首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assembly protein (AP) preparations from bovine brain coated vesicles have been fractionated by clathrin-Sepharose affinity chromatography. Two distinct fractions that possess coat assembly activity were obtained and are termed AP-1 and AP-2. The AP-1, not retained on the resin, has principal components with molecular weights of 108,000, 100,000, 47,000, and 19,000. The AP-2, bound to the resin and eluted by Tris-HCl at a concentration that parallels the latter's effect on coat disassembly, corresponds to the active complex described previously (Zaremba, S., and J. H. Keen, 1983, J. Cell Biol., 97:1339-1347). Its composition is similar to that of the AP-1 in that it contains 100,000-, 50,000-, and 16,000-mol-wt polypeptides in equimolar amounts; minor amounts of 112,000- and 115,000-mol-wt polypeptides are also present. Both are distinct from a recently described assembly protein of larger subunit molecular weight that we term AP-3. These results indicate the existence of a family of assembly proteins within cells. On incubation with clathrin both AP-1 and AP-2 induce the formation of coat structures, those containing AP-1 slightly smaller (mean diameter = 72 nm) than those formed in the presence of AP-2 (mean diameter = 79 nm); both structures have been detected previously in coated vesicle preparations from brain. Coats formed in the presence of AP-2 consistently contain approximately one molecule each of the 100,000-, 50,000-, and 16,000-mol-wt polypeptides per clathrin trimer. By low angle laser light scattering the molecular weight of native AP-2 was determined to be approximately 343,000, indicating that it is a dimer of each of the three subunits, and implying that it is functionally bivalent in clathrin binding. A model for AP-mediated coat assembly is proposed in which a bivalent AP-2 molecule bridges the distal legs or terminal domains of two clathrin trimers that are destined to occupy adjacent vertices in the assembled coat. Binding of a second AP-2 molecule locks these two trimers in register for assembly and further addition of AP-2 to free trimer legs promotes completion of the clathrin lattice. Effects of AP binding on the angle and flexibility of the legs at the hub of the trimer (the "pucker") are suggested to account for the characteristic size distributions of coats formed under varied conditions and, more speculatively, to contribute to the transformation of flat clathrin lattices to curved coated vesicles that are thought to occur during endocytosis.  相似文献   

2.
K Prasad  J H Keen 《Biochemistry》1991,30(22):5590-5597
The clathrin assembly protein complex AP-2 is a multimeric subunit complex consisting of two 100-115-kDa subunits known as alpha and beta and 50- and 16-kDa subunits. The subunits have been dissociated and separated by ion-exchange chromatography in 7.5 M urea. Fractions highly enriched in either the alpha or beta subunit were obtained. The alpha fraction interacted with clathrin as evidenced by its ability to bind to preassembled clathrin cages. It also reacted with dissociated clathrin trimers under conditions that favor assembly of coat structures, but did not yield discrete clathrin polygonal lattices. The enriched beta fraction (containing small amounts of alpha) reacted with clathrin to yield intact coats with the incorporation of approximately equivalent amounts of alpha and beta subunits into the polymerized species; excess free beta subunit was unreactive. The AP-2 complex was also completely dissociated in a highly denaturing solvent, 6 M Gdn.HCl, and the constituent subunits of 100-115, 50, and 16 kDa were separated by gel filtration. In a coassembly assay with clathrin, the clathrin polymerizing activity was exclusively associated with the 100-kDa subunit fraction with stoichiometric incorporation of both alpha and beta subunits of 100 kDa into the polymerized coats, and with no requirement for 50- or 16-kDa subunits. These observations demonstrate that the assembly activity of the complex is associated with the alpha and beta subunits and suggest that both subunits, through independent interactions with clathrin, are required for expression of complete lattice assembly activity.  相似文献   

