共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Caspase-mediated cleavage of p130cas in etoposide-induced apoptotic Rat-1 cells 总被引:5,自引:0,他引:5 下载免费PDF全文
Kook S Shim SR Choi SJ Ahnn J Kim JI Eom SH Jung YK Paik SG Song WK 《Molecular biology of the cell》2000,11(3):929-939
Apoptosis causes characteristic morphological changes in cells, including membrane blebbing, cell detachment from the extracellular matrix, and loss of cell-cell contacts. We investigated the changes in focal adhesion proteins during etoposide-induced apoptosis in Rat-1 cells and found that during apoptosis, p130cas (Crk-associated substrate [Cas]) is cleaved by caspase-3. Sequence analysis showed that Cas contains 10 DXXD consensus sites preferred by caspase-3. We identified two of these sites (DVPD(416)G and DSPD(748)G) in vitro, and point mutations substituting the Asp of DVPD(416)G and DSPD(748)G with Glu blocked caspase-3-mediated cleavage. Cleavage at DVPD(416)G generated a 74-kDa fragment, which was in turn cleaved at DSPD(748)G, yielding 47- and 31-kDa fragments. Immunofluorescence microscopy revealed well-developed focal adhesion sites in control cells that dramatically declined in number in etoposide-treated cells. Cas cleavage correlated temporally with the onset of apoptosis and coincided with the loss of p125FAK (focal adhesion kinase [FAK]) from focal adhesion sites and the attenuation of Cas-paxillin interactions. Considering that Cas associates with FAK, paxillin, and other molecules involved in the integrin signaling pathway, these results suggest that caspase-mediated cleavage of Cas contributes to the disassembly of focal adhesion complexes and interrupts survival signals from the extracellular matrix. 相似文献
4.
Matsura T Togawa A Kai M Nishida T Nakada J Ishibe Y Kojo S Yamamoto Y Yamada K 《Biochimica et biophysica acta》2005,1736(3):181-188
A growing body of evidence suggests that phosphatidylserine (PS) oxidation is linked with its transmembrane migration from the inner to the outer leaflet of the plasma membrane during apoptosis. However, there is no direct evidence for the presence of oxidized PS (PSox) on the surface of cells undergoing apoptosis. The present study was performed to detect PSox externalized to the cell surface after Fas engagement in Jurkat cells. Treatment of Jurkat cells with anti-Fas antibody induced caspase-3 activation, chromatin condensation, PS externalization, generation of reactive oxygen species, intracellular glutathione depletion, disruption of mitochondrial transmembrane potential and release of cytochrome c from mitochondria. To determine externalized PS and phosphatidylethanolamine (PE), Jurkat cells were treated with anti-Fas antibody and then labeled with membrane-impermeable fluorescamine, a probe for visualizing lipids that contain primary amino groups. Their total lipids were extracted and subjected to two-dimensional high-performance thin-layer chromatography (HPTLC). The HPTLC plate was sprayed with N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride to detect phospholipid hydroperoxides. PSox was present in small amounts within but not on the surface of normal cells. Treatment with anti-Fas antibody increased PSox within the cells and caused PSox to appear on the cell surface. In contrast, PE on the surface of Fas-ligated cells was not oxidized. Thus, the present study demonstrates for the first time the presence of PSox both within and on the surface of apoptotic cells. 相似文献
5.
《Matrix biology》2015
Angiogenesis, the formation of new blood vessels from preexisting vessels, is a highly complex process. It is regulated in a finely-tuned manner by numerous molecules including not only soluble growth factors such as vascular endothelial growth factor and several other growth factors, but also a diverse set of insoluble molecules, particularly collagenous and non-collagenous matrix constituents. In this review we have focused on the role and potential mechanisms of a multifunctional small leucine-rich proteoglycan decorin in angiogenesis. Depending on the cellular and molecular microenvironment where angiogenesis occurs, decorin can exhibit either a proangiogenic or an antiangiogenic activity. Nevertheless, in tumorigenesis-associated angiogenesis and in various inflammatory processes, particularly foreign body reactions and scarring, decorin exhibits an antiangiogenic activity, thus providing a potential basis for the development of decorin-based therapies in these pathological situations. 相似文献
6.
