of Laminaria play important ecological roles in kelp forests worldwide and are harvested commercially as a source of food and valuable extracts. In order to evaluate seasonal differences in tissue properties and composition, we compared the material properties, histology and cell-wall composition of overwintering blades with newly synthesized, actively growing blades from Laminaria setchellii. We found that overwintering blades were fortified with a thicker cortex and increased cell wall investment, leading to increased material strength. Overwintering tissues were composed of higher proportions of cellulose and fucose-containing polysaccharides (i.e. FCSPs, fucoidans) than newly formed blades and were found to possess thicker cell walls, likely to withstand the waves of winter storms. Chemical cell wall profiling revealed that significant proportions of fucose were associated with cellulose, especially in overwintering tissues, confirming the association between cellulose and some fucose-containing polysaccharides. Changes in material properties during the resting phase may allow these kelps to retain their non-growing blades through several months of winter storms. The results of this study demonstrate how one species might regulate its material properties seasonally, and at the same time shed light on the mechanisms that might control the material properties of kelps in general.  相似文献   

16.
Features of the interaction between cellulose and xyloglucan have been studied using the cellulose-producing bacterium Acetobacter aceti ssp. xylinum (ATCC 53524) and tamarind seed xyloglucan. Direct microscopic evidence is provided for the generation of cross-bridges between cellulose ribbons produced in the presence of xyloglucan but not carboxymethyl-cellulose. Cross-bridge lengths are very similar to those observed for de-pectinated onion cell walls. Similar cross-bridge lengths are observed following mixing of isolated A. xylinum cellulose and xyloglucan, showing that network formation can be an abiotic process. The level of incorporation of xyloglucan in an actively growing system (ca. 38% of cellulose) is an order of magnitude higher than that observed in mixtures of isolated polymers and is comparable with cell wall levels. NMR spectroscopy suggests that 80–85% of incorporated xyloglucan is segmentally rigid with the backbone adopting an extended ‘cellulosic’ conformation and probably aligned with cellulose chains. The remaining xyloglucan is more mobile and is assigned to cross-bridges with, on average, a twisted backbone conformation. No evidence for specific involvement of side-chain residues in binding is found, and the observation of cross-bridges with a non-fucosylated xyloglucan shows that fucose residues are not essential for network formation. Xyloglucan causes cellulose ribbons to become more amorphous and to have a decreased 1α/1β crystallite ratio without any significant alteration in ribbon diameter. Based on the findings that levels of xyloglucan incorporation, the presence and lengths of cross-bridges, and the modification of cellulosic molecular organization are all similar to those found in plant cell walls, we suggest that A. aceti ssp. xylinum is a more useful model for primary plant cell walls and their assembly than has previously been appreciated.  相似文献   

17.
Microwave (MW) fixation has been suggested as a method to rapidly immobilize cellular dynamics for fine structural studies in the electron microscope. To show its suitability for studies on cell monolayers, one has to apply MW fixation systematically in correlation with samples on the light microscopy level. Examples for MW fixation of cell monolayers, however, are still rare. MW-accelerated fixation for relatively long periods of time (1-2 min) has been reported without showing its suitability at the fine structural level. Here, we provide a rapid MW fixation protocol for cell monolayers on a subminute time scale. The impact of the MW-accelerated glutaraldehyde fixation on temperature-sensitive cytoskeletal components such as microtubules was evaluated. For testing the effectiveness of MW-assisted primary fixation, saponin treatment of the monolayers was included. Simultaneous MW-accelerated fixation and extraction by saponin was necessary to achieve a gradual improvement in visualization of cytoskeletal aspects in association with cell junctions, mitochondria, and centrioles. To establish a valuable routine program for fine structural studies of resin-embedded cell models on substrata, a protocol combining MW fixation with automatic processing in a tissue processor is provided.  相似文献   

18.
19.
The structure and fine structure of leaf and culm cell walls of sugarcane plants were analyzed using a combination of microscopic, chemical, biochemical, and immunological approaches. Fluorescence microscopy revealed that leaves and culm display autofluorescence and lignin distributed differently through different cell types, the former resulting from phenylpropanoids associated with vascular bundles and the latter distributed throughout all cell walls in the tissue sections. Polysaccharides in leaf and culm walls are quite similar, but differ in the proportions of xyloglucan and arabinoxylan in some fractions. In both cases, xyloglucan (XG) and arabinoxylan (AX) are closely associated with cellulose, whereas pectins, mixed-linkage-β-glucan (BG), and less branched xylans are strongly bound to cellulose. Accessibility to hydrolases of cell wall fraction increased after fractionation, suggesting that acetyl and phenolic linkages, as well as polysaccharide–polysaccharide interactions, prevented enzyme action when cell walls are assembled in its native architecture. Differently from other hemicelluloses, BG was shown to be readily accessible to lichenase when in intact walls. These results indicate that wall architecture has important implications for the development of more efficient industrial processes for second-generation bioethanol production. Considering that pretreatments such as steam explosion and alkali may lead to loss of more soluble fractions of the cell walls (BG and pectins), second-generation bioethanol, as currently proposed for sugarcane feedstock, might lead to loss of a substantial proportion of the cell wall polysaccharides, therefore decreasing the potential of sugarcane for bioethanol production in the future.  相似文献   

20.
The crystal structure of the carbohydrate-binding module (CBM) 4 Ig fused domain from the cellulosomal cellulase cellobiohydrolase A (CbhA) of Clostridium thermocellum was solved in complex with cellobiose at 2.11 Å resolution. This is the first cellulosomal CBM4 crystal structure reported to date. It is similar to the previously solved noncellulosomal soluble oligosaccharide-binding CBM4 structures. However, this new structure possesses a significant feature—a binding site peptide loop with a tryptophan (Trp118) residing midway in the loop. Based on sequence alignment, this structural feature might be common to all cellulosomal clostridial CBM4 modules. Our results indicate that C. thermocellum CbhA CBM4 also has an extended binding pocket that can optimally bind to cellodextrins containing five or more sugar units. Molecular dynamics simulations and experimental binding studies with the Trp118Ala mutant suggest that Trp118 contributes to the binding and, possibly, the orientation of the module to soluble cellodextrins. Furthermore, the binding cleft aromatic residues Trp68 and Tyr110 play a crucial role in binding to bacterial microcrystalline cellulose (BMCC), amorphous cellulose, and soluble oligodextrins. Binding to BMCC is in disagreement with the structural features of the binding pocket, which does not support binding to the flat surface of crystalline cellulose, suggesting that CBM4 binds the amorphous part or the cellulose “whiskers” of BMCC. We propose that clostridial CBM4s have possibly evolved to bind the free-chain ends of crystalline cellulose in addition to their ability to bind soluble cellodextrins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号