3.
Deep-etch visualization of proteins involved in clathrin assembly   总被引:17,自引:9,他引:8       下载免费PDF全文
Assembly proteins were extracted from bovine brain clathrin-coated vesicles with 0.5 M Tris and purified by clathrin-Sepharose affinity chromatography, then adsorbed to mica and examined by freeze-etch electron microscopy. The fraction possessing maximal ability to promote clathrin polymerization, termed AP-2, was found to be a tripartite structure composed of a relatively large central mass flanked by two smaller mirror-symmetric appendages. Elastase treatment quantitatively removed the appendages and clipped 35 kD from the molecule's major approximately 105-kD polypeptides, indicating that the appendages are made from portions of these polypeptides. The remaining central masses no longer promote clathrin polymerization, suggesting that the appendages are somehow involved in the clathrin assembly reaction. The central masses are themselves relatively compact and brick-shaped, and are sufficiently large to contain two copies of the molecule's other major polypeptides (16- and 50-kD), as well as two copies of the approximately 70-kD protease-resistant portions of the major approximately 105-kD polypeptides. Thus the native molecule seems to be a dimeric, bilaterally symmetrical entity. Direct visualization of AP-2 binding to clathrin was accomplished by preparing mixtures of the two molecules in buffers that marginally inhibit AP-2 aggregation and cage assembly. This revealed numerous examples of AP-2 molecules binding to the so-called terminal domains of clathrin triskelions, consistent with earlier electron microscopic evidence that in fully assembled cages, the AP's attach centrally to inwardly-directed terminal domains of the clathrin molecule. This would place AP-2s between the clathrin coat and the enclosed membrane in whole coated vesicles. AP-2s linked to the membrane were also visualized by enzymatically removing the clathrin from brain coated vesicles, using purified 70 kD, uncoating ATPase plus ATP. This revealed several brick-shaped molecules attached to the vesicle membrane by short stalks. The exact stoichiometry of APs to clathrin in such vesicles, before and after uncoating, remains to be determined.  相似文献   

4.
We have studied the in vivo phosphorylation of clathrin-coated vesicle proteins from rat reticulocytes. The major 32P-labeled polypeptides of clathrin-coated vesicles isolated from metabolically labeled cells were the the 165-, 100-110-, and 50-kDa polypeptides of the assembly protein, the clathrin beta-light chain, and to a lesser extent the clathrin alpha-light chain. The phosphorylation of the assembled (particulate) and unassembled (soluble) pools of clathrin and assembly protein was compared by immunoprecipitating the respective protein complexes from particulate and soluble cell fractions. Although all the phosphorylated polypeptides were present in both fractions, the extent of labeling was protein and fraction specific: the apparent specific activities of the assembly protein 50-kDa polypeptide and clathrin light chain were higher in the unassembled pool, whereas those of the 100-110-kDa polypeptides were higher in the assembled pool. The amino acids and polypeptide fragments labeled in vivo appeared similar to those labeled in vitro.  相似文献   

5.
Clathrin domains involved in recognition by assembly protein AP-2   总被引:5,自引:0,他引:5  
The domains on clathrin responsible for interaction with the plasma membrane-associated assembly protein AP-2 have been studied using a novel cage binding assay. AP-2 bound to pure clathrin cages but not to coat structures already containing AP that had been prepared by coassembly. Binding to preassembled cages also occurred in the presence of elevated Tris-HCl concentrations (greater than or equal to 200 mM) which block AP-2 interactions with free clathrin. AP-2 interactions with assembled cages could also be distinguished from AP-2 binding to clathrin trimers by sodium tripolyphosphate (NaPPPi), which binds to the alpha subunit of AP-2 (Beck, K., and Keen, J. H. (1991) J. Biol. Chem. 266, 4442-4447). At concentrations of 1-5 mM, NaPPPi blocked clathrin-triskelion binding; in contrast, interactions with cages persisted in the presence of 25 mM NaPPPi. To begin to identify the region(s) of the clathrin molecule important in recognition by AP-2, clathrin cages were proteolyzed to remove heavy chain terminal domains and portions of the distal leg as well as all of the light chains. AP-2 bound to these "clipped cages"; however, unlike the interaction with native cages, binding of AP-2 to clipped cages was sensitive to the lower concentrations of both Tris-HCl and NaPPPi which disrupt interactions of AP-2 with clathrin trimers. Reconstitution of the clipped cages with clathrin light chains did not restore resistance of AP-2 binding to Tris-HCl. We conclude that one binding site for AP-2 resides on the hub and/or proximal part of the clathrin triskelion whereas a second site is likely to involve the terminal domain and/or distal leg; the second site is manifested only in the assembled lattice structure. We suggest that these two distinct binding interactions may be mediated by the two unique large subunits within the AP-2 complex, acting sequentially during assembly.  相似文献   