Cell death by apoptosis is involved in the maintenance of T cell receptor diversity, self tolerance, and T-cell number homeostasis. Until recently, apoptosis was thought to require caspase activation. Evidence is now accumulating that a caspase-independent pathway exists, shown by in vitro experiments with broad-range caspase inhibitors. Mature T lymphocytes readily undergo caspase-independent apoptosis in vitro, and recent data suggest that this type of apoptosis may be involved in the negative selection of thymocytes. Mitochondria likely release death triggers specific for both caspase-dependent and caspase-independent apoptotic pathways (cytochrome c and AIF respectively) in response to apoptotic stimuli. A caspase-independent pathway is triggered first in activated T lymphocytes subjected to apoptotic stimuli that do not rely on receptors with death domains. In this pathway, the early commitment phase to apoptosis involves cell shrinkage, peripheral DNA condensation and the translocation of mitochondrial AIF to the cytosol and nucleus. This process is reversible until mitochondrial cytochrome c is released and m dissipated. Only at this stage are caspases activated. 相似文献
7.
Caspase-dependent apoptotic pathways in CNS injury 总被引:15,自引:0,他引:15
Recent studies have suggested a role for neuronal apoptosis in cell loss following acute CNS injury as well as in chronic
neurodegeneration. Caspases are a family of cysteine requiring aspartate proteases with sequence similarity to Ced-3 protein
of Caenorhabditis elegans. These proteases have been found to contribute significantly to the morphological and biochemical
manifestations of apoptotic cell death. Caspases are translated as inactive zymogens and become active after specific cleavage.
Of the 14 identified caspases, caspase-3 appears to be the major effector of neuronal apoptosis induced by a variety of stimuli.
A role for caspase-3 in injury-induced neuronal cell death has been established using semispecific peptide caspase inhibitors.
This article reviews the current literature relating to pathways regulating caspase activation in apoptosis associated with
acute and chronic neurodegeneration, and suggests that identification of critical upstream caspase regulatory mechanisms may
permit more effective treatment of such disorders. 相似文献
8.
9.
10.
Hosono Y Abe T Ishiai M Takata M Enomoto T Seki M 《Biochemical and biophysical research communications》2011,(3):3999-573
DNA double strand breaks (DSBs) induced by etoposide, an inhibitor of DNA topoisomerase II, are repaired mainly by non-homologous end joining (NHEJ). Unexpectedly, it was found that at high doses of etoposide, proteins involved in NHEJ, such as KU70/80, DNA-PKcs and ARTEMIS/SNM1C, trigger apoptosis rather than repair of DSBs. Because ARTEMIS is a member of the SNM1 protein family that includes SNM1A and APOLLO/SNM1B, this study examined whether SNM1A and/or APOLLO are also involved in etoposide-induced apoptosis. Using SNM1A−/− and APOLLO−/− cells, it was found that both SNM1A and APOLLO participate in etoposide-induced apoptosis. Although cell viability monitored by MTT assay did not differ between SNM1A−/−/APOLLO−/−/ARTEMIS−/−, SNM1A−/−/APOLLO−/−, and single gene knockout cells, DNA fragmentation monitored by TUNEL assay differed between these cells, suggesting that the three SNM1 family nucleases function independently, at least during the induction of apoptotic DNA fragmentation. 相似文献
11.
12.
Viruses utilize a variety of strategies to evade the host immune response and replicate in the cells they infect. The comparatively large genomes of the Orthopoxviruses and gammaherpesviruses encode several immunomodulatory proteins that are homologous to component of the innate immune system of host cells, which are reviewed here. However, the viral mechanisms used to survive host responses are quite distinct between these two virus families. Poxviruses undergo continuous lytic replication in the host cytoplasm while expressing many genes that inhibit innate immune responses. In contrast, herpesviruses persist in a latent state during much of their lifecycle while expressing only a limited number of relatively non-immunogenic viral proteins, thereby avoiding the adaptive immune response. Poxviruses suppress, whereas latent gammaherpesviruses activate, signaling by NF-kappaB, yet both viruses target similar host signaling pathways to suppress the apoptotic response. Here, modulation of apoptotic and NF-kappaB signal transduction pathways are examined as examples of common pathways appropriated in contrasting ways by herpesviruses and poxviruses. 相似文献
13.
Nuclear and mitochondrial apoptotic pathways of p53 总被引:12,自引:0,他引:12
14.