6.
AP-2 and AP-3 are cellular proteins that drive the in vitro polymerization of clathrin triskelia into cage structures. The interaction of these two types of assembly proteins (APs) with preassembled clathrin cages has been studied in order to identify the sites on the triskelia required for binding. Comparing binding of the APs to intact or to proteolytically clipped cages, we attempted to distinguish between binding to the terminal domain, the globular end of the heavy chain, and binding to the hub of the clathrin triskelia, the portion that remains assembled after trypsin treatment. AP-3 binds to intact clathrin cages but not to those that were treated with trypsin. AP-3 also bound to cages consisting solely of clathrin heavy chains; proteolysis of these cages also eliminated AP-3 binding. In addition, AP-3 did not bind to either isolated hubs or terminal domains that had been immobilized on Sepharose. These data indicate that clathrin light chains are not required for binding of AP-3, and that neither terminal domain nor hubs alone will suffice. However, an intact heavy chain is both necessary and sufficient for the binding of AP-3. Previous work has demonstrated one binding site for AP-2 on proteolyzed cages containing only clathrin hubs; the existence of a second binding site associated with the terminal domain was hypothesized. Here we provide direct evidence for recognition by AP-2 of isolated terminal domains immobilized on Sepharose and show that the core of the AP-2 molecule is responsible for this interaction. These results provide the first demonstration of a functional role for the conserved terminal domain of the clathrin heavy chain.  相似文献   

7.
In this study image correlation spectroscopy was used to demonstrate the presence of two populations of clathrin in situ, on intact cells. In the periphery of the cell approximately 35% of the clathrin triskelions are free within the cytosol while approximately 65% are in large aggregates, presumably coated pits. Although endocytosis is inhibited at low temperature, free clathrin triskelions are still present and small AP-2 aggregates (of approximately 20 proteins), or coated pit nucleation sites, are still observed. Following hypertonic treatment, or cytoplasmic acidification, free clathrin triskelions within the cytosol are depleted and all of the clathrin becomes associated with the membrane. Under these conditions coated pit associated AP-2 remains while the smaller AP-2 aggregates, or coated pit nucleation sites, dissociate. This indicates that the stabilization of AP-2 coated pit nucleation sites requires the presence of free clathrin triskelions within the cytosol. Furthermore, this indicates that free clathrin is required for the early stages of coated pit formation and presumably the continuation of the clathrin-mediated endocytic process. We also provide indirect evidence that AP-2 binding to the membrane in coated pit nucleation sites may be regulated in part by binding to internalization-competent membrane receptors.  相似文献   

8.
GGAs, a class of monomeric clathrin adaptors, are involved in the sorting of cargo at the trans-Golgi network of eukaryotic cells. They are modular structures consisting of the VHS, the GAT, hinge, and GAE domains, which have been shown to interact directly with cargo, ARF, clathrin, and accessory proteins, respectively. Previous studies have shown that GGAs interact with clathrin both in solution and in the cell, but it has yet been shown whether they assemble clathrin. We find that GGA1 promoted assembly of clathrin with complete assembly achieved when one GGA1 molecule is bound per heavy chain. In the presence of excess GGA1, we obtained the unusual stoichiometry of five GGA1s per heavy chain, and even at this stoichiometry the binding was not saturated. The assembled structures were mostly baskets, but approximately 10% of the structures were tubular with an average length of 180 +/- 40 nm and width of approximately 50 nm. The truncated GGA1 fragment consisting of the hinge+GAE domains bound to clathrin with similar affinity as the full-length molecule and polymerized clathrin into baskets. Unlike the full-length molecule, this fragment saturated the lattices at one molecule per heavy chain and assembled clathrin only into baskets. The separated hinge and GAE domains bound much weaker to clathrin than the intact molecule, and these domains do not significantly polymerize clathrin into baskets. We conclude that clathrin adaptor GGA1 is a clathrin assembly protein, but it is unique in its ability to polymerize clathrin into tubules.  相似文献   