The genetic information is continuously subjected to the attack by endogenous and exogenous chemical and physical carcinogens that damage the DNA template, thus compromising its biochemical functions. Despite the multiple and efficient DNA repair systems that have evolved to cope with the large variety of damages, some lesions may persist and, as a consequence, interfere with DNA replication. By essence, the damaged-DNA replication process (hereafter termed translesion synthesis or TLS) is a major source of point mutations and is therefore deeply involved in the onset of human diseases such as cancer. Recent identification of numerous DNA polymerases involved in TLS has shed new light onto the molecular mechanisms of mutagenesis. Here, we show that in vivo, both error-free and mutagenic bypass activities of the three DNA polymerases known to be involved in TLS in Escherichia coli (PolII, PolIV and PolV) strictly depend upon the integrity of small peptidic sequences identified as their beta-clamp binding motif. Thus, in addition to its crucial role as the processivity factor of the PolIII replicase, the beta-clamp plays a pivotal role during the TLS process. 相似文献
15.
Cerghet Mirela Bessert Denise A. Nave Klaus-Armin Skoff Robert P. 《Brain Cell Biology》2001,30(9-10):841-855
Point mutations and duplications of proteolipid protein (PLP) gene in mammals cause dysmyelination and oligodendrocyte cell death. The jimpy mouse, which has a lethal Plp point mutation, is the best characterized of the mutants; transgenic mice, which have additional copies of Plp gene, are less characterized. While oligodendrocyte death is a prominent feature in jimpy, the pathways leading to death have not been investigated in jimpy and Plp overexpressors. Using immunohistochemistry and immunobloting, we examined expression of cleaved caspase-3, Poly (ADP-ribose) polymerase (PARP), caspase-12, and mitochondrial apoptotic markers in spinal cord in jimpy males and Plp overexpressors. Compared to controls, cleaved caspase-3 is increased 10× in jimpy white matter spinal cord, and 3× in Plp overexpressor. In jimpy, the number of cleaved caspase-3 cells far exceeds the number of TUNEL+ cells. The majority of cleaved caspase-3+ cells were not TUNEL+ and these cells exhibited staining in perikarya and in processes. Only 30% of the cleaved caspase-3+ cells were TUNEL+ and exhibited both nuclear and perinuclear staining. This observation suggests that activation of caspase-3 begins earlier and overlaps for a period of time with DNA fragmentation. In both Plp mutants, quantitative immunobloting of PARP showed a 45% increase in total as well as cleaved form, indicating that oligodendrocytes die via apoptosis. Most interestingly, cleavage of caspase-12, a caspase associated with unfolded protein response, is dramatically increased in jimpy but not at all in Plp overexpressors. Mitochondrial markers cytochrome c and Bcl-XL are upregulated in both Plp mutants but levels of expression are different between mutants, suggesting that apoptosis in these two Plp mutants follows different pathways. In jimpy, mitochondrial apoptotic markers may play a role in amplifying the apoptotic signal. Our data shows for the first time, in vivo, that mutations in Plp gene increase oligodendrocyte death by activating the caspase cascade but the trigger to upregulate this cascade follows different pathways. 相似文献
16.
Fleck CC Carey HV 《American journal of physiology. Regulatory, integrative and comparative physiology》2005,289(2):R586-R595
Mammalian hibernation is associated with several events that can affect programmed cell death (apoptosis) in nonhibernators, including marked changes in blood flow, extended fasting, and oxidative stress. However, the effect of hibernation on apoptosis is poorly understood. Here, we investigated apoptosis and expression of proteins involved in apoptotic pathways in intestinal mucosa of summer and hibernating ground squirrels. We used terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) to identify possible apoptotic enterocytes in small intestine of summer squirrels and hibernating squirrels throughout the winter. Nuclear TUNEL staining increased as hibernation progressed, but the staining pattern was diffuse and not accompanied by chromatin condensation or apoptotic bodies. Electrophoresis of mucosal DNA revealed no ladders typical of apoptosis. Nuclear levels of proapoptotic p53 protein were fourfold less in hibernators compared with summer squirrels. A 12-fold increase in anti-apoptotic Bcl-x(L) compared with a 2-fold increase in proapoptotic Bax suggested a balance in favor of antiapoptotic signaling in hibernators. There was no change in Bcl-2 protein expression but phospho-Bcl-2 increased in mucosa of hibernators. Hibernation had minimal effects on expression of active caspase-8 or -9, whereas caspase-3-specific activity was lower in hibernators during an interbout arousal compared with summer squirrels. Expression of the prosurvival protein Akt increased 20-fold during hibernation, but phospho-Akt was not altered. These data provide evidence for enhanced expression of antiapoptotic proteins during hibernation that may promote enterocyte survival in a pro-oxidative, proapoptotic environment. 相似文献
17.
Hoffmann DC Textoris C Oehme F Klaassen T Goppelt A Römer A Fugmann B Davidson JM Werner S Krieg T Eming SA 《The Journal of biological chemistry》2011,286(33):28889-28901
α1-Antichymotrypsin (α1-ACT) is a specific inhibitor of leukocyte-derived chymotrypsin-like proteases with largely unknown functions in tissue repair. By examining human and murine skin wounds, we showed that following mechanical injury the physiological repair response is associated with an acute phase response of α1-ACT and the mouse homologue Spi-2, respectively. In both species, attenuated α1-ACT/Spi-2 activity and gene expression at the local wound site was associated with severe wound healing defects. Topical application of recombinant α1-ACT to wounds of diabetic mice rescued the impaired healing phenotype. LC-MS analysis of α1-ACT cleavage fragments identified a novel cleavage site within the reactive center loop and showed that neutrophil elastase was the predominant protease involved in unusual α1-ACT cleavage and inactivation in nonhealing human wounds. These results reveal critical functions for locally acting α1-ACT in the acute phase response following skin injury, provide mechanistic insight into its function during the repair response, and raise novel perspectives for its potential therapeutic value in inflammation-mediated tissue damage. 相似文献
18.
19.
Kuniyasu Niizuma Hideyuki Yoshioka Hai Chen Gab Seok Kim Joo Eun Jung Masataka Katsu Nobuya Okami Pak H. Chan 《生物化学与生物物理学报:疾病的分子基础》2010,1802(1):92-99
Mitochondria play important roles as the powerhouse of the cell. After cerebral ischemia, mitochondria overproduce reactive oxygen species (ROS), which have been thoroughly studied with the use of superoxide dismutase transgenic or knockout animals. ROS directly damage lipids, proteins, and nucleic acids in the cell. Moreover, ROS activate various molecular signaling pathways. Apoptosis-related signals return to mitochondria, then mitochondria induce cell death through the release of pro-apoptotic proteins such as cytochrome c or apoptosis-inducing factor. Although the mechanisms of cell death after cerebral ischemia remain unclear, mitochondria obviously play a role by activating signaling pathways through ROS production and by regulating mitochondria-dependent apoptosis pathways. 相似文献
20.
Nakamura Y Kumagai T Yoshida C Naito Y Miyamoto M Ohigashi H Osawa T Uchida K 《Biochemistry》2003,42(14):4300-4309
Although the induction of glutathione S-transferase (GST) activity by tert-butylhydroquinone (tBHQ) has been well-documented in several cell culture systems and rodent experiments, the exact mechanism responsible for its inducibility is still not thoroughly understood. To more precisely define the molecular mechanism of GST induction by tBHQ, we examined the one-electron oxidation and glutathione (GSH) reaction potentials of tBHQ as compared to its analogue, 2,5-di-tert-butylhydroquinone (DtBHQ). tBHQ and DtBHQ showed similar one-electron oxidation potentials, including free radical quenching (antioxidant), oxidative conversion of both compounds to a benzoquinone form, and Cu(2+)-dependent superoxide generation. On the other hand, the reduced GSH level was observed by the addition of tBHQ, but not DtBHQ, suggesting that tBHQ acts as an electrophile while DtBHQ does not. The data were consistent with the observation that tBHQ more potently induced the GSTP1 gene expression in RL34 cells than DtBHQ did. Moreover, we indeed detected the GSH-tBHQ conjugates in the cells exposed to tBHQ using an electrochemical detector-high-performance liquid chromatography technique. Thus, we conclude that an electrophilic quinone oxidation product that reacts with intracellular nucleophiles including protein thiol or GSH plays a major role in the GSTP1 gene expression. 相似文献