9.
Several components of the phosphoinositide cycle have been found to interact specifically and at physiological concentrations with the plasma membrane-associated clathrin assembly (adaptor) protein AP-2. These include phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate, which are present at the plasma membrane, as well as other polyphosphoinositols. ATP and other polyphosphate molecules complete with the polyphosphoinositols, however, they are at least 80-fold less potent. Also, the effect of ATP, unlike the polyphosphoinositols, is blocked by physiological concentrations of Mg2+. Photoaffinity labeling of AP-2 by [alpha-32P]8-azidoadenosine 5'-triphosphate and its competition by polyphosphoinositols has been used to identify the alpha subunit of the AP-2 complex as the site of specific interaction with the polyphosphoinositols and to confirm direct ultrafiltration binding experiments. Proteolytic dissection of the labeled AP-2 demonstrated that binding occurred exclusively on the N-terminal portion of the alpha subunit. Interaction of purified AP-2 with sub-microM concentrations of polyphosphoinositols has inhibitory effects on a novel AP-2 self-association described in the accompanying paper (Beck, K. A., and Keen, J. H., J. Biol. Chem. 266, 4437-4441), and at higher concentrations on the binding of AP-2 to dissociated clathrin trimers as well as AP-2-mediated clathrin coat assembly. Review of the literature shows that several physiological stimuli that are known to result in increased coat pit formation in intact cells correlate with increased phosphoinositide turnover. These in vivo correlations and the in vitro observations reported here suggest that coated membrane and phosphoinositide cycles may be interdependent within cells.  相似文献   

10.
Most eukaryotes utilize a single pool of clathrin to assemble clathrin-coated transport vesicles at different intracellular locations. Coat assembly is a cyclical process. Soluble clathrin triskelia are recruited to the membrane surface by compartment-specific adaptor and/or accessory proteins. Adjacent triskelia then pack together to assemble a polyhedral lattice that progressively invaginates, budding off the membrane surface encasing a nascent transport vesicle that is quickly uncoated. Using total internal reflection fluorescence microscopy to follow clathrin dynamics close to the cell surface, we find that the majority of labeled clathrin structures are relatively static, moving vertically in and out of the evanescent field but with little lateral motion. A small minority shows rapid lateral and directed movement over micrometer distances. Adaptor proteins, including the alpha subunit of AP-2, ARH, and Dab2 are also relatively static and exhibit virtually no lateral movement. A fluorescently labeled AP-2 beta2 subunit, incorporated into both AP-2 and AP-1 adaptor complexes, exhibits both types of behavior. This suggests that the highly motile clathrin puncta may be distinct from plasma membrane-associated clathrin structures. When endocytosed cargo molecules, such as transferrin or low density lipoprotein, are followed into cells, they exhibit even more lateral motion than clathrin, and gradually concentrate in the perinuclear region, consistent with classical endosomal trafficking. Importantly, clathrin partially colocalizes with internalized transferrin, but diverges as the structures move longitudinally. Thus, highly motile clathrin structures are apparently distinct from the plasma membrane, accompany transferrin, and contain AP-1, revealing an endosomal population of clathrin structures.  相似文献   

11.
Clathrin-coated vesicles are involved in protein and lipid trafficking between intracellular compartments in eukaryotic cells. AP-2 and AP180 are the resident coat proteins of clathrin-coated vesicles in nerve terminals, and interactions between these proteins could be important in vesicle dynamics. AP180 and AP-2 each assemble clathrin efficiently under acidic conditions, but neither protein will assemble clathrin efficiently at physiological pH. We find that there is a direct, clathrin-independent interaction between AP180 and AP-2 and that the AP180-AP-2 complex is more efficient at assembling clathrin under physiological conditions than is either protein alone. AP180 is phosphorylated in vivo, and in crude vesicle extracts its phosphorylation is enhanced by stimulation of casein kinase II, which is known to be present in coated vesicles. We find that recombinant AP180 is a substrate for casein kinase II in vitro and that its phosphorylation weakens both the binding of AP-2 by AP180 and the cooperative clathrin assembly activity of these proteins. We have localized the binding site for AP-2 to amino acids 623-680 of AP180. The AP180/AP-2 interaction can be disrupted by a recombinant AP180 fragment containing the AP-2 binding site, and this fragment also disrupts the cooperative clathrin assembly activity of the AP180-AP-2 complex. These results indicate that AP180 and AP-2 interact directly to form a complex that assembles clathrin more efficiently than either protein alone. Phosphorylation of AP180, by modulating the affinity of AP180 for AP-2, may contribute to the regulation of clathrin assembly in vivo.  相似文献   

12.
There is considerable evidence that the 100- to 116-kDa polypeptides in calf brain coated vesicles are involved in the assembly of clathrin triskelions to form coated vesicles. We have raised polyclonal antibodies against these polypeptides. By Western blot analysis, these antibodies bind to a distinct subset of the six polypeptides in the region 100-116 kDa. Whole cell homogenates from calf brain, calf liver, and rat liver also show immunoreactivity in the 100-kDa region with no other cross reactivity. Isolated coated vesicles from calf liver, rat brain, and soybean roots also cross-react. Stripped coated vesicles, which are depleted of clathrin but which retain the 100- to 116-kDa polypeptides, quantitatively rebind 125I-triskelions. This binding is inhibited in a dose-dependent manner by 100- to 116-kDa antibody but not by nonimmune serum or by anti-clathrin polyclonal antibody. These studies indicate that (1) specific sites on the 100- to 116-kDa polypeptides are required for assembly of coated vesicles, and (2) this antibody will be useful in clarifying more precisely the role of the 100- to 116-kDa polypeptides in coated vesicle recycling.  相似文献   

13.
The binding and assembly of clathrin triskelions on vesicle membranes seem to be mediated by certain assembly polypeptides (Keen, J.H., Willingham, M.C., and Pastau, I.H. (1979) Cell 16, 303-312). These assembly polypeptides were further purified into two distinct complexes using hydroxylapatite chromatography. Peak 1 consists of two major bands of 98 and 112 kDa, two minor bands of 103 and 118 kDa, and a polypeptide of 46 kDa. Peak 2 consists of one major band of 100 kDa, two minor bands of 103 and 115 kDa, and a polypeptide of 50 kDa. Both complexes have a native molecular mass of 290 kDa as determined by gel filtration. Each 290-kDa complex contains two polypeptides of 98-118/100-115 kDa and two polypeptides of 46/50 kDa. The 46-kDa polypeptide is not phosphorylated, whereas the 50-kDa polypeptide is. Both peaks contain 50-kDa kinase-like activity. Time courses of the 50-kDa phosphorylation show that the activity in peak 1 saturates much faster than the activity in peak 2; there may be two 50-kDa kinase activities in coated vesicles. A kinase that phosphorylates the polypeptides in 98-118-kDa group is present in peak 1 but not in peak 2. Both peaks assemble clathrin triskelions into cages under conditions in which the clathrin alone would not assemble. Both rotary shadowed and negatively stained preparations of these reassembled cages as well as the purified complexes were examined by electron microscopy. Thus, two complexes have been identified that differ in their polypeptide composition and kinase activities, but are similar in their ability to assemble clathrin triskelions into cages.  相似文献   

14.
Many plasma membrane proteins destined for endocytosis are concentrated into clathrin-coated pits through the recognition of a tyrosine-based motif in their cytosolic domains by an adaptor (AP-2) complex. The mu2 subunit of isolated AP-2 complexes binds specifically, but rather weakly, to proteins bearing the tyrosine-based signal. We now demonstrate, using peptides with a photoreactive probe, that this binding is strengthened significantly when the AP-2 complex is present in clathrin coats, indicating that there is cooperativity between receptor-AP-2 interactions and coat formation. Phosphoinositides with a phosphate at the D-3 position of the inositol ring, but not other isomers, also increase the affinity of the AP-2 complex for the tyrosine-based motif. AP-2 is the first protein known (in any context) to interact with phosphatidylinositol 3-phosphate. Our findings indicate that receptor recruitment can be coupled to clathrin coat assembly and suggest a mechanism for regulation of membrane traffic by lipid products of phosphoinositide 3-kinases.  相似文献   

15.
Self-association of dynamin to form spiral structures around lipidic vesicles during endocytosis is largely mediated by its 'coiled coil' GTPase Effector Domain (GED), which, in vitro, self-associates into huge helical assemblies. Residue-level structural characterizations of these assemblies and understanding the process of association have remained a challenge. It is also impossible to get folded monomers in the solution phase. In this context, we have developed here a strategy to probe the self-association of GED by first dissociating the assembly using Dimethyl Sulfoxide (DMSO) and then systematically monitoring the refolding into helix and concomitant re-association using NMR spectroscopy, as DMSO concentration is progressively reduced. The short segment, Arg109 - Met116, acts as the nucleation site for helix formation and self-association. Hydrophobic and complementary charge interactions on the surfaces drive self-association, as the helices elongate in both the directions resulting in an antiparallel stack. A small N-terminal segment remains floppy in the assembly. Following these and other published results on inter-domain interactions, we have proposed a plausible mode of dynamin self assembly.  相似文献   

16.
We have examined the in vitro behavior of clathrin-coated vesicles that have been stripped of their surface coats such that the majority of the clathrin is removed but substantial amounts of clathrin assembly proteins (AP) remain membrane-associated. Aggregation of these stripped coated vesicles (s-CV) is observed when they are placed under conditions that approximate the pH and ionic strength of the cell interior (pH 7.2, approximately 100 mM salt). This s-CV aggregation reaction is rapid (t1/2 < or = 0.5 min), independent of temperature within a range of 4-37 degrees C, and unaffected by ATP, guanosine-5'-O-(3-thiophosphate), and in particular EGTA, distinguishing it from Ca(2+)-dependent membrane aggregation reactions. The process is driven by the action of membrane-associated AP molecules since partial proteolysis results in a full loss of activity and since aggregation is abolished by pretreatment of the s-CVs with a monoclonal antibody that reacts with the alpha subunit of AP-2. However, vesicle aggregation is not inhibited by PPPi, indicating that the previously characterized polyphosphate-sensitive AP-2 self-association is not responsible for the reaction. The vesicle aggregation reaction can be reconstituted: liposomes of phospholipid composition approximating that found on the cytoplasmic surfaces of the plasma membrane and of coated vesicles (70% L-alpha-phosphatidylethanolamine (type I-A), 15% L-alpha-phosphatidyl-L-serine, and 15% L-alpha-phosphatidylinositol) aggregated after addition of AP-2, but not of AP-1, AP-3 (AP180), or pure clathrin triskelions. Aggregation of liposomes is abolished by limited proteolysis of AP-2 with trypsin. In addition, a highly purified AP-2 alpha preparation devoid of beta causes liposome aggregation, whereas pure beta subunit does not, consistent with results obtained in the s-CV assay which also indicate the involvement of the alpha subunit. Using a fluorescence energy transfer assay we show that AP-2 does not cause fusion of liposomes under physiological solution conditions. However, since the fusion of membranes necessarily requires the close opposition of the two participating bilayers, the AP-2-dependent vesicle aggregation events that we have identified may represent an initial step in the formation and fusion of endosomes that occur subsequent to endocytosis and clathrin uncoating in vivo.  相似文献   

17.
Clathrin assembly protein, AP180, was originally identified as a brain-specific protein localized to the presynaptic junction. AP180 acts to limit vesicle size and maintain a pool of releasable synaptic vesicles during rapid recycling. In this study, we show that polarized epithelial Madin-Darby canine kidney (MDCK) cells express two AP180-related proteins: the ubiquitously expressed 62-kDa clathrin assembly lymphoid myeloid leukemia (CALM, AP180-2) protein and a novel high-molecular-weight homolog that we have named AP180-3. Sequence analysis of AP180-3 expressed in MDCK cells shows high homology to AP180 from rat brain. AP180-3 contains conserved motifs found in brain-specific AP180, including the epsin NH2-terminal homology (ENTH) domain, the binding site for the -subunit of AP-2, and DLL repeats. Our studies show that AP180-3 from MDCK cells forms complexes with AP-2 and clathrin and that membrane recruitment of these complexes is modulated by phosphorylation. We demonstrate by immunohistochemistry that AP180-3 is localized to cytoplasmic vesicles in MDCK cells and is also present in tubule epithelial cells from mouse kidney. We observed by immunodetection that a high-molecular-weight AP180-related protein is expressed in numerous cells in addition to MDCK cells. clathrin assembly lympoid myeloid leukemia; kidney epithelial cells; epsin NH2-terminal homology domain; DLL repeats; clathrin; AP-2  相似文献   

18.
The clathrin adaptor complex AP-2 functions in the assembly of clathrin-coated vesicles at the plasma membrane where it serves to couple endocytic vesicle formation to the selection of membrane cargo proteins. Recent evidence suggests that binding of tyrosine-based endocytic sorting motifs may induce a conformational change within the AP-2 adaptor complex that could enhance its interaction with other cargo molecules and with the membrane. We report here that soluble tyrosine-based endocytic sorting motif peptides facilitate clathrin/AP-2 recruitment to liposomal membranes and induce adaptor oligomerization even in the absence of a lipid bilayer. These effects are specific for endocytic motifs of the type Yxxphi whereas peptides corresponding to NPxY- or di-leucine-containing sorting signals are ineffective. Our data may help to explain how the highly cooperative assembly of clathrin and adaptors could be linked to the selection of membrane cargo proteins.  相似文献   

19.
Brown CM  Roth MG  Henis YI  Petersen NO 《Biochemistry》1999,38(46):15166-15173
Image correlation spectroscopy and cross correlation spectroscopy were used to demonstrate that approximately 25% of the internalization-competent influenza virus hemagglutinin mutant, HA+8, is colocalized with clathrin and AP-2 at the plasma membrane of intact cells, while wild-type HA (which is excluded from coated pits) does not colocalize with either protein. Clathrin and AP-2 clusters were saturated when HA+8 was overexpressed, and this was accompanied by a redistribution of AP-2 into existing coated pits. However, de novo coated pit formation was not observed. In nontreated cells, the number of clusters of clathrin or AP-2 colocalized with HA+8 was always comparable. Hypertonic treatment which disperses the clathrin lattices resulted in more clusters containing AP-2 and HA+8 than clathrin and HA+8. Less colocalization of HA+8 with clathrin was also observed after cytosol acidification, which causes the formation of deeply invaginated pits, where the HA+8 may be inaccessible to extracellular labeling by antibodies, and blocks coated vesicle budding. However, cytosol acidification elevated the number of clusters containing both HA+8 and AP-2, suggesting an increase in their level of association outside of the deep invaginations. Our results imply that AP-2 and HA+8 can colocalize in clusters devoid of clathrin, at least in cells treated to alter the clathrin lattice structure. Although we cannot ascertain whether this also occurs in untreated cells, we propose that AP-2 binding to membrane proteins carrying internalization signals can occur prior to the binding of AP-2 to clathrin. While such complexes can in principle serve to recruit clathrin for the formation of new coated pits, the higher affinity of the internalization signals for clathrin-associated AP-2 [Rapoport, I., et al. (1997) EMBO J. 16, 2240-2250] makes it more likely that once the AP-2-membrane protein complexes form, they are quickly recruited into existing coated pits.  相似文献   

20.
Sorting nexin 9 (SNX9) belongs to a family of proteins, the sorting nexins, that are characterized by the presence of a subclass of the phosphoinositide-binding phox domain. SNX9 has in its amino terminus a Src homology 3 domain and a region with predicted low complexity followed by a carboxyl-terminal part containing the phox domain. We previously found that SNX9 is one of the major proteins in hematopoietic cells that binds to the alpha and beta2-appendages of adaptor protein complex 2 (AP-2), a protein with a critical role in the formation of clathrin-coated vesicles at the plasma membrane. In the present study we show that clathrin and dynamin-2, two other essential molecules in the endocytic process, also interact with SNX9. We found that both AP-2 and clathrin bind to the low complexity region in SNX9 in a cooperative manner, whereas dynamin-2 binds to the Src homology 3 domain. In the cytosol, SNX9 is present in a 14.5 S complex containing dynamin-2 and an unidentified 41-kDa protein. In HeLa cells, SNX9 co-localized with both AP-2 and dynamin-2 at the plasma membrane or on vesicular structures derived from it but not with the early endosomal marker EEA1 or with AP-1. The results suggest that SNX9 may be recruited together with dynamin-2 and become co-assembled with AP-2 and clathrin at the plasma membrane. Overexpression in both K562 and HeLa cells of truncated forms of SNX9 interfered with the uptake of transferrin, consistent with a role of SNX9 in endocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号